1 /* Copyright (c) 2017, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #ifndef OPENSSL_HEADER_SSL_SPAN_H
16 #define OPENSSL_HEADER_SSL_SPAN_H
17
18 #include <openssl/base.h>
19
20 #if !defined(BORINGSSL_NO_CXX)
21
22 extern "C++" {
23
24 #include <stdlib.h>
25
26 #include <algorithm>
27 #include <type_traits>
28
29 #if __cplusplus >= 201703L
30 #include <string_view>
31 #endif
32
33 #if defined(__has_include)
34 #if __has_include(<version>)
35 #include <version>
36 #endif
37 #endif
38
39 #if defined(__cpp_lib_ranges) && __cpp_lib_ranges >= 201911L
40 #include <ranges>
41 BSSL_NAMESPACE_BEGIN
42 template <typename T>
43 class Span;
44 BSSL_NAMESPACE_END
45
46 // Mark `Span` as satisfying the `view` and `borrowed_range` concepts. This
47 // should be done before the definition of `Span`, so that any inlined calls to
48 // range functionality use the correct specializations.
49 template <typename T>
50 inline constexpr bool std::ranges::enable_view<bssl::Span<T>> = true;
51 template <typename T>
52 inline constexpr bool std::ranges::enable_borrowed_range<bssl::Span<T>> = true;
53 #endif
54
55 BSSL_NAMESPACE_BEGIN
56
57 template <typename T>
58 class Span;
59
60 namespace internal {
61 template <typename T>
62 class SpanBase {
63 // Put comparison operator implementations into a base class with const T, so
64 // they can be used with any type that implicitly converts into a Span.
65 static_assert(std::is_const<T>::value,
66 "Span<T> must be derived from SpanBase<const T>");
67
68 friend bool operator==(Span<T> lhs, Span<T> rhs) {
69 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
70 }
71
72 friend bool operator!=(Span<T> lhs, Span<T> rhs) { return !(lhs == rhs); }
73 };
74
75 // Heuristically test whether C is a container type that can be converted into
76 // a Span<T> by checking for data() and size() member functions.
77 //
78 // TODO(davidben): Require C++17 support for std::is_convertible_v, etc.
79 template <typename C, typename T>
80 using EnableIfContainer = std::enable_if_t<
81 std::is_convertible<decltype(std::declval<C>().data()), T *>::value &&
82 std::is_integral<decltype(std::declval<C>().size())>::value>;
83
84 } // namespace internal
85
86 // A Span<T> is a non-owning reference to a contiguous array of objects of type
87 // |T|. Conceptually, a Span is a simple a pointer to |T| and a count of
88 // elements accessible via that pointer. The elements referenced by the Span can
89 // be mutated if |T| is mutable.
90 //
91 // A Span can be constructed from container types implementing |data()| and
92 // |size()| methods. If |T| is constant, construction from a container type is
93 // implicit. This allows writing methods that accept data from some unspecified
94 // container type:
95 //
96 // // Foo views data referenced by v.
97 // void Foo(bssl::Span<const uint8_t> v) { ... }
98 //
99 // std::vector<uint8_t> vec;
100 // Foo(vec);
101 //
102 // For mutable Spans, conversion is explicit:
103 //
104 // // FooMutate mutates data referenced by v.
105 // void FooMutate(bssl::Span<uint8_t> v) { ... }
106 //
107 // FooMutate(bssl::Span<uint8_t>(vec));
108 //
109 // You can also use the |MakeSpan| and |MakeConstSpan| factory methods to
110 // construct Spans in order to deduce the type of the Span automatically.
111 //
112 // FooMutate(bssl::MakeSpan(vec));
113 //
114 // Note that Spans have value type sematics. They are cheap to construct and
115 // copy, and should be passed by value whenever a method would otherwise accept
116 // a reference or pointer to a container or array.
117 template <typename T>
118 class Span : private internal::SpanBase<const T> {
119 public:
120 static const size_t npos = static_cast<size_t>(-1);
121
122 using element_type = T;
123 using value_type = std::remove_cv_t<T>;
124 using size_type = size_t;
125 using difference_type = ptrdiff_t;
126 using pointer = T *;
127 using const_pointer = const T *;
128 using reference = T &;
129 using const_reference = const T &;
130 using iterator = T *;
131 using const_iterator = const T *;
132
Span()133 constexpr Span() : Span(nullptr, 0) {}
Span(T * ptr,size_t len)134 constexpr Span(T *ptr, size_t len) : data_(ptr), size_(len) {}
135
136 template <size_t N>
Span(T (& array)[N])137 constexpr Span(T (&array)[N]) : Span(array, N) {}
138
139 template <typename C, typename = internal::EnableIfContainer<C, T>,
140 typename = std::enable_if_t<std::is_const<T>::value, C>>
Span(const C & container)141 constexpr Span(const C &container)
142 : data_(container.data()), size_(container.size()) {}
143
144 template <typename C, typename = internal::EnableIfContainer<C, T>,
145 typename = std::enable_if_t<!std::is_const<T>::value, C>>
Span(C & container)146 constexpr explicit Span(C &container)
147 : data_(container.data()), size_(container.size()) {}
148
data()149 constexpr T *data() const { return data_; }
size()150 constexpr size_t size() const { return size_; }
empty()151 constexpr bool empty() const { return size_ == 0; }
152
begin()153 constexpr iterator begin() const { return data_; }
cbegin()154 constexpr const_iterator cbegin() const { return data_; }
end()155 constexpr iterator end() const { return data_ + size_; }
cend()156 constexpr const_iterator cend() const { return end(); }
157
front()158 constexpr T &front() const {
159 if (size_ == 0) {
160 abort();
161 }
162 return data_[0];
163 }
back()164 constexpr T &back() const {
165 if (size_ == 0) {
166 abort();
167 }
168 return data_[size_ - 1];
169 }
170
171 constexpr T &operator[](size_t i) const {
172 if (i >= size_) {
173 abort();
174 }
175 return data_[i];
176 }
at(size_t i)177 T &at(size_t i) const { return (*this)[i]; }
178
179 constexpr Span subspan(size_t pos = 0, size_t len = npos) const {
180 if (pos > size_) {
181 // absl::Span throws an exception here. Note std::span and Chromium
182 // base::span additionally forbid pos + len being out of range, with a
183 // special case at npos/dynamic_extent, while absl::Span::subspan clips
184 // the span. For now, we align with absl::Span in case we switch to it in
185 // the future.
186 abort();
187 }
188 return Span(data_ + pos, std::min(size_ - pos, len));
189 }
190
first(size_t len)191 constexpr Span first(size_t len) const {
192 if (len > size_) {
193 abort();
194 }
195 return Span(data_, len);
196 }
197
last(size_t len)198 constexpr Span last(size_t len) const {
199 if (len > size_) {
200 abort();
201 }
202 return Span(data_ + size_ - len, len);
203 }
204
205 private:
206 T *data_;
207 size_t size_;
208 };
209
210 template <typename T>
211 const size_t Span<T>::npos;
212
213 #if __cplusplus >= 201703L
214 template <typename T>
215 Span(T *, size_t) -> Span<T>;
216 template <typename T, size_t size>
217 Span(T (&array)[size]) -> Span<T>;
218 template <
219 typename C,
220 typename T = std::remove_pointer_t<decltype(std::declval<C>().data())>,
221 typename = internal::EnableIfContainer<C, T>>
222 Span(C &) -> Span<T>;
223 #endif
224
225 // C++17 callers can instead rely on CTAD and the deduction guides defined
226 // above.
227 template <typename T>
MakeSpan(T * ptr,size_t size)228 constexpr Span<T> MakeSpan(T *ptr, size_t size) {
229 return Span<T>(ptr, size);
230 }
231
232 template <typename C>
233 constexpr auto MakeSpan(C &c) -> decltype(MakeSpan(c.data(), c.size())) {
234 return MakeSpan(c.data(), c.size());
235 }
236
237 template <typename T, size_t N>
MakeSpan(T (& array)[N])238 constexpr Span<T> MakeSpan(T (&array)[N]) {
239 return Span<T>(array, N);
240 }
241
242 template <typename T>
MakeConstSpan(T * ptr,size_t size)243 constexpr Span<const T> MakeConstSpan(T *ptr, size_t size) {
244 return Span<const T>(ptr, size);
245 }
246
247 template <typename C>
248 constexpr auto MakeConstSpan(const C &c)
249 -> decltype(MakeConstSpan(c.data(), c.size())) {
250 return MakeConstSpan(c.data(), c.size());
251 }
252
253 template <typename T, size_t size>
MakeConstSpan(T (& array)[size])254 constexpr Span<const T> MakeConstSpan(T (&array)[size]) {
255 return array;
256 }
257
258 #if __cplusplus >= 201703L
StringAsBytes(std::string_view s)259 inline Span<const uint8_t> StringAsBytes(std::string_view s) {
260 return MakeConstSpan(reinterpret_cast<const uint8_t *>(s.data()), s.size());
261 }
262
BytesAsStringView(bssl::Span<const uint8_t> b)263 inline std::string_view BytesAsStringView(bssl::Span<const uint8_t> b) {
264 return std::string_view(reinterpret_cast<const char *>(b.data()), b.size());
265 }
266 #endif
267
268 BSSL_NAMESPACE_END
269
270 } // extern C++
271
272 #endif // !defined(BORINGSSL_NO_CXX)
273
274 #endif // OPENSSL_HEADER_SSL_SPAN_H
275