• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2017, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #ifndef OPENSSL_HEADER_SSL_SPAN_H
16 #define OPENSSL_HEADER_SSL_SPAN_H
17 
18 #include <openssl/base.h>
19 
20 #if !defined(BORINGSSL_NO_CXX)
21 
22 extern "C++" {
23 
24 #include <stdlib.h>
25 
26 #include <algorithm>
27 #include <type_traits>
28 
29 #if __cplusplus >= 201703L
30 #include <string_view>
31 #endif
32 
33 #if defined(__has_include)
34 #if __has_include(<version>)
35 #include <version>
36 #endif
37 #endif
38 
39 #if defined(__cpp_lib_ranges) && __cpp_lib_ranges >= 201911L
40 #include <ranges>
41 BSSL_NAMESPACE_BEGIN
42 template <typename T>
43 class Span;
44 BSSL_NAMESPACE_END
45 
46 // Mark `Span` as satisfying the `view` and `borrowed_range` concepts. This
47 // should be done before the definition of `Span`, so that any inlined calls to
48 // range functionality use the correct specializations.
49 template <typename T>
50 inline constexpr bool std::ranges::enable_view<bssl::Span<T>> = true;
51 template <typename T>
52 inline constexpr bool std::ranges::enable_borrowed_range<bssl::Span<T>> = true;
53 #endif
54 
55 BSSL_NAMESPACE_BEGIN
56 
57 template <typename T>
58 class Span;
59 
60 namespace internal {
61 template <typename T>
62 class SpanBase {
63   // Put comparison operator implementations into a base class with const T, so
64   // they can be used with any type that implicitly converts into a Span.
65   static_assert(std::is_const<T>::value,
66                 "Span<T> must be derived from SpanBase<const T>");
67 
68   friend bool operator==(Span<T> lhs, Span<T> rhs) {
69     return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
70   }
71 
72   friend bool operator!=(Span<T> lhs, Span<T> rhs) { return !(lhs == rhs); }
73 };
74 
75 // Heuristically test whether C is a container type that can be converted into
76 // a Span<T> by checking for data() and size() member functions.
77 //
78 // TODO(davidben): Require C++17 support for std::is_convertible_v, etc.
79 template <typename C, typename T>
80 using EnableIfContainer = std::enable_if_t<
81     std::is_convertible<decltype(std::declval<C>().data()), T *>::value &&
82     std::is_integral<decltype(std::declval<C>().size())>::value>;
83 
84 }  // namespace internal
85 
86 // A Span<T> is a non-owning reference to a contiguous array of objects of type
87 // |T|. Conceptually, a Span is a simple a pointer to |T| and a count of
88 // elements accessible via that pointer. The elements referenced by the Span can
89 // be mutated if |T| is mutable.
90 //
91 // A Span can be constructed from container types implementing |data()| and
92 // |size()| methods. If |T| is constant, construction from a container type is
93 // implicit. This allows writing methods that accept data from some unspecified
94 // container type:
95 //
96 // // Foo views data referenced by v.
97 // void Foo(bssl::Span<const uint8_t> v) { ... }
98 //
99 // std::vector<uint8_t> vec;
100 // Foo(vec);
101 //
102 // For mutable Spans, conversion is explicit:
103 //
104 // // FooMutate mutates data referenced by v.
105 // void FooMutate(bssl::Span<uint8_t> v) { ... }
106 //
107 // FooMutate(bssl::Span<uint8_t>(vec));
108 //
109 // You can also use the |MakeSpan| and |MakeConstSpan| factory methods to
110 // construct Spans in order to deduce the type of the Span automatically.
111 //
112 // FooMutate(bssl::MakeSpan(vec));
113 //
114 // Note that Spans have value type sematics. They are cheap to construct and
115 // copy, and should be passed by value whenever a method would otherwise accept
116 // a reference or pointer to a container or array.
117 template <typename T>
118 class Span : private internal::SpanBase<const T> {
119  public:
120   static const size_t npos = static_cast<size_t>(-1);
121 
122   using element_type = T;
123   using value_type = std::remove_cv_t<T>;
124   using size_type = size_t;
125   using difference_type = ptrdiff_t;
126   using pointer = T *;
127   using const_pointer = const T *;
128   using reference = T &;
129   using const_reference = const T &;
130   using iterator = T *;
131   using const_iterator = const T *;
132 
Span()133   constexpr Span() : Span(nullptr, 0) {}
Span(T * ptr,size_t len)134   constexpr Span(T *ptr, size_t len) : data_(ptr), size_(len) {}
135 
136   template <size_t N>
Span(T (& array)[N])137   constexpr Span(T (&array)[N]) : Span(array, N) {}
138 
139   template <typename C, typename = internal::EnableIfContainer<C, T>,
140             typename = std::enable_if_t<std::is_const<T>::value, C>>
Span(const C & container)141   constexpr Span(const C &container)
142       : data_(container.data()), size_(container.size()) {}
143 
144   template <typename C, typename = internal::EnableIfContainer<C, T>,
145             typename = std::enable_if_t<!std::is_const<T>::value, C>>
Span(C & container)146   constexpr explicit Span(C &container)
147       : data_(container.data()), size_(container.size()) {}
148 
data()149   constexpr T *data() const { return data_; }
size()150   constexpr size_t size() const { return size_; }
empty()151   constexpr bool empty() const { return size_ == 0; }
152 
begin()153   constexpr iterator begin() const { return data_; }
cbegin()154   constexpr const_iterator cbegin() const { return data_; }
end()155   constexpr iterator end() const { return data_ + size_; }
cend()156   constexpr const_iterator cend() const { return end(); }
157 
front()158   constexpr T &front() const {
159     if (size_ == 0) {
160       abort();
161     }
162     return data_[0];
163   }
back()164   constexpr T &back() const {
165     if (size_ == 0) {
166       abort();
167     }
168     return data_[size_ - 1];
169   }
170 
171   constexpr T &operator[](size_t i) const {
172     if (i >= size_) {
173       abort();
174     }
175     return data_[i];
176   }
at(size_t i)177   T &at(size_t i) const { return (*this)[i]; }
178 
179   constexpr Span subspan(size_t pos = 0, size_t len = npos) const {
180     if (pos > size_) {
181       // absl::Span throws an exception here. Note std::span and Chromium
182       // base::span additionally forbid pos + len being out of range, with a
183       // special case at npos/dynamic_extent, while absl::Span::subspan clips
184       // the span. For now, we align with absl::Span in case we switch to it in
185       // the future.
186       abort();
187     }
188     return Span(data_ + pos, std::min(size_ - pos, len));
189   }
190 
first(size_t len)191   constexpr Span first(size_t len) const {
192     if (len > size_) {
193       abort();
194     }
195     return Span(data_, len);
196   }
197 
last(size_t len)198   constexpr Span last(size_t len) const {
199     if (len > size_) {
200       abort();
201     }
202     return Span(data_ + size_ - len, len);
203   }
204 
205  private:
206   T *data_;
207   size_t size_;
208 };
209 
210 template <typename T>
211 const size_t Span<T>::npos;
212 
213 #if __cplusplus >= 201703L
214 template <typename T>
215 Span(T *, size_t) -> Span<T>;
216 template <typename T, size_t size>
217 Span(T (&array)[size]) -> Span<T>;
218 template <
219     typename C,
220     typename T = std::remove_pointer_t<decltype(std::declval<C>().data())>,
221     typename = internal::EnableIfContainer<C, T>>
222 Span(C &) -> Span<T>;
223 #endif
224 
225 // C++17 callers can instead rely on CTAD and the deduction guides defined
226 // above.
227 template <typename T>
MakeSpan(T * ptr,size_t size)228 constexpr Span<T> MakeSpan(T *ptr, size_t size) {
229   return Span<T>(ptr, size);
230 }
231 
232 template <typename C>
233 constexpr auto MakeSpan(C &c) -> decltype(MakeSpan(c.data(), c.size())) {
234   return MakeSpan(c.data(), c.size());
235 }
236 
237 template <typename T, size_t N>
MakeSpan(T (& array)[N])238 constexpr Span<T> MakeSpan(T (&array)[N]) {
239   return Span<T>(array, N);
240 }
241 
242 template <typename T>
MakeConstSpan(T * ptr,size_t size)243 constexpr Span<const T> MakeConstSpan(T *ptr, size_t size) {
244   return Span<const T>(ptr, size);
245 }
246 
247 template <typename C>
248 constexpr auto MakeConstSpan(const C &c)
249     -> decltype(MakeConstSpan(c.data(), c.size())) {
250   return MakeConstSpan(c.data(), c.size());
251 }
252 
253 template <typename T, size_t size>
MakeConstSpan(T (& array)[size])254 constexpr Span<const T> MakeConstSpan(T (&array)[size]) {
255   return array;
256 }
257 
258 #if __cplusplus >= 201703L
StringAsBytes(std::string_view s)259 inline Span<const uint8_t> StringAsBytes(std::string_view s) {
260   return MakeConstSpan(reinterpret_cast<const uint8_t *>(s.data()), s.size());
261 }
262 
BytesAsStringView(bssl::Span<const uint8_t> b)263 inline std::string_view BytesAsStringView(bssl::Span<const uint8_t> b) {
264   return std::string_view(reinterpret_cast<const char *>(b.data()), b.size());
265 }
266 #endif
267 
268 BSSL_NAMESPACE_END
269 
270 }  // extern C++
271 
272 #endif  // !defined(BORINGSSL_NO_CXX)
273 
274 #endif  // OPENSSL_HEADER_SSL_SPAN_H
275