• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  * ECC cipher suite support in OpenSSL originally developed by
113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114  */
115 /* ====================================================================
116  * Copyright 2005 Nokia. All rights reserved.
117  *
118  * The portions of the attached software ("Contribution") is developed by
119  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120  * license.
121  *
122  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124  * support (see RFC 4279) to OpenSSL.
125  *
126  * No patent licenses or other rights except those expressly stated in
127  * the OpenSSL open source license shall be deemed granted or received
128  * expressly, by implication, estoppel, or otherwise.
129  *
130  * No assurances are provided by Nokia that the Contribution does not
131  * infringe the patent or other intellectual property rights of any third
132  * party or that the license provides you with all the necessary rights
133  * to make use of the Contribution.
134  *
135  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139  * OTHERWISE. */
140 
141 #include <openssl/ssl.h>
142 
143 #include <assert.h>
144 #include <string.h>
145 
146 #include <openssl/err.h>
147 #include <openssl/md5.h>
148 #include <openssl/mem.h>
149 #include <openssl/sha.h>
150 #include <openssl/stack.h>
151 
152 #include "../crypto/internal.h"
153 #include "internal.h"
154 
155 
156 BSSL_NAMESPACE_BEGIN
157 
158 static constexpr SSL_CIPHER kCiphers[] = {
159     // The RSA ciphers
160 
161     // Cipher 0A
162     {
163         SSL3_TXT_RSA_DES_192_CBC3_SHA,
164         "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
165         SSL3_CK_RSA_DES_192_CBC3_SHA,
166         SSL_kRSA,
167         SSL_aRSA_DECRYPT,
168         SSL_3DES,
169         SSL_SHA1,
170         SSL_HANDSHAKE_MAC_DEFAULT,
171     },
172 
173 
174     // New AES ciphersuites
175 
176     // Cipher 2F
177     {
178         TLS1_TXT_RSA_WITH_AES_128_SHA,
179         "TLS_RSA_WITH_AES_128_CBC_SHA",
180         TLS1_CK_RSA_WITH_AES_128_SHA,
181         SSL_kRSA,
182         SSL_aRSA_DECRYPT,
183         SSL_AES128,
184         SSL_SHA1,
185         SSL_HANDSHAKE_MAC_DEFAULT,
186     },
187 
188     // Cipher 35
189     {
190         TLS1_TXT_RSA_WITH_AES_256_SHA,
191         "TLS_RSA_WITH_AES_256_CBC_SHA",
192         TLS1_CK_RSA_WITH_AES_256_SHA,
193         SSL_kRSA,
194         SSL_aRSA_DECRYPT,
195         SSL_AES256,
196         SSL_SHA1,
197         SSL_HANDSHAKE_MAC_DEFAULT,
198     },
199 
200     // PSK cipher suites.
201 
202     // Cipher 8C
203     {
204         TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
205         "TLS_PSK_WITH_AES_128_CBC_SHA",
206         TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
207         SSL_kPSK,
208         SSL_aPSK,
209         SSL_AES128,
210         SSL_SHA1,
211         SSL_HANDSHAKE_MAC_DEFAULT,
212     },
213 
214     // Cipher 8D
215     {
216         TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
217         "TLS_PSK_WITH_AES_256_CBC_SHA",
218         TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
219         SSL_kPSK,
220         SSL_aPSK,
221         SSL_AES256,
222         SSL_SHA1,
223         SSL_HANDSHAKE_MAC_DEFAULT,
224     },
225 
226     // GCM ciphersuites from RFC 5288
227 
228     // Cipher 9C
229     {
230         TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
231         "TLS_RSA_WITH_AES_128_GCM_SHA256",
232         TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
233         SSL_kRSA,
234         SSL_aRSA_DECRYPT,
235         SSL_AES128GCM,
236         SSL_AEAD,
237         SSL_HANDSHAKE_MAC_SHA256,
238     },
239 
240     // Cipher 9D
241     {
242         TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
243         "TLS_RSA_WITH_AES_256_GCM_SHA384",
244         TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
245         SSL_kRSA,
246         SSL_aRSA_DECRYPT,
247         SSL_AES256GCM,
248         SSL_AEAD,
249         SSL_HANDSHAKE_MAC_SHA384,
250     },
251 
252     // TLS 1.3 suites.
253 
254     // Cipher 1301
255     {
256         TLS1_3_RFC_AES_128_GCM_SHA256,
257         "TLS_AES_128_GCM_SHA256",
258         TLS1_3_CK_AES_128_GCM_SHA256,
259         SSL_kGENERIC,
260         SSL_aGENERIC,
261         SSL_AES128GCM,
262         SSL_AEAD,
263         SSL_HANDSHAKE_MAC_SHA256,
264     },
265 
266     // Cipher 1302
267     {
268         TLS1_3_RFC_AES_256_GCM_SHA384,
269         "TLS_AES_256_GCM_SHA384",
270         TLS1_3_CK_AES_256_GCM_SHA384,
271         SSL_kGENERIC,
272         SSL_aGENERIC,
273         SSL_AES256GCM,
274         SSL_AEAD,
275         SSL_HANDSHAKE_MAC_SHA384,
276     },
277 
278     // Cipher 1303
279     {
280         TLS1_3_RFC_CHACHA20_POLY1305_SHA256,
281         "TLS_CHACHA20_POLY1305_SHA256",
282         TLS1_3_CK_CHACHA20_POLY1305_SHA256,
283         SSL_kGENERIC,
284         SSL_aGENERIC,
285         SSL_CHACHA20POLY1305,
286         SSL_AEAD,
287         SSL_HANDSHAKE_MAC_SHA256,
288     },
289 
290     // Cipher C009
291     {
292         TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
293         "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
294         TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
295         SSL_kECDHE,
296         SSL_aECDSA,
297         SSL_AES128,
298         SSL_SHA1,
299         SSL_HANDSHAKE_MAC_DEFAULT,
300     },
301 
302     // Cipher C00A
303     {
304         TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
305         "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",
306         TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
307         SSL_kECDHE,
308         SSL_aECDSA,
309         SSL_AES256,
310         SSL_SHA1,
311         SSL_HANDSHAKE_MAC_DEFAULT,
312     },
313 
314     // Cipher C013
315     {
316         TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
317         "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
318         TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
319         SSL_kECDHE,
320         SSL_aRSA_SIGN,
321         SSL_AES128,
322         SSL_SHA1,
323         SSL_HANDSHAKE_MAC_DEFAULT,
324     },
325 
326     // Cipher C014
327     {
328         TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
329         "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
330         TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
331         SSL_kECDHE,
332         SSL_aRSA_SIGN,
333         SSL_AES256,
334         SSL_SHA1,
335         SSL_HANDSHAKE_MAC_DEFAULT,
336     },
337 
338     // Cipher C027
339     {
340         TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
341         "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256",
342         TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
343         SSL_kECDHE,
344         SSL_aRSA_SIGN,
345         SSL_AES128,
346         SSL_SHA256,
347         SSL_HANDSHAKE_MAC_SHA256,
348     },
349 
350     // GCM based TLS v1.2 ciphersuites from RFC 5289
351 
352     // Cipher C02B
353     {
354         TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
355         "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
356         TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
357         SSL_kECDHE,
358         SSL_aECDSA,
359         SSL_AES128GCM,
360         SSL_AEAD,
361         SSL_HANDSHAKE_MAC_SHA256,
362     },
363 
364     // Cipher C02C
365     {
366         TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
367         "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
368         TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
369         SSL_kECDHE,
370         SSL_aECDSA,
371         SSL_AES256GCM,
372         SSL_AEAD,
373         SSL_HANDSHAKE_MAC_SHA384,
374     },
375 
376     // Cipher C02F
377     {
378         TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
379         "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
380         TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
381         SSL_kECDHE,
382         SSL_aRSA_SIGN,
383         SSL_AES128GCM,
384         SSL_AEAD,
385         SSL_HANDSHAKE_MAC_SHA256,
386     },
387 
388     // Cipher C030
389     {
390         TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
391         "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
392         TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
393         SSL_kECDHE,
394         SSL_aRSA_SIGN,
395         SSL_AES256GCM,
396         SSL_AEAD,
397         SSL_HANDSHAKE_MAC_SHA384,
398     },
399 
400     // ECDHE-PSK cipher suites.
401 
402     // Cipher C035
403     {
404         TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
405         "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
406         TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
407         SSL_kECDHE,
408         SSL_aPSK,
409         SSL_AES128,
410         SSL_SHA1,
411         SSL_HANDSHAKE_MAC_DEFAULT,
412     },
413 
414     // Cipher C036
415     {
416         TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
417         "TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA",
418         TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
419         SSL_kECDHE,
420         SSL_aPSK,
421         SSL_AES256,
422         SSL_SHA1,
423         SSL_HANDSHAKE_MAC_DEFAULT,
424     },
425 
426     // ChaCha20-Poly1305 cipher suites.
427 
428     // Cipher CCA8
429     {
430         TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
431         "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
432         TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
433         SSL_kECDHE,
434         SSL_aRSA_SIGN,
435         SSL_CHACHA20POLY1305,
436         SSL_AEAD,
437         SSL_HANDSHAKE_MAC_SHA256,
438     },
439 
440     // Cipher CCA9
441     {
442         TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
443         "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
444         TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
445         SSL_kECDHE,
446         SSL_aECDSA,
447         SSL_CHACHA20POLY1305,
448         SSL_AEAD,
449         SSL_HANDSHAKE_MAC_SHA256,
450     },
451 
452     // Cipher CCAB
453     {
454         TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
455         "TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256",
456         TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
457         SSL_kECDHE,
458         SSL_aPSK,
459         SSL_CHACHA20POLY1305,
460         SSL_AEAD,
461         SSL_HANDSHAKE_MAC_SHA256,
462     },
463 
464 };
465 
AllCiphers()466 Span<const SSL_CIPHER> AllCiphers() {
467   return MakeConstSpan(kCiphers, OPENSSL_ARRAY_SIZE(kCiphers));
468 }
469 
NumTLS13Ciphers()470 static constexpr size_t NumTLS13Ciphers() {
471   size_t num = 0;
472   for (const auto &cipher : kCiphers) {
473     if (cipher.algorithm_mkey == SSL_kGENERIC) {
474       num++;
475     }
476   }
477   return num;
478 }
479 
480 #define CIPHER_ADD 1
481 #define CIPHER_KILL 2
482 #define CIPHER_DEL 3
483 #define CIPHER_ORD 4
484 #define CIPHER_SPECIAL 5
485 
486 typedef struct cipher_order_st {
487   const SSL_CIPHER *cipher;
488   bool active;
489   bool in_group;
490   struct cipher_order_st *next, *prev;
491 } CIPHER_ORDER;
492 
493 typedef struct cipher_alias_st {
494   // name is the name of the cipher alias.
495   const char *name = nullptr;
496 
497   // The following fields are bitmasks for the corresponding fields on
498   // |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
499   // bit corresponding to the cipher's value is set to 1. If any bitmask is
500   // all zeroes, the alias matches nothing. Use |~0u| for the default value.
501   uint32_t algorithm_mkey = ~0u;
502   uint32_t algorithm_auth = ~0u;
503   uint32_t algorithm_enc = ~0u;
504   uint32_t algorithm_mac = ~0u;
505 
506   // min_version, if non-zero, matches all ciphers which were added in that
507   // particular protocol version.
508   uint16_t min_version = 0;
509 
510   // include_deprecated, if true, means this alias includes deprecated ciphers.
511   bool include_deprecated = false;
512 } CIPHER_ALIAS;
513 
514 static const CIPHER_ALIAS kCipherAliases[] = {
515     {"ALL", ~0u, ~0u, ~0u, ~0u, 0},
516 
517     // The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing.
518 
519     // key exchange aliases
520     // (some of those using only a single bit here combine
521     // multiple key exchange algs according to the RFCs.
522     {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},
523 
524     {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
525     {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
526     {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
527 
528     {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},
529 
530     // server authentication aliases
531     {"aRSA", ~0u, SSL_aRSA_SIGN | SSL_aRSA_DECRYPT, ~0u, ~0u, 0},
532     {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
533     {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
534     {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},
535 
536     // aliases combining key exchange and server authentication
537     {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
538     {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
539     {"RSA", SSL_kRSA, SSL_aRSA_SIGN | SSL_aRSA_DECRYPT, ~0u, ~0u, 0},
540     {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},
541 
542     // symmetric encryption aliases
543     {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0, /*include_deprecated=*/true},
544     {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0,
545      /*include_deprecated=*/false},
546     {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0,
547      /*include_deprecated=*/false},
548     {"AES", ~0u, ~0u, SSL_AES, ~0u, 0},
549     {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0,
550      /*include_deprecated=*/false},
551     {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0,
552      /*include_deprecated=*/false},
553 
554     // MAC aliases
555     {"SHA1", ~0u, ~0u, ~0u, SSL_SHA1, 0},
556     {"SHA", ~0u, ~0u, ~0u, SSL_SHA1, 0},
557 
558     // Legacy protocol minimum version aliases. "TLSv1" is intentionally the
559     // same as "SSLv3".
560     {"SSLv3", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
561     {"TLSv1", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
562     {"TLSv1.2", ~0u, ~0u, ~0u, ~0u, TLS1_2_VERSION},
563 
564     // Legacy strength classes.
565     {"HIGH", ~0u, ~0u, ~0u, ~0u, 0},
566     {"FIPS", ~0u, ~0u, ~0u, ~0u, 0},
567 
568     // Temporary no-op aliases corresponding to removed SHA-2 legacy CBC
569     // ciphers. These should be removed after 2018-05-14.
570     {"SHA256", 0, 0, 0, 0, 0},
571     {"SHA384", 0, 0, 0, 0, 0},
572 };
573 
574 static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases);
575 
ssl_cipher_get_evp_aead(const EVP_AEAD ** out_aead,size_t * out_mac_secret_len,size_t * out_fixed_iv_len,const SSL_CIPHER * cipher,uint16_t version)576 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
577                              size_t *out_mac_secret_len,
578                              size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
579                              uint16_t version) {
580   *out_aead = NULL;
581   *out_mac_secret_len = 0;
582   *out_fixed_iv_len = 0;
583 
584   if (cipher->algorithm_mac == SSL_AEAD) {
585     if (cipher->algorithm_enc == SSL_AES128GCM) {
586       if (version < TLS1_3_VERSION) {
587         *out_aead = EVP_aead_aes_128_gcm_tls12();
588       } else {
589         *out_aead = EVP_aead_aes_128_gcm_tls13();
590       }
591       *out_fixed_iv_len = 4;
592     } else if (cipher->algorithm_enc == SSL_AES256GCM) {
593       if (version < TLS1_3_VERSION) {
594         *out_aead = EVP_aead_aes_256_gcm_tls12();
595       } else {
596         *out_aead = EVP_aead_aes_256_gcm_tls13();
597       }
598       *out_fixed_iv_len = 4;
599     } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) {
600       *out_aead = EVP_aead_chacha20_poly1305();
601       *out_fixed_iv_len = 12;
602     } else {
603       return false;
604     }
605 
606     // In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
607     // above computes the TLS 1.2 construction.
608     if (version >= TLS1_3_VERSION) {
609       *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
610     }
611   } else if (cipher->algorithm_mac == SSL_SHA1) {
612     if (cipher->algorithm_enc == SSL_3DES) {
613       if (version == TLS1_VERSION) {
614         *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
615         *out_fixed_iv_len = 8;
616       } else {
617         *out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
618       }
619     } else if (cipher->algorithm_enc == SSL_AES128) {
620       if (version == TLS1_VERSION) {
621         *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
622         *out_fixed_iv_len = 16;
623       } else {
624         *out_aead = EVP_aead_aes_128_cbc_sha1_tls();
625       }
626     } else if (cipher->algorithm_enc == SSL_AES256) {
627       if (version == TLS1_VERSION) {
628         *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
629         *out_fixed_iv_len = 16;
630       } else {
631         *out_aead = EVP_aead_aes_256_cbc_sha1_tls();
632       }
633     } else {
634       return false;
635     }
636 
637     *out_mac_secret_len = SHA_DIGEST_LENGTH;
638   } else if (cipher->algorithm_mac == SSL_SHA256) {
639     if (cipher->algorithm_enc == SSL_AES128) {
640       *out_aead = EVP_aead_aes_128_cbc_sha256_tls();
641     } else {
642       return false;
643     }
644 
645     *out_mac_secret_len = SHA256_DIGEST_LENGTH;
646   } else {
647     return false;
648   }
649 
650   return true;
651 }
652 
ssl_get_handshake_digest(uint16_t version,const SSL_CIPHER * cipher)653 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
654                                        const SSL_CIPHER *cipher) {
655   switch (cipher->algorithm_prf) {
656     case SSL_HANDSHAKE_MAC_DEFAULT:
657       return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1();
658     case SSL_HANDSHAKE_MAC_SHA256:
659       return EVP_sha256();
660     case SSL_HANDSHAKE_MAC_SHA384:
661       return EVP_sha384();
662     default:
663       assert(0);
664       return NULL;
665   }
666 }
667 
is_cipher_list_separator(char c,bool is_strict)668 static bool is_cipher_list_separator(char c, bool is_strict) {
669   if (c == ':') {
670     return true;
671   }
672   return !is_strict && (c == ' ' || c == ';' || c == ',');
673 }
674 
675 // rule_equals returns whether the NUL-terminated string |rule| is equal to the
676 // |buf_len| bytes at |buf|.
rule_equals(const char * rule,const char * buf,size_t buf_len)677 static bool rule_equals(const char *rule, const char *buf, size_t buf_len) {
678   // |strncmp| alone only checks that |buf| is a prefix of |rule|.
679   return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
680 }
681 
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)682 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
683                            CIPHER_ORDER **tail) {
684   if (curr == *tail) {
685     return;
686   }
687   if (curr == *head) {
688     *head = curr->next;
689   }
690   if (curr->prev != NULL) {
691     curr->prev->next = curr->next;
692   }
693   if (curr->next != NULL) {
694     curr->next->prev = curr->prev;
695   }
696   (*tail)->next = curr;
697   curr->prev = *tail;
698   curr->next = NULL;
699   *tail = curr;
700 }
701 
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)702 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
703                            CIPHER_ORDER **tail) {
704   if (curr == *head) {
705     return;
706   }
707   if (curr == *tail) {
708     *tail = curr->prev;
709   }
710   if (curr->next != NULL) {
711     curr->next->prev = curr->prev;
712   }
713   if (curr->prev != NULL) {
714     curr->prev->next = curr->next;
715   }
716   (*head)->prev = curr;
717   curr->next = *head;
718   curr->prev = NULL;
719   *head = curr;
720 }
721 
~SSLCipherPreferenceList()722 SSLCipherPreferenceList::~SSLCipherPreferenceList() {
723   OPENSSL_free(in_group_flags);
724 }
725 
Init(UniquePtr<STACK_OF (SSL_CIPHER)> ciphers_arg,Span<const bool> in_group_flags_arg)726 bool SSLCipherPreferenceList::Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers_arg,
727                                    Span<const bool> in_group_flags_arg) {
728   if (sk_SSL_CIPHER_num(ciphers_arg.get()) != in_group_flags_arg.size()) {
729     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
730     return false;
731   }
732 
733   Array<bool> copy;
734   if (!copy.CopyFrom(in_group_flags_arg)) {
735     return false;
736   }
737   ciphers = std::move(ciphers_arg);
738   size_t unused_len;
739   copy.Release(&in_group_flags, &unused_len);
740   return true;
741 }
742 
Init(const SSLCipherPreferenceList & other)743 bool SSLCipherPreferenceList::Init(const SSLCipherPreferenceList &other) {
744   size_t size = sk_SSL_CIPHER_num(other.ciphers.get());
745   Span<const bool> other_flags(other.in_group_flags, size);
746   UniquePtr<STACK_OF(SSL_CIPHER)> other_ciphers(
747       sk_SSL_CIPHER_dup(other.ciphers.get()));
748   if (!other_ciphers) {
749     return false;
750   }
751   return Init(std::move(other_ciphers), other_flags);
752 }
753 
Remove(const SSL_CIPHER * cipher)754 void SSLCipherPreferenceList::Remove(const SSL_CIPHER *cipher) {
755   size_t index;
756   if (!sk_SSL_CIPHER_find(ciphers.get(), &index, cipher)) {
757     return;
758   }
759   if (!in_group_flags[index] /* last element of group */ && index > 0) {
760     in_group_flags[index - 1] = false;
761   }
762   for (size_t i = index; i < sk_SSL_CIPHER_num(ciphers.get()) - 1; ++i) {
763     in_group_flags[i] = in_group_flags[i + 1];
764   }
765   sk_SSL_CIPHER_delete(ciphers.get(), index);
766 }
767 
ssl_cipher_is_deprecated(const SSL_CIPHER * cipher)768 bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher) {
769   return cipher->id == TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 ||
770          cipher->algorithm_enc == SSL_3DES;
771 }
772 
773 // ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
774 // parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
775 // head and tail of the list to |*head_p| and |*tail_p|, respectively.
776 //
777 // - If |cipher_id| is non-zero, only that cipher is selected.
778 // - Otherwise, if |strength_bits| is non-negative, it selects ciphers
779 //   of that strength.
780 // - Otherwise, |alias| must be non-null. It selects ciphers that matches
781 //   |*alias|.
ssl_cipher_apply_rule(uint32_t cipher_id,const CIPHER_ALIAS * alias,int rule,int strength_bits,bool in_group,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)782 static void ssl_cipher_apply_rule(uint32_t cipher_id, const CIPHER_ALIAS *alias,
783                                   int rule, int strength_bits, bool in_group,
784                                   CIPHER_ORDER **head_p,
785                                   CIPHER_ORDER **tail_p) {
786   CIPHER_ORDER *head, *tail, *curr, *next, *last;
787   const SSL_CIPHER *cp;
788   bool reverse = false;
789 
790   if (cipher_id == 0 && strength_bits == -1 && alias->min_version == 0 &&
791       (alias->algorithm_mkey == 0 || alias->algorithm_auth == 0 ||
792        alias->algorithm_enc == 0 || alias->algorithm_mac == 0)) {
793     // The rule matches nothing, so bail early.
794     return;
795   }
796 
797   if (rule == CIPHER_DEL) {
798     // needed to maintain sorting between currently deleted ciphers
799     reverse = true;
800   }
801 
802   head = *head_p;
803   tail = *tail_p;
804 
805   if (reverse) {
806     next = tail;
807     last = head;
808   } else {
809     next = head;
810     last = tail;
811   }
812 
813   curr = NULL;
814   for (;;) {
815     if (curr == last) {
816       break;
817     }
818 
819     curr = next;
820     if (curr == NULL) {
821       break;
822     }
823 
824     next = reverse ? curr->prev : curr->next;
825     cp = curr->cipher;
826 
827     // Selection criteria is either a specific cipher, the value of
828     // |strength_bits|, or the algorithms used.
829     if (cipher_id != 0) {
830       if (cipher_id != cp->id) {
831         continue;
832       }
833     } else if (strength_bits >= 0) {
834       if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
835         continue;
836       }
837     } else {
838       if (!(alias->algorithm_mkey & cp->algorithm_mkey) ||
839           !(alias->algorithm_auth & cp->algorithm_auth) ||
840           !(alias->algorithm_enc & cp->algorithm_enc) ||
841           !(alias->algorithm_mac & cp->algorithm_mac) ||
842           (alias->min_version != 0 &&
843            SSL_CIPHER_get_min_version(cp) != alias->min_version) ||
844           (!alias->include_deprecated && ssl_cipher_is_deprecated(cp))) {
845         continue;
846       }
847     }
848 
849     // add the cipher if it has not been added yet.
850     if (rule == CIPHER_ADD) {
851       // reverse == false
852       if (!curr->active) {
853         ll_append_tail(&head, curr, &tail);
854         curr->active = true;
855         curr->in_group = in_group;
856       }
857     }
858 
859     // Move the added cipher to this location
860     else if (rule == CIPHER_ORD) {
861       // reverse == false
862       if (curr->active) {
863         ll_append_tail(&head, curr, &tail);
864         curr->in_group = false;
865       }
866     } else if (rule == CIPHER_DEL) {
867       // reverse == true
868       if (curr->active) {
869         // most recently deleted ciphersuites get best positions
870         // for any future CIPHER_ADD (note that the CIPHER_DEL loop
871         // works in reverse to maintain the order)
872         ll_append_head(&head, curr, &tail);
873         curr->active = false;
874         curr->in_group = false;
875       }
876     } else if (rule == CIPHER_KILL) {
877       // reverse == false
878       if (head == curr) {
879         head = curr->next;
880       } else {
881         curr->prev->next = curr->next;
882       }
883 
884       if (tail == curr) {
885         tail = curr->prev;
886       }
887       curr->active = false;
888       if (curr->next != NULL) {
889         curr->next->prev = curr->prev;
890       }
891       if (curr->prev != NULL) {
892         curr->prev->next = curr->next;
893       }
894       curr->next = NULL;
895       curr->prev = NULL;
896     }
897   }
898 
899   *head_p = head;
900   *tail_p = tail;
901 }
902 
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)903 static bool ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
904                                      CIPHER_ORDER **tail_p) {
905   // This routine sorts the ciphers with descending strength. The sorting must
906   // keep the pre-sorted sequence, so we apply the normal sorting routine as
907   // '+' movement to the end of the list.
908   int max_strength_bits = 0;
909   CIPHER_ORDER *curr = *head_p;
910   while (curr != NULL) {
911     if (curr->active &&
912         SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
913       max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
914     }
915     curr = curr->next;
916   }
917 
918   Array<int> number_uses;
919   if (!number_uses.Init(max_strength_bits + 1)) {
920     return false;
921   }
922 
923   // Now find the strength_bits values actually used.
924   curr = *head_p;
925   while (curr != NULL) {
926     if (curr->active) {
927       number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
928     }
929     curr = curr->next;
930   }
931 
932   // Go through the list of used strength_bits values in descending order.
933   for (int i = max_strength_bits; i >= 0; i--) {
934     if (number_uses[i] > 0) {
935       ssl_cipher_apply_rule(/*cipher_id=*/0, /*alias=*/nullptr, CIPHER_ORD, i,
936                             false, head_p, tail_p);
937     }
938   }
939 
940   return true;
941 }
942 
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,bool strict)943 static bool ssl_cipher_process_rulestr(const char *rule_str,
944                                        CIPHER_ORDER **head_p,
945                                        CIPHER_ORDER **tail_p, bool strict) {
946   const char *l, *buf;
947   bool in_group = false, has_group = false;
948   size_t j, buf_len;
949   char ch;
950 
951   l = rule_str;
952   for (;;) {
953     ch = *l;
954 
955     if (ch == '\0') {
956       break;  // done
957     }
958 
959     int rule;
960     if (in_group) {
961       if (ch == ']') {
962         if (*tail_p) {
963           (*tail_p)->in_group = false;
964         }
965         in_group = false;
966         l++;
967         continue;
968       }
969 
970       if (ch == '|') {
971         rule = CIPHER_ADD;
972         l++;
973         continue;
974       } else if (!OPENSSL_isalnum(ch)) {
975         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
976         return false;
977       } else {
978         rule = CIPHER_ADD;
979       }
980     } else if (ch == '-') {
981       rule = CIPHER_DEL;
982       l++;
983     } else if (ch == '+') {
984       rule = CIPHER_ORD;
985       l++;
986     } else if (ch == '!') {
987       rule = CIPHER_KILL;
988       l++;
989     } else if (ch == '@') {
990       rule = CIPHER_SPECIAL;
991       l++;
992     } else if (ch == '[') {
993       assert(!in_group);
994       in_group = true;
995       has_group = true;
996       l++;
997       continue;
998     } else {
999       rule = CIPHER_ADD;
1000     }
1001 
1002     // If preference groups are enabled, the only legal operator is +.
1003     // Otherwise the in_group bits will get mixed up.
1004     if (has_group && rule != CIPHER_ADD) {
1005       OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
1006       return false;
1007     }
1008 
1009     if (is_cipher_list_separator(ch, strict)) {
1010       l++;
1011       continue;
1012     }
1013 
1014     bool multi = false;
1015     uint32_t cipher_id = 0;
1016     CIPHER_ALIAS alias;
1017     bool skip_rule = false;
1018 
1019     // When adding, exclude deprecated ciphers by default.
1020     alias.include_deprecated = rule != CIPHER_ADD;
1021 
1022     for (;;) {
1023       ch = *l;
1024       buf = l;
1025       buf_len = 0;
1026       while (OPENSSL_isalnum(ch) || ch == '-' || ch == '.' || ch == '_') {
1027         ch = *(++l);
1028         buf_len++;
1029       }
1030 
1031       if (buf_len == 0) {
1032         // We hit something we cannot deal with, it is no command or separator
1033         // nor alphanumeric, so we call this an error.
1034         OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1035         return false;
1036       }
1037 
1038       if (rule == CIPHER_SPECIAL) {
1039         break;
1040       }
1041 
1042       // Look for a matching exact cipher. These aren't allowed in multipart
1043       // rules.
1044       if (!multi && ch != '+') {
1045         for (j = 0; j < OPENSSL_ARRAY_SIZE(kCiphers); j++) {
1046           const SSL_CIPHER *cipher = &kCiphers[j];
1047           if (rule_equals(cipher->name, buf, buf_len) ||
1048               rule_equals(cipher->standard_name, buf, buf_len)) {
1049             cipher_id = cipher->id;
1050             break;
1051           }
1052         }
1053       }
1054       if (cipher_id == 0) {
1055         // If not an exact cipher, look for a matching cipher alias.
1056         for (j = 0; j < kCipherAliasesLen; j++) {
1057           if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
1058             alias.algorithm_mkey &= kCipherAliases[j].algorithm_mkey;
1059             alias.algorithm_auth &= kCipherAliases[j].algorithm_auth;
1060             alias.algorithm_enc &= kCipherAliases[j].algorithm_enc;
1061             alias.algorithm_mac &= kCipherAliases[j].algorithm_mac;
1062 
1063             // When specifying a combination of aliases, if any aliases
1064             // enables deprecated ciphers, deprecated ciphers are included. This
1065             // is slightly different from the bitmasks in that adding aliases
1066             // can increase the set of matched ciphers. This is so that an alias
1067             // like "RSA" will only specifiy AES-based RSA ciphers, but
1068             // "RSA+3DES" will still specify 3DES.
1069             alias.include_deprecated |= kCipherAliases[j].include_deprecated;
1070 
1071             if (alias.min_version != 0 &&
1072                 alias.min_version != kCipherAliases[j].min_version) {
1073               skip_rule = true;
1074             } else {
1075               alias.min_version = kCipherAliases[j].min_version;
1076             }
1077             break;
1078           }
1079         }
1080         if (j == kCipherAliasesLen) {
1081           skip_rule = true;
1082           if (strict) {
1083             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1084             return false;
1085           }
1086         }
1087       }
1088 
1089       // Check for a multipart rule.
1090       if (ch != '+') {
1091         break;
1092       }
1093       l++;
1094       multi = true;
1095     }
1096 
1097     // Ok, we have the rule, now apply it.
1098     if (rule == CIPHER_SPECIAL) {
1099       if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) {
1100         OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1101         return false;
1102       }
1103       if (!ssl_cipher_strength_sort(head_p, tail_p)) {
1104         return false;
1105       }
1106 
1107       // We do not support any "multi" options together with "@", so throw away
1108       // the rest of the command, if any left, until end or ':' is found.
1109       while (*l != '\0' && !is_cipher_list_separator(*l, strict)) {
1110         l++;
1111       }
1112     } else if (!skip_rule) {
1113       ssl_cipher_apply_rule(cipher_id, &alias, rule, -1, in_group, head_p,
1114                             tail_p);
1115     }
1116   }
1117 
1118   if (in_group) {
1119     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1120     return false;
1121   }
1122 
1123   return true;
1124 }
1125 
ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> * out_cipher_list,const bool has_aes_hw,const char * rule_str,bool strict)1126 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
1127                             const bool has_aes_hw, const char *rule_str,
1128                             bool strict) {
1129   // Return with error if nothing to do.
1130   if (rule_str == NULL || out_cipher_list == NULL) {
1131     return false;
1132   }
1133 
1134   // We prefer ECDHE ciphers over non-PFS ciphers. Then we prefer AEAD over
1135   // non-AEAD. The constants are masked by 0xffff to remove the vestigial 0x03
1136   // byte from SSL 2.0.
1137   static const uint16_t kAESCiphers[] = {
1138       TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 & 0xffff,
1139       TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256 & 0xffff,
1140       TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 & 0xffff,
1141       TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384 & 0xffff,
1142   };
1143   static const uint16_t kChaChaCiphers[] = {
1144       TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 & 0xffff,
1145       TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 & 0xffff,
1146       TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 & 0xffff,
1147   };
1148   static const uint16_t kLegacyCiphers[] = {
1149       TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA & 0xffff,
1150       TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA & 0xffff,
1151       TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA & 0xffff,
1152       TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA & 0xffff,
1153       TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA & 0xffff,
1154       TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA & 0xffff,
1155       TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 & 0xffff,
1156       TLS1_CK_RSA_WITH_AES_128_GCM_SHA256 & 0xffff,
1157       TLS1_CK_RSA_WITH_AES_256_GCM_SHA384 & 0xffff,
1158       TLS1_CK_RSA_WITH_AES_128_SHA & 0xffff,
1159       TLS1_CK_PSK_WITH_AES_128_CBC_SHA & 0xffff,
1160       TLS1_CK_RSA_WITH_AES_256_SHA & 0xffff,
1161       TLS1_CK_PSK_WITH_AES_256_CBC_SHA & 0xffff,
1162       SSL3_CK_RSA_DES_192_CBC3_SHA & 0xffff,
1163   };
1164 
1165   // Set up a linked list of ciphers.
1166   CIPHER_ORDER co_list[OPENSSL_ARRAY_SIZE(kAESCiphers) +
1167                        OPENSSL_ARRAY_SIZE(kChaChaCiphers) +
1168                        OPENSSL_ARRAY_SIZE(kLegacyCiphers)];
1169   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(co_list); i++) {
1170     co_list[i].next =
1171         i + 1 < OPENSSL_ARRAY_SIZE(co_list) ? &co_list[i + 1] : nullptr;
1172     co_list[i].prev = i == 0 ? nullptr : &co_list[i - 1];
1173     co_list[i].active = false;
1174     co_list[i].in_group = false;
1175   }
1176   CIPHER_ORDER *head = &co_list[0];
1177   CIPHER_ORDER *tail = &co_list[OPENSSL_ARRAY_SIZE(co_list) - 1];
1178 
1179   // Order AES ciphers vs ChaCha ciphers based on whether we have AES hardware.
1180   //
1181   // TODO(crbug.com/boringssl/29): We should also set up equipreference groups
1182   // as a server.
1183   size_t num = 0;
1184   if (has_aes_hw) {
1185     for (uint16_t id : kAESCiphers) {
1186       co_list[num++].cipher = SSL_get_cipher_by_value(id);
1187       assert(co_list[num - 1].cipher != nullptr);
1188     }
1189   }
1190   for (uint16_t id : kChaChaCiphers) {
1191     co_list[num++].cipher = SSL_get_cipher_by_value(id);
1192     assert(co_list[num - 1].cipher != nullptr);
1193   }
1194   if (!has_aes_hw) {
1195     for (uint16_t id : kAESCiphers) {
1196       co_list[num++].cipher = SSL_get_cipher_by_value(id);
1197       assert(co_list[num - 1].cipher != nullptr);
1198     }
1199   }
1200   for (uint16_t id : kLegacyCiphers) {
1201     co_list[num++].cipher = SSL_get_cipher_by_value(id);
1202     assert(co_list[num - 1].cipher != nullptr);
1203   }
1204   assert(num == OPENSSL_ARRAY_SIZE(co_list));
1205   static_assert(OPENSSL_ARRAY_SIZE(co_list) + NumTLS13Ciphers() ==
1206                     OPENSSL_ARRAY_SIZE(kCiphers),
1207                 "Not all ciphers are included in the cipher order");
1208 
1209   // If the rule_string begins with DEFAULT, apply the default rule before
1210   // using the (possibly available) additional rules.
1211   const char *rule_p = rule_str;
1212   if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1213     if (!ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail,
1214                                     strict)) {
1215       return false;
1216     }
1217     rule_p += 7;
1218     if (*rule_p == ':') {
1219       rule_p++;
1220     }
1221   }
1222 
1223   if (*rule_p != '\0' &&
1224       !ssl_cipher_process_rulestr(rule_p, &head, &tail, strict)) {
1225     return false;
1226   }
1227 
1228   // Allocate new "cipherstack" for the result, return with error
1229   // if we cannot get one.
1230   UniquePtr<STACK_OF(SSL_CIPHER)> cipherstack(sk_SSL_CIPHER_new_null());
1231   Array<bool> in_group_flags;
1232   if (cipherstack == nullptr ||
1233       !in_group_flags.InitForOverwrite(OPENSSL_ARRAY_SIZE(kCiphers))) {
1234     return false;
1235   }
1236 
1237   // The cipher selection for the list is done. The ciphers are added
1238   // to the resulting precedence to the STACK_OF(SSL_CIPHER).
1239   size_t num_in_group_flags = 0;
1240   for (CIPHER_ORDER *curr = head; curr != NULL; curr = curr->next) {
1241     if (curr->active) {
1242       if (!sk_SSL_CIPHER_push(cipherstack.get(), curr->cipher)) {
1243         return false;
1244       }
1245       in_group_flags[num_in_group_flags++] = curr->in_group;
1246     }
1247   }
1248   in_group_flags.Shrink(num_in_group_flags);
1249 
1250   UniquePtr<SSLCipherPreferenceList> pref_list =
1251       MakeUnique<SSLCipherPreferenceList>();
1252   if (!pref_list || !pref_list->Init(std::move(cipherstack), in_group_flags)) {
1253     return false;
1254   }
1255 
1256   *out_cipher_list = std::move(pref_list);
1257 
1258   // Configuring an empty cipher list is an error but still updates the
1259   // output.
1260   if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers.get()) == 0) {
1261     OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
1262     return false;
1263   }
1264 
1265   return true;
1266 }
1267 
ssl_cipher_auth_mask_for_key(const EVP_PKEY * key,bool sign_ok)1268 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok) {
1269   switch (EVP_PKEY_id(key)) {
1270     case EVP_PKEY_RSA:
1271       return sign_ok ? (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT) : SSL_aRSA_DECRYPT;
1272     case EVP_PKEY_EC:
1273     case EVP_PKEY_ED25519:
1274       // Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers.
1275       return sign_ok ? SSL_aECDSA : 0;
1276     default:
1277       return 0;
1278   }
1279 }
1280 
ssl_cipher_uses_certificate_auth(const SSL_CIPHER * cipher)1281 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
1282   return (cipher->algorithm_auth & SSL_aCERT) != 0;
1283 }
1284 
ssl_cipher_requires_server_key_exchange(const SSL_CIPHER * cipher)1285 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
1286   // Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. It is
1287   // optional or omitted in all others.
1288   return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
1289 }
1290 
ssl_cipher_get_record_split_len(const SSL_CIPHER * cipher)1291 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
1292   size_t block_size;
1293   switch (cipher->algorithm_enc) {
1294     case SSL_3DES:
1295       block_size = 8;
1296       break;
1297     case SSL_AES128:
1298     case SSL_AES256:
1299       block_size = 16;
1300       break;
1301     default:
1302       return 0;
1303   }
1304 
1305   // All supported TLS 1.0 ciphers use SHA-1.
1306   assert(cipher->algorithm_mac == SSL_SHA1);
1307   size_t ret = 1 + SHA_DIGEST_LENGTH;
1308   ret += block_size - (ret % block_size);
1309   return ret;
1310 }
1311 
1312 BSSL_NAMESPACE_END
1313 
1314 using namespace bssl;
1315 
ssl_cipher_id_cmp(const SSL_CIPHER * a,const SSL_CIPHER * b)1316 static constexpr int ssl_cipher_id_cmp(const SSL_CIPHER *a,
1317                                        const SSL_CIPHER *b) {
1318   if (a->id > b->id) {
1319     return 1;
1320   }
1321   if (a->id < b->id) {
1322     return -1;
1323   }
1324   return 0;
1325 }
1326 
ssl_cipher_id_cmp_void(const void * in_a,const void * in_b)1327 static int ssl_cipher_id_cmp_void(const void *in_a, const void *in_b) {
1328   return ssl_cipher_id_cmp(reinterpret_cast<const SSL_CIPHER *>(in_a),
1329                            reinterpret_cast<const SSL_CIPHER *>(in_b));
1330 }
1331 
1332 template <size_t N>
ssl_ciphers_sorted(const SSL_CIPHER (& ciphers)[N])1333 static constexpr bool ssl_ciphers_sorted(const SSL_CIPHER (&ciphers)[N]) {
1334   for (size_t i = 1; i < N; i++) {
1335     if (ssl_cipher_id_cmp(&ciphers[i - 1], &ciphers[i]) >= 0) {
1336       return false;
1337     }
1338   }
1339   return true;
1340 }
1341 
1342 static_assert(ssl_ciphers_sorted(kCiphers),
1343               "Ciphers are not sorted, bsearch won't work");
1344 
SSL_get_cipher_by_value(uint16_t value)1345 const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
1346   SSL_CIPHER c;
1347 
1348   c.id = 0x03000000L | value;
1349   return reinterpret_cast<const SSL_CIPHER *>(
1350       bsearch(&c, kCiphers, OPENSSL_ARRAY_SIZE(kCiphers), sizeof(SSL_CIPHER),
1351               ssl_cipher_id_cmp_void));
1352 }
1353 
SSL_CIPHER_get_id(const SSL_CIPHER * cipher)1354 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
1355 
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * cipher)1356 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *cipher) {
1357   // All OpenSSL cipher IDs are prefaced with 0x03. Historically this referred
1358   // to SSLv2 vs SSLv3.
1359   assert((cipher->id & 0xff000000) == 0x03000000);
1360   return static_cast<uint16_t>(cipher->id);
1361 }
1362 
SSL_CIPHER_is_aead(const SSL_CIPHER * cipher)1363 int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher) {
1364   return (cipher->algorithm_mac & SSL_AEAD) != 0;
1365 }
1366 
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * cipher)1367 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher) {
1368   switch (cipher->algorithm_enc) {
1369     case SSL_3DES:
1370       return NID_des_ede3_cbc;
1371     case SSL_AES128:
1372       return NID_aes_128_cbc;
1373     case SSL_AES256:
1374       return NID_aes_256_cbc;
1375     case SSL_AES128GCM:
1376       return NID_aes_128_gcm;
1377     case SSL_AES256GCM:
1378       return NID_aes_256_gcm;
1379     case SSL_CHACHA20POLY1305:
1380       return NID_chacha20_poly1305;
1381   }
1382   assert(0);
1383   return NID_undef;
1384 }
1385 
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * cipher)1386 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher) {
1387   switch (cipher->algorithm_mac) {
1388     case SSL_AEAD:
1389       return NID_undef;
1390     case SSL_SHA1:
1391       return NID_sha1;
1392     case SSL_SHA256:
1393       return NID_sha256;
1394   }
1395   assert(0);
1396   return NID_undef;
1397 }
1398 
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * cipher)1399 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher) {
1400   switch (cipher->algorithm_mkey) {
1401     case SSL_kRSA:
1402       return NID_kx_rsa;
1403     case SSL_kECDHE:
1404       return NID_kx_ecdhe;
1405     case SSL_kPSK:
1406       return NID_kx_psk;
1407     case SSL_kGENERIC:
1408       return NID_kx_any;
1409   }
1410   assert(0);
1411   return NID_undef;
1412 }
1413 
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * cipher)1414 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher) {
1415   switch (cipher->algorithm_auth) {
1416     case SSL_aRSA_DECRYPT:
1417     case SSL_aRSA_SIGN:
1418       return NID_auth_rsa;
1419     case SSL_aECDSA:
1420       return NID_auth_ecdsa;
1421     case SSL_aPSK:
1422       return NID_auth_psk;
1423     case SSL_aGENERIC:
1424       return NID_auth_any;
1425   }
1426   assert(0);
1427   return NID_undef;
1428 }
1429 
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * cipher)1430 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *cipher) {
1431   switch (cipher->algorithm_prf) {
1432     case SSL_HANDSHAKE_MAC_DEFAULT:
1433       return EVP_md5_sha1();
1434     case SSL_HANDSHAKE_MAC_SHA256:
1435       return EVP_sha256();
1436     case SSL_HANDSHAKE_MAC_SHA384:
1437       return EVP_sha384();
1438   }
1439   assert(0);
1440   return NULL;
1441 }
1442 
SSL_CIPHER_get_prf_nid(const SSL_CIPHER * cipher)1443 int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher) {
1444   const EVP_MD *md = SSL_CIPHER_get_handshake_digest(cipher);
1445   if (md == NULL) {
1446     return NID_undef;
1447   }
1448   return EVP_MD_nid(md);
1449 }
1450 
SSL_CIPHER_is_block_cipher(const SSL_CIPHER * cipher)1451 int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
1452   return cipher->algorithm_mac != SSL_AEAD;
1453 }
1454 
SSL_CIPHER_get_min_version(const SSL_CIPHER * cipher)1455 uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
1456   if (cipher->algorithm_mkey == SSL_kGENERIC ||
1457       cipher->algorithm_auth == SSL_aGENERIC) {
1458     return TLS1_3_VERSION;
1459   }
1460 
1461   if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
1462     // Cipher suites before TLS 1.2 use the default PRF, while all those added
1463     // afterwards specify a particular hash.
1464     return TLS1_2_VERSION;
1465   }
1466   return SSL3_VERSION;
1467 }
1468 
SSL_CIPHER_get_max_version(const SSL_CIPHER * cipher)1469 uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
1470   if (cipher->algorithm_mkey == SSL_kGENERIC ||
1471       cipher->algorithm_auth == SSL_aGENERIC) {
1472     return TLS1_3_VERSION;
1473   }
1474   return TLS1_2_VERSION;
1475 }
1476 
1477 static const char *kUnknownCipher = "(NONE)";
1478 
1479 // return the actual cipher being used
SSL_CIPHER_get_name(const SSL_CIPHER * cipher)1480 const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
1481   if (cipher != NULL) {
1482     return cipher->name;
1483   }
1484 
1485   return kUnknownCipher;
1486 }
1487 
SSL_CIPHER_standard_name(const SSL_CIPHER * cipher)1488 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) {
1489   return cipher->standard_name;
1490 }
1491 
SSL_CIPHER_get_kx_name(const SSL_CIPHER * cipher)1492 const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
1493   if (cipher == NULL) {
1494     return "";
1495   }
1496 
1497   switch (cipher->algorithm_mkey) {
1498     case SSL_kRSA:
1499       return "RSA";
1500 
1501     case SSL_kECDHE:
1502       switch (cipher->algorithm_auth) {
1503         case SSL_aECDSA:
1504           return "ECDHE_ECDSA";
1505         case SSL_aRSA_SIGN:
1506           return "ECDHE_RSA";
1507         case SSL_aPSK:
1508           return "ECDHE_PSK";
1509         default:
1510           assert(0);
1511           return "UNKNOWN";
1512       }
1513 
1514     case SSL_kPSK:
1515       assert(cipher->algorithm_auth == SSL_aPSK);
1516       return "PSK";
1517 
1518     case SSL_kGENERIC:
1519       assert(cipher->algorithm_auth == SSL_aGENERIC);
1520       return "GENERIC";
1521 
1522     default:
1523       assert(0);
1524       return "UNKNOWN";
1525   }
1526 }
1527 
SSL_CIPHER_get_bits(const SSL_CIPHER * cipher,int * out_alg_bits)1528 int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
1529   if (cipher == NULL) {
1530     return 0;
1531   }
1532 
1533   int alg_bits, strength_bits;
1534   switch (cipher->algorithm_enc) {
1535     case SSL_AES128:
1536     case SSL_AES128GCM:
1537       alg_bits = 128;
1538       strength_bits = 128;
1539       break;
1540 
1541     case SSL_AES256:
1542     case SSL_AES256GCM:
1543     case SSL_CHACHA20POLY1305:
1544       alg_bits = 256;
1545       strength_bits = 256;
1546       break;
1547 
1548     case SSL_3DES:
1549       alg_bits = 168;
1550       strength_bits = 112;
1551       break;
1552 
1553     default:
1554       assert(0);
1555       alg_bits = 0;
1556       strength_bits = 0;
1557   }
1558 
1559   if (out_alg_bits != NULL) {
1560     *out_alg_bits = alg_bits;
1561   }
1562   return strength_bits;
1563 }
1564 
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1565 const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
1566                                    int len) {
1567   const char *kx, *au, *enc, *mac;
1568   uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1569 
1570   alg_mkey = cipher->algorithm_mkey;
1571   alg_auth = cipher->algorithm_auth;
1572   alg_enc = cipher->algorithm_enc;
1573   alg_mac = cipher->algorithm_mac;
1574 
1575   switch (alg_mkey) {
1576     case SSL_kRSA:
1577       kx = "RSA";
1578       break;
1579 
1580     case SSL_kECDHE:
1581       kx = "ECDH";
1582       break;
1583 
1584     case SSL_kPSK:
1585       kx = "PSK";
1586       break;
1587 
1588     case SSL_kGENERIC:
1589       kx = "GENERIC";
1590       break;
1591 
1592     default:
1593       kx = "unknown";
1594   }
1595 
1596   switch (alg_auth) {
1597     case SSL_aRSA_DECRYPT:
1598     case SSL_aRSA_SIGN:
1599       au = "RSA";
1600       break;
1601 
1602     case SSL_aECDSA:
1603       au = "ECDSA";
1604       break;
1605 
1606     case SSL_aPSK:
1607       au = "PSK";
1608       break;
1609 
1610     case SSL_aGENERIC:
1611       au = "GENERIC";
1612       break;
1613 
1614     default:
1615       au = "unknown";
1616       break;
1617   }
1618 
1619   switch (alg_enc) {
1620     case SSL_3DES:
1621       enc = "3DES(168)";
1622       break;
1623 
1624     case SSL_AES128:
1625       enc = "AES(128)";
1626       break;
1627 
1628     case SSL_AES256:
1629       enc = "AES(256)";
1630       break;
1631 
1632     case SSL_AES128GCM:
1633       enc = "AESGCM(128)";
1634       break;
1635 
1636     case SSL_AES256GCM:
1637       enc = "AESGCM(256)";
1638       break;
1639 
1640     case SSL_CHACHA20POLY1305:
1641       enc = "ChaCha20-Poly1305";
1642       break;
1643 
1644     default:
1645       enc = "unknown";
1646       break;
1647   }
1648 
1649   switch (alg_mac) {
1650     case SSL_SHA1:
1651       mac = "SHA1";
1652       break;
1653 
1654     case SSL_SHA256:
1655       mac = "SHA256";
1656       break;
1657 
1658     case SSL_AEAD:
1659       mac = "AEAD";
1660       break;
1661 
1662     default:
1663       mac = "unknown";
1664       break;
1665   }
1666 
1667   if (buf == NULL) {
1668     len = 128;
1669     buf = (char *)OPENSSL_malloc(len);
1670     if (buf == NULL) {
1671       return NULL;
1672     }
1673   } else if (len < 128) {
1674     return "Buffer too small";
1675   }
1676 
1677   snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", cipher->name,
1678            kx, au, enc, mac);
1679   return buf;
1680 }
1681 
SSL_CIPHER_get_version(const SSL_CIPHER * cipher)1682 const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
1683   return "TLSv1/SSLv3";
1684 }
1685 
STACK_OF(SSL_COMP)1686 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; }
1687 
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1688 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
1689 
SSL_COMP_get_name(const COMP_METHOD * comp)1690 const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
1691 
SSL_COMP_get0_name(const SSL_COMP * comp)1692 const char *SSL_COMP_get0_name(const SSL_COMP *comp) { return comp->name; }
1693 
SSL_COMP_get_id(const SSL_COMP * comp)1694 int SSL_COMP_get_id(const SSL_COMP *comp) { return comp->id; }
1695 
SSL_COMP_free_compression_methods(void)1696 void SSL_COMP_free_compression_methods(void) {}
1697 
SSL_get_all_cipher_names(const char ** out,size_t max_out)1698 size_t SSL_get_all_cipher_names(const char **out, size_t max_out) {
1699   return GetAllNames(out, max_out, MakeConstSpan(&kUnknownCipher, 1),
1700                      &SSL_CIPHER::name, MakeConstSpan(kCiphers));
1701 }
1702 
SSL_get_all_standard_cipher_names(const char ** out,size_t max_out)1703 size_t SSL_get_all_standard_cipher_names(const char **out, size_t max_out) {
1704   return GetAllNames(out, max_out, Span<const char *>(),
1705                      &SSL_CIPHER::standard_name, MakeConstSpan(kCiphers));
1706 }
1707