• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# User Guide
2
3## Command Line
4
5[Output Formats](#output-formats)
6
7[Output Files](#output-files)
8
9[Running Benchmarks](#running-benchmarks)
10
11[Running a Subset of Benchmarks](#running-a-subset-of-benchmarks)
12
13[Result Comparison](#result-comparison)
14
15[Extra Context](#extra-context)
16
17## Library
18
19[Runtime and Reporting Considerations](#runtime-and-reporting-considerations)
20
21[Setup/Teardown](#setupteardown)
22
23[Passing Arguments](#passing-arguments)
24
25[Custom Benchmark Name](#custom-benchmark-name)
26
27[Calculating Asymptotic Complexity](#asymptotic-complexity)
28
29[Templated Benchmarks](#templated-benchmarks)
30
31[Templated Benchmarks that take arguments](#templated-benchmarks-with-arguments)
32
33[Fixtures](#fixtures)
34
35[Custom Counters](#custom-counters)
36
37[Multithreaded Benchmarks](#multithreaded-benchmarks)
38
39[CPU Timers](#cpu-timers)
40
41[Manual Timing](#manual-timing)
42
43[Setting the Time Unit](#setting-the-time-unit)
44
45[Random Interleaving](random_interleaving.md)
46
47[User-Requested Performance Counters](perf_counters.md)
48
49[Preventing Optimization](#preventing-optimization)
50
51[Reporting Statistics](#reporting-statistics)
52
53[Custom Statistics](#custom-statistics)
54
55[Memory Usage](#memory-usage)
56
57[Using RegisterBenchmark](#using-register-benchmark)
58
59[Exiting with an Error](#exiting-with-an-error)
60
61[A Faster `KeepRunning` Loop](#a-faster-keep-running-loop)
62
63## Benchmarking Tips
64
65[Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling)
66
67[Reducing Variance in Benchmarks](reducing_variance.md)
68
69<a name="output-formats" />
70
71## Output Formats
72
73The library supports multiple output formats. Use the
74`--benchmark_format=<console|json|csv>` flag (or set the
75`BENCHMARK_FORMAT=<console|json|csv>` environment variable) to set
76the format type. `console` is the default format.
77
78The Console format is intended to be a human readable format. By default
79the format generates color output. Context is output on stderr and the
80tabular data on stdout. Example tabular output looks like:
81
82```
83Benchmark                               Time(ns)    CPU(ns) Iterations
84----------------------------------------------------------------------
85BM_SetInsert/1024/1                        28928      29349      23853  133.097kiB/s   33.2742k items/s
86BM_SetInsert/1024/8                        32065      32913      21375  949.487kiB/s   237.372k items/s
87BM_SetInsert/1024/10                       33157      33648      21431  1.13369MiB/s   290.225k items/s
88```
89
90The JSON format outputs human readable json split into two top level attributes.
91The `context` attribute contains information about the run in general, including
92information about the CPU and the date.
93The `benchmarks` attribute contains a list of every benchmark run. Example json
94output looks like:
95
96```json
97{
98  "context": {
99    "date": "2015/03/17-18:40:25",
100    "num_cpus": 40,
101    "mhz_per_cpu": 2801,
102    "cpu_scaling_enabled": false,
103    "build_type": "debug"
104  },
105  "benchmarks": [
106    {
107      "name": "BM_SetInsert/1024/1",
108      "iterations": 94877,
109      "real_time": 29275,
110      "cpu_time": 29836,
111      "bytes_per_second": 134066,
112      "items_per_second": 33516
113    },
114    {
115      "name": "BM_SetInsert/1024/8",
116      "iterations": 21609,
117      "real_time": 32317,
118      "cpu_time": 32429,
119      "bytes_per_second": 986770,
120      "items_per_second": 246693
121    },
122    {
123      "name": "BM_SetInsert/1024/10",
124      "iterations": 21393,
125      "real_time": 32724,
126      "cpu_time": 33355,
127      "bytes_per_second": 1199226,
128      "items_per_second": 299807
129    }
130  ]
131}
132```
133
134The CSV format outputs comma-separated values. The `context` is output on stderr
135and the CSV itself on stdout. Example CSV output looks like:
136
137```
138name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
139"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
140"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
141"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
142```
143
144<a name="output-files" />
145
146## Output Files
147
148Write benchmark results to a file with the `--benchmark_out=<filename>` option
149(or set `BENCHMARK_OUT`). Specify the output format with
150`--benchmark_out_format={json|console|csv}` (or set
151`BENCHMARK_OUT_FORMAT={json|console|csv}`). Note that the 'csv' reporter is
152deprecated and the saved `.csv` file
153[is not parsable](https://github.com/google/benchmark/issues/794) by csv
154parsers.
155
156Specifying `--benchmark_out` does not suppress the console output.
157
158<a name="running-benchmarks" />
159
160## Running Benchmarks
161
162Benchmarks are executed by running the produced binaries. Benchmarks binaries,
163by default, accept options that may be specified either through their command
164line interface or by setting environment variables before execution. For every
165`--option_flag=<value>` CLI switch, a corresponding environment variable
166`OPTION_FLAG=<value>` exist and is used as default if set (CLI switches always
167 prevails). A complete list of CLI options is available running benchmarks
168 with the `--help` switch.
169
170### Dry runs
171
172To confirm that benchmarks can run successfully without needing to wait for
173multiple repetitions and iterations, the `--benchmark_dry_run` flag can be
174used.  This will run the benchmarks as normal, but for 1 iteration and 1
175repetition only.
176
177<a name="running-a-subset-of-benchmarks" />
178
179## Running a Subset of Benchmarks
180
181The `--benchmark_filter=<regex>` option (or `BENCHMARK_FILTER=<regex>`
182environment variable) can be used to only run the benchmarks that match
183the specified `<regex>`. For example:
184
185```bash
186$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
187Run on (1 X 2300 MHz CPU )
1882016-06-25 19:34:24
189Benchmark              Time           CPU Iterations
190----------------------------------------------------
191BM_memcpy/32          11 ns         11 ns   79545455
192BM_memcpy/32k       2181 ns       2185 ns     324074
193BM_memcpy/32          12 ns         12 ns   54687500
194BM_memcpy/32k       1834 ns       1837 ns     357143
195```
196
197## Disabling Benchmarks
198
199It is possible to temporarily disable benchmarks by renaming the benchmark
200function to have the prefix "DISABLED_". This will cause the benchmark to
201be skipped at runtime.
202
203<a name="result-comparison" />
204
205## Result comparison
206
207It is possible to compare the benchmarking results.
208See [Additional Tooling Documentation](tools.md)
209
210<a name="extra-context" />
211
212## Extra Context
213
214Sometimes it's useful to add extra context to the content printed before the
215results. By default this section includes information about the CPU on which
216the benchmarks are running. If you do want to add more context, you can use
217the `benchmark_context` command line flag:
218
219```bash
220$ ./run_benchmarks --benchmark_context=pwd=`pwd`
221Run on (1 x 2300 MHz CPU)
222pwd: /home/user/benchmark/
223Benchmark              Time           CPU Iterations
224----------------------------------------------------
225BM_memcpy/32          11 ns         11 ns   79545455
226BM_memcpy/32k       2181 ns       2185 ns     324074
227```
228
229You can get the same effect with the API:
230
231```c++
232  benchmark::AddCustomContext("foo", "bar");
233```
234
235Note that attempts to add a second value with the same key will fail with an
236error message.
237
238<a name="runtime-and-reporting-considerations" />
239
240## Runtime and Reporting Considerations
241
242When the benchmark binary is executed, each benchmark function is run serially.
243The number of iterations to run is determined dynamically by running the
244benchmark a few times and measuring the time taken and ensuring that the
245ultimate result will be statistically stable. As such, faster benchmark
246functions will be run for more iterations than slower benchmark functions, and
247the number of iterations is thus reported.
248
249In all cases, the number of iterations for which the benchmark is run is
250governed by the amount of time the benchmark takes. Concretely, the number of
251iterations is at least one, not more than 1e9, until CPU time is greater than
252the minimum time, or the wallclock time is 5x minimum time. The minimum time is
253set per benchmark by calling `MinTime` on the registered benchmark object.
254
255Furthermore warming up a benchmark might be necessary in order to get
256stable results because of e.g caching effects of the code under benchmark.
257Warming up means running the benchmark a given amount of time, before
258results are actually taken into account. The amount of time for which
259the warmup should be run can be set per benchmark by calling
260`MinWarmUpTime` on the registered benchmark object or for all benchmarks
261using the `--benchmark_min_warmup_time` command-line option. Note that
262`MinWarmUpTime` will overwrite the value of `--benchmark_min_warmup_time`
263for the single benchmark. How many iterations the warmup run of each
264benchmark takes is determined the same way as described in the paragraph
265above. Per default the warmup phase is set to 0 seconds and is therefore
266disabled.
267
268Average timings are then reported over the iterations run. If multiple
269repetitions are requested using the `--benchmark_repetitions` command-line
270option, or at registration time, the benchmark function will be run several
271times and statistical results across these repetitions will also be reported.
272
273As well as the per-benchmark entries, a preamble in the report will include
274information about the machine on which the benchmarks are run.
275
276<a name="setup-teardown" />
277
278## Setup/Teardown
279
280Global setup/teardown specific to each benchmark can be done by
281passing a callback to Setup/Teardown:
282
283The setup/teardown callbacks will be invoked once for each benchmark. If the
284benchmark is multi-threaded (will run in k threads), they will be invoked
285exactly once before each run with k threads.
286
287If the benchmark uses different size groups of threads, the above will be true
288for each size group.
289
290Eg.,
291
292```c++
293static void DoSetup(const benchmark::State& state) {
294}
295
296static void DoTeardown(const benchmark::State& state) {
297}
298
299static void BM_func(benchmark::State& state) {...}
300
301BENCHMARK(BM_func)->Arg(1)->Arg(3)->Threads(16)->Threads(32)->Setup(DoSetup)->Teardown(DoTeardown);
302
303```
304
305In this example, `DoSetup` and `DoTearDown` will be invoked 4 times each,
306specifically, once for each of this family:
307 - BM_func_Arg_1_Threads_16, BM_func_Arg_1_Threads_32
308 - BM_func_Arg_3_Threads_16, BM_func_Arg_3_Threads_32
309
310<a name="passing-arguments" />
311
312## Passing Arguments
313
314Sometimes a family of benchmarks can be implemented with just one routine that
315takes an extra argument to specify which one of the family of benchmarks to
316run. For example, the following code defines a family of benchmarks for
317measuring the speed of `memcpy()` calls of different lengths:
318
319```c++
320static void BM_memcpy(benchmark::State& state) {
321  char* src = new char[state.range(0)];
322  char* dst = new char[state.range(0)];
323  memset(src, 'x', state.range(0));
324  for (auto _ : state)
325    memcpy(dst, src, state.range(0));
326  state.SetBytesProcessed(int64_t(state.iterations()) *
327                          int64_t(state.range(0)));
328  delete[] src;
329  delete[] dst;
330}
331BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(4<<10)->Arg(8<<10);
332```
333
334The preceding code is quite repetitive, and can be replaced with the following
335short-hand. The following invocation will pick a few appropriate arguments in
336the specified range and will generate a benchmark for each such argument.
337
338```c++
339BENCHMARK(BM_memcpy)->Range(8, 8<<10);
340```
341
342By default the arguments in the range are generated in multiples of eight and
343the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
344range multiplier is changed to multiples of two.
345
346```c++
347BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
348```
349
350Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
351
352The preceding code shows a method of defining a sparse range.  The following
353example shows a method of defining a dense range. It is then used to benchmark
354the performance of `std::vector` initialization for uniformly increasing sizes.
355
356```c++
357static void BM_DenseRange(benchmark::State& state) {
358  for(auto _ : state) {
359    std::vector<int> v(state.range(0), state.range(0));
360    auto data = v.data();
361    benchmark::DoNotOptimize(data);
362    benchmark::ClobberMemory();
363  }
364}
365BENCHMARK(BM_DenseRange)->DenseRange(0, 1024, 128);
366```
367
368Now arguments generated are [ 0, 128, 256, 384, 512, 640, 768, 896, 1024 ].
369
370You might have a benchmark that depends on two or more inputs. For example, the
371following code defines a family of benchmarks for measuring the speed of set
372insertion.
373
374```c++
375static void BM_SetInsert(benchmark::State& state) {
376  std::set<int> data;
377  for (auto _ : state) {
378    state.PauseTiming();
379    data = ConstructRandomSet(state.range(0));
380    state.ResumeTiming();
381    for (int j = 0; j < state.range(1); ++j)
382      data.insert(RandomNumber());
383  }
384}
385BENCHMARK(BM_SetInsert)
386    ->Args({1<<10, 128})
387    ->Args({2<<10, 128})
388    ->Args({4<<10, 128})
389    ->Args({8<<10, 128})
390    ->Args({1<<10, 512})
391    ->Args({2<<10, 512})
392    ->Args({4<<10, 512})
393    ->Args({8<<10, 512});
394```
395
396The preceding code is quite repetitive, and can be replaced with the following
397short-hand. The following macro will pick a few appropriate arguments in the
398product of the two specified ranges and will generate a benchmark for each such
399pair.
400
401<!-- {% raw %} -->
402```c++
403BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
404```
405<!-- {% endraw %} -->
406
407Some benchmarks may require specific argument values that cannot be expressed
408with `Ranges`. In this case, `ArgsProduct` offers the ability to generate a
409benchmark input for each combination in the product of the supplied vectors.
410
411<!-- {% raw %} -->
412```c++
413BENCHMARK(BM_SetInsert)
414    ->ArgsProduct({{1<<10, 3<<10, 8<<10}, {20, 40, 60, 80}})
415// would generate the same benchmark arguments as
416BENCHMARK(BM_SetInsert)
417    ->Args({1<<10, 20})
418    ->Args({3<<10, 20})
419    ->Args({8<<10, 20})
420    ->Args({3<<10, 40})
421    ->Args({8<<10, 40})
422    ->Args({1<<10, 40})
423    ->Args({1<<10, 60})
424    ->Args({3<<10, 60})
425    ->Args({8<<10, 60})
426    ->Args({1<<10, 80})
427    ->Args({3<<10, 80})
428    ->Args({8<<10, 80});
429```
430<!-- {% endraw %} -->
431
432For the most common scenarios, helper methods for creating a list of
433integers for a given sparse or dense range are provided.
434
435```c++
436BENCHMARK(BM_SetInsert)
437    ->ArgsProduct({
438      benchmark::CreateRange(8, 128, /*multi=*/2),
439      benchmark::CreateDenseRange(1, 4, /*step=*/1)
440    })
441// would generate the same benchmark arguments as
442BENCHMARK(BM_SetInsert)
443    ->ArgsProduct({
444      {8, 16, 32, 64, 128},
445      {1, 2, 3, 4}
446    });
447```
448
449For more complex patterns of inputs, passing a custom function to `Apply` allows
450programmatic specification of an arbitrary set of arguments on which to run the
451benchmark. The following example enumerates a dense range on one parameter,
452and a sparse range on the second.
453
454```c++
455static void CustomArguments(benchmark::internal::Benchmark* b) {
456  for (int i = 0; i <= 10; ++i)
457    for (int j = 32; j <= 1024*1024; j *= 8)
458      b->Args({i, j});
459}
460BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
461```
462
463### Passing Arbitrary Arguments to a Benchmark
464
465In C++11 it is possible to define a benchmark that takes an arbitrary number
466of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
467macro creates a benchmark that invokes `func`  with the `benchmark::State` as
468the first argument followed by the specified `args...`.
469The `test_case_name` is appended to the name of the benchmark and
470should describe the values passed.
471
472```c++
473template <class ...Args>
474void BM_takes_args(benchmark::State& state, Args&&... args) {
475  auto args_tuple = std::make_tuple(std::move(args)...);
476  for (auto _ : state) {
477    std::cout << std::get<0>(args_tuple) << ": " << std::get<1>(args_tuple)
478              << '\n';
479    [...]
480  }
481}
482// Registers a benchmark named "BM_takes_args/int_string_test" that passes
483// the specified values to `args`.
484BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
485
486// Registers the same benchmark "BM_takes_args/int_test" that passes
487// the specified values to `args`.
488BENCHMARK_CAPTURE(BM_takes_args, int_test, 42, 43);
489```
490
491Note that elements of `...args` may refer to global variables. Users should
492avoid modifying global state inside of a benchmark.
493
494<a name="asymptotic-complexity" />
495
496## Calculating Asymptotic Complexity (Big O)
497
498Asymptotic complexity might be calculated for a family of benchmarks. The
499following code will calculate the coefficient for the high-order term in the
500running time and the normalized root-mean square error of string comparison.
501
502```c++
503static void BM_StringCompare(benchmark::State& state) {
504  std::string s1(state.range(0), '-');
505  std::string s2(state.range(0), '-');
506  for (auto _ : state) {
507    auto comparison_result = s1.compare(s2);
508    benchmark::DoNotOptimize(comparison_result);
509  }
510  state.SetComplexityN(state.range(0));
511}
512BENCHMARK(BM_StringCompare)
513    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
514```
515
516As shown in the following invocation, asymptotic complexity might also be
517calculated automatically.
518
519```c++
520BENCHMARK(BM_StringCompare)
521    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
522```
523
524The following code will specify asymptotic complexity with a lambda function,
525that might be used to customize high-order term calculation.
526
527```c++
528BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
529    ->Range(1<<10, 1<<18)->Complexity([](benchmark::IterationCount n)->double{return n; });
530```
531
532<a name="custom-benchmark-name" />
533
534## Custom Benchmark Name
535
536You can change the benchmark's name as follows:
537
538```c++
539BENCHMARK(BM_memcpy)->Name("memcpy")->RangeMultiplier(2)->Range(8, 8<<10);
540```
541
542The invocation will execute the benchmark as before using `BM_memcpy` but changes
543the prefix in the report to `memcpy`.
544
545<a name="templated-benchmarks" />
546
547## Templated Benchmarks
548
549This example produces and consumes messages of size `sizeof(v)` `range_x`
550times. It also outputs throughput in the absence of multiprogramming.
551
552```c++
553template <class Q> void BM_Sequential(benchmark::State& state) {
554  Q q;
555  typename Q::value_type v;
556  for (auto _ : state) {
557    for (int i = state.range(0); i--; )
558      q.push(v);
559    for (int e = state.range(0); e--; )
560      q.Wait(&v);
561  }
562  // actually messages, not bytes:
563  state.SetBytesProcessed(
564      static_cast<int64_t>(state.iterations())*state.range(0));
565}
566// C++03
567BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
568
569// C++11 or newer, you can use the BENCHMARK macro with template parameters:
570BENCHMARK(BM_Sequential<WaitQueue<int>>)->Range(1<<0, 1<<10);
571
572```
573
574Three macros are provided for adding benchmark templates.
575
576```c++
577#ifdef BENCHMARK_HAS_CXX11
578#define BENCHMARK(func<...>) // Takes any number of parameters.
579#else // C++ < C++11
580#define BENCHMARK_TEMPLATE(func, arg1)
581#endif
582#define BENCHMARK_TEMPLATE1(func, arg1)
583#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
584```
585
586<a name="templated-benchmarks-with-arguments" />
587
588## Templated Benchmarks that take arguments
589
590Sometimes there is a need to template benchmarks, and provide arguments to them.
591
592```c++
593template <class Q> void BM_Sequential_With_Step(benchmark::State& state, int step) {
594  Q q;
595  typename Q::value_type v;
596  for (auto _ : state) {
597    for (int i = state.range(0); i-=step; )
598      q.push(v);
599    for (int e = state.range(0); e-=step; )
600      q.Wait(&v);
601  }
602  // actually messages, not bytes:
603  state.SetBytesProcessed(
604      static_cast<int64_t>(state.iterations())*state.range(0));
605}
606
607BENCHMARK_TEMPLATE1_CAPTURE(BM_Sequential, WaitQueue<int>, Step1, 1)->Range(1<<0, 1<<10);
608```
609
610<a name="fixtures" />
611
612## Fixtures
613
614Fixture tests are created by first defining a type that derives from
615`::benchmark::Fixture` and then creating/registering the tests using the
616following macros:
617
618* `BENCHMARK_F(ClassName, Method)`
619* `BENCHMARK_DEFINE_F(ClassName, Method)`
620* `BENCHMARK_REGISTER_F(ClassName, Method)`
621
622For Example:
623
624```c++
625class MyFixture : public benchmark::Fixture {
626public:
627  void SetUp(::benchmark::State& state) {
628  }
629
630  void TearDown(::benchmark::State& state) {
631  }
632};
633
634// Defines and registers `FooTest` using the class `MyFixture`.
635BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
636   for (auto _ : st) {
637     ...
638  }
639}
640
641// Only defines `BarTest` using the class `MyFixture`.
642BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
643   for (auto _ : st) {
644     ...
645  }
646}
647// `BarTest` is NOT registered.
648BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
649// `BarTest` is now registered.
650```
651
652### Templated Fixtures
653
654Also you can create templated fixture by using the following macros:
655
656* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
657* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
658
659For example:
660
661```c++
662template<typename T>
663class MyFixture : public benchmark::Fixture {};
664
665// Defines and registers `IntTest` using the class template `MyFixture<int>`.
666BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
667   for (auto _ : st) {
668     ...
669  }
670}
671
672// Only defines `DoubleTest` using the class template `MyFixture<double>`.
673BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
674   for (auto _ : st) {
675     ...
676  }
677}
678// `DoubleTest` is NOT registered.
679BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
680// `DoubleTest` is now registered.
681```
682
683<a name="custom-counters" />
684
685## Custom Counters
686
687You can add your own counters with user-defined names. The example below
688will add columns "Foo", "Bar" and "Baz" in its output:
689
690```c++
691static void UserCountersExample1(benchmark::State& state) {
692  double numFoos = 0, numBars = 0, numBazs = 0;
693  for (auto _ : state) {
694    // ... count Foo,Bar,Baz events
695  }
696  state.counters["Foo"] = numFoos;
697  state.counters["Bar"] = numBars;
698  state.counters["Baz"] = numBazs;
699}
700```
701
702The `state.counters` object is a `std::map` with `std::string` keys
703and `Counter` values. The latter is a `double`-like class, via an implicit
704conversion to `double&`. Thus you can use all of the standard arithmetic
705assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
706
707In multithreaded benchmarks, each counter is set on the calling thread only.
708When the benchmark finishes, the counters from each thread will be summed;
709the resulting sum is the value which will be shown for the benchmark.
710
711The `Counter` constructor accepts three parameters: the value as a `double`
712; a bit flag which allows you to show counters as rates, and/or as per-thread
713iteration, and/or as per-thread averages, and/or iteration invariants,
714and/or finally inverting the result; and a flag specifying the 'unit' - i.e.
715is 1k a 1000 (default, `benchmark::Counter::OneK::kIs1000`), or 1024
716(`benchmark::Counter::OneK::kIs1024`)?
717
718```c++
719  // sets a simple counter
720  state.counters["Foo"] = numFoos;
721
722  // Set the counter as a rate. It will be presented divided
723  // by the duration of the benchmark.
724  // Meaning: per one second, how many 'foo's are processed?
725  state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
726
727  // Set the counter as a rate. It will be presented divided
728  // by the duration of the benchmark, and the result inverted.
729  // Meaning: how many seconds it takes to process one 'foo'?
730  state.counters["FooInvRate"] = Counter(numFoos, benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
731
732  // Set the counter as a thread-average quantity. It will
733  // be presented divided by the number of threads.
734  state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
735
736  // There's also a combined flag:
737  state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
738
739  // This says that we process with the rate of state.range(0) bytes every iteration:
740  state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024);
741```
742
743When you're compiling in C++11 mode or later you can use `insert()` with
744`std::initializer_list`:
745
746<!-- {% raw %} -->
747```c++
748  // With C++11, this can be done:
749  state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
750  // ... instead of:
751  state.counters["Foo"] = numFoos;
752  state.counters["Bar"] = numBars;
753  state.counters["Baz"] = numBazs;
754```
755<!-- {% endraw %} -->
756
757### Counter Reporting
758
759When using the console reporter, by default, user counters are printed at
760the end after the table, the same way as ``bytes_processed`` and
761``items_processed``. This is best for cases in which there are few counters,
762or where there are only a couple of lines per benchmark. Here's an example of
763the default output:
764
765```
766------------------------------------------------------------------------------
767Benchmark                        Time           CPU Iterations UserCounters...
768------------------------------------------------------------------------------
769BM_UserCounter/threads:8      2248 ns      10277 ns      68808 Bar=16 Bat=40 Baz=24 Foo=8
770BM_UserCounter/threads:1      9797 ns       9788 ns      71523 Bar=2 Bat=5 Baz=3 Foo=1024m
771BM_UserCounter/threads:2      4924 ns       9842 ns      71036 Bar=4 Bat=10 Baz=6 Foo=2
772BM_UserCounter/threads:4      2589 ns      10284 ns      68012 Bar=8 Bat=20 Baz=12 Foo=4
773BM_UserCounter/threads:8      2212 ns      10287 ns      68040 Bar=16 Bat=40 Baz=24 Foo=8
774BM_UserCounter/threads:16     1782 ns      10278 ns      68144 Bar=32 Bat=80 Baz=48 Foo=16
775BM_UserCounter/threads:32     1291 ns      10296 ns      68256 Bar=64 Bat=160 Baz=96 Foo=32
776BM_UserCounter/threads:4      2615 ns      10307 ns      68040 Bar=8 Bat=20 Baz=12 Foo=4
777BM_Factorial                    26 ns         26 ns   26608979 40320
778BM_Factorial/real_time          26 ns         26 ns   26587936 40320
779BM_CalculatePiRange/1           16 ns         16 ns   45704255 0
780BM_CalculatePiRange/8           73 ns         73 ns    9520927 3.28374
781BM_CalculatePiRange/64         609 ns        609 ns    1140647 3.15746
782BM_CalculatePiRange/512       4900 ns       4901 ns     142696 3.14355
783```
784
785If this doesn't suit you, you can print each counter as a table column by
786passing the flag `--benchmark_counters_tabular=true` to the benchmark
787application. This is best for cases in which there are a lot of counters, or
788a lot of lines per individual benchmark. Note that this will trigger a
789reprinting of the table header any time the counter set changes between
790individual benchmarks. Here's an example of corresponding output when
791`--benchmark_counters_tabular=true` is passed:
792
793```
794---------------------------------------------------------------------------------------
795Benchmark                        Time           CPU Iterations    Bar   Bat   Baz   Foo
796---------------------------------------------------------------------------------------
797BM_UserCounter/threads:8      2198 ns       9953 ns      70688     16    40    24     8
798BM_UserCounter/threads:1      9504 ns       9504 ns      73787      2     5     3     1
799BM_UserCounter/threads:2      4775 ns       9550 ns      72606      4    10     6     2
800BM_UserCounter/threads:4      2508 ns       9951 ns      70332      8    20    12     4
801BM_UserCounter/threads:8      2055 ns       9933 ns      70344     16    40    24     8
802BM_UserCounter/threads:16     1610 ns       9946 ns      70720     32    80    48    16
803BM_UserCounter/threads:32     1192 ns       9948 ns      70496     64   160    96    32
804BM_UserCounter/threads:4      2506 ns       9949 ns      70332      8    20    12     4
805--------------------------------------------------------------
806Benchmark                        Time           CPU Iterations
807--------------------------------------------------------------
808BM_Factorial                    26 ns         26 ns   26392245 40320
809BM_Factorial/real_time          26 ns         26 ns   26494107 40320
810BM_CalculatePiRange/1           15 ns         15 ns   45571597 0
811BM_CalculatePiRange/8           74 ns         74 ns    9450212 3.28374
812BM_CalculatePiRange/64         595 ns        595 ns    1173901 3.15746
813BM_CalculatePiRange/512       4752 ns       4752 ns     147380 3.14355
814BM_CalculatePiRange/4k       37970 ns      37972 ns      18453 3.14184
815BM_CalculatePiRange/32k     303733 ns     303744 ns       2305 3.14162
816BM_CalculatePiRange/256k   2434095 ns    2434186 ns        288 3.1416
817BM_CalculatePiRange/1024k  9721140 ns    9721413 ns         71 3.14159
818BM_CalculatePi/threads:8      2255 ns       9943 ns      70936
819```
820
821Note above the additional header printed when the benchmark changes from
822``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
823not have the same counter set as ``BM_UserCounter``.
824
825<a name="multithreaded-benchmarks"/>
826
827## Multithreaded Benchmarks
828
829In a multithreaded test (benchmark invoked by multiple threads simultaneously),
830it is guaranteed that none of the threads will start until all have reached
831the start of the benchmark loop, and all will have finished before any thread
832exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
833API) As such, any global setup or teardown can be wrapped in a check against the thread
834index:
835
836```c++
837static void BM_MultiThreaded(benchmark::State& state) {
838  if (state.thread_index() == 0) {
839    // Setup code here.
840  }
841  for (auto _ : state) {
842    // Run the test as normal.
843  }
844  if (state.thread_index() == 0) {
845    // Teardown code here.
846  }
847}
848BENCHMARK(BM_MultiThreaded)->Threads(2);
849```
850
851To run the benchmark across a range of thread counts, instead of `Threads`, use
852`ThreadRange`. This takes two parameters (`min_threads` and `max_threads`) and
853runs the benchmark once for values in the inclusive range. For example:
854
855```c++
856BENCHMARK(BM_MultiThreaded)->ThreadRange(1, 8);
857```
858
859will run `BM_MultiThreaded` with thread counts 1, 2, 4, and 8.
860
861If the benchmarked code itself uses threads and you want to compare it to
862single-threaded code, you may want to use real-time ("wallclock") measurements
863for latency comparisons:
864
865```c++
866BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
867```
868
869Without `UseRealTime`, CPU time is used by default.
870
871<a name="cpu-timers" />
872
873## CPU Timers
874
875By default, the CPU timer only measures the time spent by the main thread.
876If the benchmark itself uses threads internally, this measurement may not
877be what you are looking for. Instead, there is a way to measure the total
878CPU usage of the process, by all the threads.
879
880```c++
881void callee(int i);
882
883static void MyMain(int size) {
884#pragma omp parallel for
885  for(int i = 0; i < size; i++)
886    callee(i);
887}
888
889static void BM_OpenMP(benchmark::State& state) {
890  for (auto _ : state)
891    MyMain(state.range(0));
892}
893
894// Measure the time spent by the main thread, use it to decide for how long to
895// run the benchmark loop. Depending on the internal implementation detail may
896// measure to anywhere from near-zero (the overhead spent before/after work
897// handoff to worker thread[s]) to the whole single-thread time.
898BENCHMARK(BM_OpenMP)->Range(8, 8<<10);
899
900// Measure the user-visible time, the wall clock (literally, the time that
901// has passed on the clock on the wall), use it to decide for how long to
902// run the benchmark loop. This will always be meaningful, and will match the
903// time spent by the main thread in single-threaded case, in general decreasing
904// with the number of internal threads doing the work.
905BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime();
906
907// Measure the total CPU consumption, use it to decide for how long to
908// run the benchmark loop. This will always measure to no less than the
909// time spent by the main thread in single-threaded case.
910BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime();
911
912// A mixture of the last two. Measure the total CPU consumption, but use the
913// wall clock to decide for how long to run the benchmark loop.
914BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime();
915```
916
917### Controlling Timers
918
919Normally, the entire duration of the work loop (`for (auto _ : state) {}`)
920is measured. But sometimes, it is necessary to do some work inside of
921that loop, every iteration, but without counting that time to the benchmark time.
922That is possible, although it is not recommended, since it has high overhead.
923
924<!-- {% raw %} -->
925```c++
926static void BM_SetInsert_With_Timer_Control(benchmark::State& state) {
927  std::set<int> data;
928  for (auto _ : state) {
929    state.PauseTiming(); // Stop timers. They will not count until they are resumed.
930    data = ConstructRandomSet(state.range(0)); // Do something that should not be measured
931    state.ResumeTiming(); // And resume timers. They are now counting again.
932    // The rest will be measured.
933    for (int j = 0; j < state.range(1); ++j)
934      data.insert(RandomNumber());
935  }
936}
937BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}});
938```
939<!-- {% endraw %} -->
940
941<a name="manual-timing" />
942
943## Manual Timing
944
945For benchmarking something for which neither CPU time nor real-time are
946correct or accurate enough, completely manual timing is supported using
947the `UseManualTime` function.
948
949When `UseManualTime` is used, the benchmarked code must call
950`SetIterationTime` once per iteration of the benchmark loop to
951report the manually measured time.
952
953An example use case for this is benchmarking GPU execution (e.g. OpenCL
954or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
955be accurately measured using CPU time or real-time. Instead, they can be
956measured accurately using a dedicated API, and these measurement results
957can be reported back with `SetIterationTime`.
958
959```c++
960static void BM_ManualTiming(benchmark::State& state) {
961  int microseconds = state.range(0);
962  std::chrono::duration<double, std::micro> sleep_duration {
963    static_cast<double>(microseconds)
964  };
965
966  for (auto _ : state) {
967    auto start = std::chrono::high_resolution_clock::now();
968    // Simulate some useful workload with a sleep
969    std::this_thread::sleep_for(sleep_duration);
970    auto end = std::chrono::high_resolution_clock::now();
971
972    auto elapsed_seconds =
973      std::chrono::duration_cast<std::chrono::duration<double>>(
974        end - start);
975
976    state.SetIterationTime(elapsed_seconds.count());
977  }
978}
979BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
980```
981
982<a name="setting-the-time-unit" />
983
984## Setting the Time Unit
985
986If a benchmark runs a few milliseconds it may be hard to visually compare the
987measured times, since the output data is given in nanoseconds per default. In
988order to manually set the time unit, you can specify it manually:
989
990```c++
991BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
992```
993
994Additionally the default time unit can be set globally with the
995`--benchmark_time_unit={ns|us|ms|s}` command line argument. The argument only
996affects benchmarks where the time unit is not set explicitly.
997
998<a name="preventing-optimization" />
999
1000## Preventing Optimization
1001
1002To prevent a value or expression from being optimized away by the compiler
1003the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
1004functions can be used.
1005
1006```c++
1007static void BM_test(benchmark::State& state) {
1008  for (auto _ : state) {
1009      int x = 0;
1010      for (int i=0; i < 64; ++i) {
1011        benchmark::DoNotOptimize(x += i);
1012      }
1013  }
1014}
1015```
1016
1017`DoNotOptimize(<expr>)` forces the  *result* of `<expr>` to be stored in either
1018memory or a register. For GNU based compilers it acts as read/write barrier
1019for global memory. More specifically it forces the compiler to flush pending
1020writes to memory and reload any other values as necessary.
1021
1022Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
1023in any way. `<expr>` may even be removed entirely when the result is already
1024known. For example:
1025
1026```c++
1027  // Example 1: `<expr>` is removed entirely.
1028  int foo(int x) { return x + 42; }
1029  while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
1030
1031  // Example 2: Result of '<expr>' is only reused.
1032  int bar(int) __attribute__((const));
1033  while (...) DoNotOptimize(bar(0)); // Optimized to:
1034  // int __result__ = bar(0);
1035  // while (...) DoNotOptimize(__result__);
1036```
1037
1038The second tool for preventing optimizations is `ClobberMemory()`. In essence
1039`ClobberMemory()` forces the compiler to perform all pending writes to global
1040memory. Memory managed by block scope objects must be "escaped" using
1041`DoNotOptimize(...)` before it can be clobbered. In the below example
1042`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
1043away.
1044
1045```c++
1046static void BM_vector_push_back(benchmark::State& state) {
1047  for (auto _ : state) {
1048    std::vector<int> v;
1049    v.reserve(1);
1050    auto data = v.data();           // Allow v.data() to be clobbered. Pass as non-const
1051    benchmark::DoNotOptimize(data); // lvalue to avoid undesired compiler optimizations
1052    v.push_back(42);
1053    benchmark::ClobberMemory(); // Force 42 to be written to memory.
1054  }
1055}
1056```
1057
1058Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
1059
1060<a name="reporting-statistics" />
1061
1062## Statistics: Reporting the Mean, Median and Standard Deviation / Coefficient of variation of Repeated Benchmarks
1063
1064By default each benchmark is run once and that single result is reported.
1065However benchmarks are often noisy and a single result may not be representative
1066of the overall behavior. For this reason it's possible to repeatedly rerun the
1067benchmark.
1068
1069The number of runs of each benchmark is specified globally by the
1070`--benchmark_repetitions` flag or on a per benchmark basis by calling
1071`Repetitions` on the registered benchmark object. When a benchmark is run more
1072than once the mean, median, standard deviation and coefficient of variation
1073of the runs will be reported.
1074
1075Additionally the `--benchmark_report_aggregates_only={true|false}`,
1076`--benchmark_display_aggregates_only={true|false}` flags or
1077`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be
1078used to change how repeated tests are reported. By default the result of each
1079repeated run is reported. When `report aggregates only` option is `true`,
1080only the aggregates (i.e. mean, median, standard deviation and coefficient
1081of variation, maybe complexity measurements if they were requested) of the runs
1082is reported, to both the reporters - standard output (console), and the file.
1083However when only the `display aggregates only` option is `true`,
1084only the aggregates are displayed in the standard output, while the file
1085output still contains everything.
1086Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a
1087registered benchmark object overrides the value of the appropriate flag for that
1088benchmark.
1089
1090<a name="custom-statistics" />
1091
1092## Custom Statistics
1093
1094While having these aggregates is nice, this may not be enough for everyone.
1095For example you may want to know what the largest observation is, e.g. because
1096you have some real-time constraints. This is easy. The following code will
1097specify a custom statistic to be calculated, defined by a lambda function.
1098
1099```c++
1100void BM_spin_empty(benchmark::State& state) {
1101  for (auto _ : state) {
1102    for (int x = 0; x < state.range(0); ++x) {
1103      benchmark::DoNotOptimize(x);
1104    }
1105  }
1106}
1107
1108BENCHMARK(BM_spin_empty)
1109  ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
1110    return *(std::max_element(std::begin(v), std::end(v)));
1111  })
1112  ->Arg(512);
1113```
1114
1115While usually the statistics produce values in time units,
1116you can also produce percentages:
1117
1118```c++
1119void BM_spin_empty(benchmark::State& state) {
1120  for (auto _ : state) {
1121    for (int x = 0; x < state.range(0); ++x) {
1122      benchmark::DoNotOptimize(x);
1123    }
1124  }
1125}
1126
1127BENCHMARK(BM_spin_empty)
1128  ->ComputeStatistics("ratio", [](const std::vector<double>& v) -> double {
1129    return std::begin(v) / std::end(v);
1130  }, benchmark::StatisticUnit::kPercentage)
1131  ->Arg(512);
1132```
1133
1134<a name="memory-usage" />
1135
1136## Memory Usage
1137
1138It's often useful to also track memory usage for benchmarks, alongside CPU
1139performance. For this reason, benchmark offers the `RegisterMemoryManager`
1140method that allows a custom `MemoryManager` to be injected.
1141
1142If set, the `MemoryManager::Start` and `MemoryManager::Stop` methods will be
1143called at the start and end of benchmark runs to allow user code to fill out
1144a report on the number of allocations, bytes used, etc.
1145
1146This data will then be reported alongside other performance data, currently
1147only when using JSON output.
1148
1149<a name="profiling" />
1150
1151## Profiling
1152
1153It's often useful to also profile benchmarks in particular ways, in addition to
1154CPU performance. For this reason, benchmark offers the `RegisterProfilerManager`
1155method that allows a custom `ProfilerManager` to be injected.
1156
1157If set, the `ProfilerManager::AfterSetupStart` and
1158`ProfilerManager::BeforeTeardownStop` methods will be called at the start and
1159end of a separate benchmark run to allow user code to collect and report
1160user-provided profile metrics.
1161
1162Output collected from this profiling run must be reported separately.
1163
1164<a name="using-register-benchmark" />
1165
1166## Using RegisterBenchmark(name, fn, args...)
1167
1168The `RegisterBenchmark(name, func, args...)` function provides an alternative
1169way to create and register benchmarks.
1170`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
1171pointer to a new benchmark with the specified `name` that invokes
1172`func(st, args...)` where `st` is a `benchmark::State` object.
1173
1174Unlike the `BENCHMARK` registration macros, which can only be used at the global
1175scope, the `RegisterBenchmark` can be called anywhere. This allows for
1176benchmark tests to be registered programmatically.
1177
1178Additionally `RegisterBenchmark` allows any callable object to be registered
1179as a benchmark. Including capturing lambdas and function objects.
1180
1181For Example:
1182```c++
1183auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
1184
1185int main(int argc, char** argv) {
1186  for (auto& test_input : { /* ... */ })
1187      benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
1188  benchmark::Initialize(&argc, argv);
1189  benchmark::RunSpecifiedBenchmarks();
1190  benchmark::Shutdown();
1191}
1192```
1193
1194<a name="exiting-with-an-error" />
1195
1196## Exiting with an Error
1197
1198When errors caused by external influences, such as file I/O and network
1199communication, occur within a benchmark the
1200`State::SkipWithError(const std::string& msg)` function can be used to skip that run
1201of benchmark and report the error. Note that only future iterations of the
1202`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
1203Users must explicitly exit the loop, otherwise all iterations will be performed.
1204Users may explicitly return to exit the benchmark immediately.
1205
1206The `SkipWithError(...)` function may be used at any point within the benchmark,
1207including before and after the benchmark loop. Moreover, if `SkipWithError(...)`
1208has been used, it is not required to reach the benchmark loop and one may return
1209from the benchmark function early.
1210
1211For example:
1212
1213```c++
1214static void BM_test(benchmark::State& state) {
1215  auto resource = GetResource();
1216  if (!resource.good()) {
1217    state.SkipWithError("Resource is not good!");
1218    // KeepRunning() loop will not be entered.
1219  }
1220  while (state.KeepRunning()) {
1221    auto data = resource.read_data();
1222    if (!resource.good()) {
1223      state.SkipWithError("Failed to read data!");
1224      break; // Needed to skip the rest of the iteration.
1225    }
1226    do_stuff(data);
1227  }
1228}
1229
1230static void BM_test_ranged_fo(benchmark::State & state) {
1231  auto resource = GetResource();
1232  if (!resource.good()) {
1233    state.SkipWithError("Resource is not good!");
1234    return; // Early return is allowed when SkipWithError() has been used.
1235  }
1236  for (auto _ : state) {
1237    auto data = resource.read_data();
1238    if (!resource.good()) {
1239      state.SkipWithError("Failed to read data!");
1240      break; // REQUIRED to prevent all further iterations.
1241    }
1242    do_stuff(data);
1243  }
1244}
1245```
1246<a name="a-faster-keep-running-loop" />
1247
1248## A Faster KeepRunning Loop
1249
1250In C++11 mode, a ranged-based for loop should be used in preference to
1251the `KeepRunning` loop for running the benchmarks. For example:
1252
1253```c++
1254static void BM_Fast(benchmark::State &state) {
1255  for (auto _ : state) {
1256    FastOperation();
1257  }
1258}
1259BENCHMARK(BM_Fast);
1260```
1261
1262The reason the ranged-for loop is faster than using `KeepRunning`, is
1263because `KeepRunning` requires a memory load and store of the iteration count
1264ever iteration, whereas the ranged-for variant is able to keep the iteration count
1265in a register.
1266
1267For example, an empty inner loop of using the ranged-based for method looks like:
1268
1269```asm
1270# Loop Init
1271  mov rbx, qword ptr [r14 + 104]
1272  call benchmark::State::StartKeepRunning()
1273  test rbx, rbx
1274  je .LoopEnd
1275.LoopHeader: # =>This Inner Loop Header: Depth=1
1276  add rbx, -1
1277  jne .LoopHeader
1278.LoopEnd:
1279```
1280
1281Compared to an empty `KeepRunning` loop, which looks like:
1282
1283```asm
1284.LoopHeader: # in Loop: Header=BB0_3 Depth=1
1285  cmp byte ptr [rbx], 1
1286  jne .LoopInit
1287.LoopBody: # =>This Inner Loop Header: Depth=1
1288  mov rax, qword ptr [rbx + 8]
1289  lea rcx, [rax + 1]
1290  mov qword ptr [rbx + 8], rcx
1291  cmp rax, qword ptr [rbx + 104]
1292  jb .LoopHeader
1293  jmp .LoopEnd
1294.LoopInit:
1295  mov rdi, rbx
1296  call benchmark::State::StartKeepRunning()
1297  jmp .LoopBody
1298.LoopEnd:
1299```
1300
1301Unless C++03 compatibility is required, the ranged-for variant of writing
1302the benchmark loop should be preferred.
1303
1304<a name="disabling-cpu-frequency-scaling" />
1305
1306## Disabling CPU Frequency Scaling
1307
1308If you see this error:
1309
1310```
1311***WARNING*** CPU scaling is enabled, the benchmark real time measurements may
1312be noisy and will incur extra overhead.
1313```
1314
1315you might want to disable the CPU frequency scaling while running the
1316benchmark, as well as consider other ways to stabilize the performance of
1317your system while benchmarking.
1318
1319See [Reducing Variance](reducing_variance.md) for more information.
1320