1 // Copyright 2017 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef BASE_CONTAINERS_FLAT_MAP_H_
6 #define BASE_CONTAINERS_FLAT_MAP_H_
7
8 #include <functional>
9 #include <tuple>
10 #include <type_traits>
11 #include <utility>
12 #include <vector>
13
14 #include "base/check.h"
15 #include "base/containers/flat_tree.h"
16
17 namespace base {
18
19 namespace internal {
20
21 // An implementation of the flat_tree GetKeyFromValue template parameter that
22 // extracts the key as the first element of a pair.
23 struct GetFirst {
24 template <class Key, class Mapped>
operatorGetFirst25 constexpr const Key& operator()(const std::pair<Key, Mapped>& p) const {
26 return p.first;
27 }
28 };
29
30 } // namespace internal
31
32 // flat_map is a container with a std::map-like interface that stores its
33 // contents in a sorted container, by default a vector.
34 //
35 // Its implementation mostly tracks the corresponding standardization proposal
36 // https://wg21.link/P0429, except that the storage of keys and values is not
37 // split.
38 //
39 // Please see //base/containers/README.md for an overview of which container
40 // to select.
41 //
42 // PROS
43 //
44 // - Good memory locality.
45 // - Low overhead, especially for smaller maps.
46 // - Performance is good for more workloads than you might expect (see
47 // overview link above).
48 // - Supports C++14 map interface.
49 //
50 // CONS
51 //
52 // - Inserts and removals are O(n).
53 //
54 // IMPORTANT NOTES
55 //
56 // - Iterators are invalidated across mutations. This means that the following
57 // line of code has undefined behavior since adding a new element could
58 // resize the container, invalidating all iterators:
59 // container["new element"] = it.second;
60 // - If possible, construct a flat_map in one operation by inserting into
61 // a container and moving that container into the flat_map constructor.
62 //
63 // QUICK REFERENCE
64 //
65 // Most of the core functionality is inherited from flat_tree. Please see
66 // flat_tree.h for more details for most of these functions. As a quick
67 // reference, the functions available are:
68 //
69 // Constructors (inputs need not be sorted):
70 // flat_map(const flat_map&);
71 // flat_map(flat_map&&);
72 // flat_map(InputIterator first, InputIterator last,
73 // const Compare& compare = Compare());
74 // flat_map(const container_type& items,
75 // const Compare& compare = Compare());
76 // flat_map(container_type&& items,
77 // const Compare& compare = Compare()); // Re-use storage.
78 // flat_map(std::initializer_list<value_type> ilist,
79 // const Compare& comp = Compare());
80 //
81 // Constructors (inputs need to be sorted):
82 // flat_map(sorted_unique_t,
83 // InputIterator first, InputIterator last,
84 // const Compare& compare = Compare());
85 // flat_map(sorted_unique_t,
86 // const container_type& items,
87 // const Compare& compare = Compare());
88 // flat_map(sorted_unique_t,
89 // container_type&& items,
90 // const Compare& compare = Compare()); // Re-use storage.
91 // flat_map(sorted_unique_t,
92 // std::initializer_list<value_type> ilist,
93 // const Compare& comp = Compare());
94 //
95 // Assignment functions:
96 // flat_map& operator=(const flat_map&);
97 // flat_map& operator=(flat_map&&);
98 // flat_map& operator=(initializer_list<value_type>);
99 //
100 // Memory management functions:
101 // void reserve(size_t);
102 // size_t capacity() const;
103 // void shrink_to_fit();
104 //
105 // Size management functions:
106 // void clear();
107 // size_t size() const;
108 // size_t max_size() const;
109 // bool empty() const;
110 //
111 // Iterator functions:
112 // iterator begin();
113 // const_iterator begin() const;
114 // const_iterator cbegin() const;
115 // iterator end();
116 // const_iterator end() const;
117 // const_iterator cend() const;
118 // reverse_iterator rbegin();
119 // const reverse_iterator rbegin() const;
120 // const_reverse_iterator crbegin() const;
121 // reverse_iterator rend();
122 // const_reverse_iterator rend() const;
123 // const_reverse_iterator crend() const;
124 //
125 // Insert and accessor functions:
126 // mapped_type& operator[](const key_type&);
127 // mapped_type& operator[](key_type&&);
128 // mapped_type& at(const K&);
129 // const mapped_type& at(const K&) const;
130 // pair<iterator, bool> insert(const value_type&);
131 // pair<iterator, bool> insert(value_type&&);
132 // iterator insert(const_iterator hint, const value_type&);
133 // iterator insert(const_iterator hint, value_type&&);
134 // void insert(InputIterator first, InputIterator last);
135 // pair<iterator, bool> insert_or_assign(K&&, M&&);
136 // iterator insert_or_assign(const_iterator hint, K&&, M&&);
137 // pair<iterator, bool> emplace(Args&&...);
138 // iterator emplace_hint(const_iterator, Args&&...);
139 // pair<iterator, bool> try_emplace(K&&, Args&&...);
140 // iterator try_emplace(const_iterator hint, K&&, Args&&...);
141
142 // Underlying type functions:
143 // container_type extract() &&;
144 // void replace(container_type&&);
145 //
146 // Erase functions:
147 // iterator erase(iterator);
148 // iterator erase(const_iterator);
149 // iterator erase(const_iterator first, const_iterator& last);
150 // template <class K> size_t erase(const K& key);
151 //
152 // Comparators (see std::map documentation).
153 // key_compare key_comp() const;
154 // value_compare value_comp() const;
155 //
156 // Search functions:
157 // template <typename K> size_t count(const K&) const;
158 // template <typename K> iterator find(const K&);
159 // template <typename K> const_iterator find(const K&) const;
160 // template <typename K> bool contains(const K&) const;
161 // template <typename K> pair<iterator, iterator> equal_range(const K&);
162 // template <typename K> iterator lower_bound(const K&);
163 // template <typename K> const_iterator lower_bound(const K&) const;
164 // template <typename K> iterator upper_bound(const K&);
165 // template <typename K> const_iterator upper_bound(const K&) const;
166 //
167 // General functions:
168 // void swap(flat_map&);
169 //
170 // Non-member operators:
171 // bool operator==(const flat_map&, const flat_map);
172 // bool operator!=(const flat_map&, const flat_map);
173 // bool operator<(const flat_map&, const flat_map);
174 // bool operator>(const flat_map&, const flat_map);
175 // bool operator>=(const flat_map&, const flat_map);
176 // bool operator<=(const flat_map&, const flat_map);
177 //
178 template <class Key,
179 class Mapped,
180 class Compare = std::less<>,
181 class Container = std::vector<std::pair<Key, Mapped>>>
182 class flat_map : public ::base::internal::
183 flat_tree<Key, internal::GetFirst, Compare, Container> {
184 private:
185 using tree = typename ::base::internal::
186 flat_tree<Key, internal::GetFirst, Compare, Container>;
187
188 public:
189 using key_type = typename tree::key_type;
190 using mapped_type = Mapped;
191 using value_type = typename tree::value_type;
192 using reference = typename Container::reference;
193 using const_reference = typename Container::const_reference;
194 using size_type = typename Container::size_type;
195 using difference_type = typename Container::difference_type;
196 using iterator = typename tree::iterator;
197 using const_iterator = typename tree::const_iterator;
198 using reverse_iterator = typename tree::reverse_iterator;
199 using const_reverse_iterator = typename tree::const_reverse_iterator;
200 using container_type = typename tree::container_type;
201
202 // --------------------------------------------------------------------------
203 // Lifetime and assignments.
204 //
205 // Note: we explicitly bring operator= in because otherwise
206 // flat_map<...> x;
207 // x = {...};
208 // Would first create a flat_map and then move assign it. This most likely
209 // would be optimized away but still affects our debug builds.
210
211 using tree::tree;
212 using tree::operator=;
213
214 // Out-of-bound calls to at() will CHECK.
215 template <class K>
216 mapped_type& at(const K& key);
217 template <class K>
218 const mapped_type& at(const K& key) const;
219
220 // --------------------------------------------------------------------------
221 // Map-specific insert operations.
222 //
223 // Normal insert() functions are inherited from flat_tree.
224 //
225 // Assume that every operation invalidates iterators and references.
226 // Insertion of one element can take O(size).
227
228 mapped_type& operator[](const key_type& key);
229 mapped_type& operator[](key_type&& key);
230
231 template <class K, class M>
232 std::pair<iterator, bool> insert_or_assign(K&& key, M&& obj);
233 template <class K, class M>
234 iterator insert_or_assign(const_iterator hint, K&& key, M&& obj);
235
236 template <class K, class... Args>
237 std::enable_if_t<std::is_constructible_v<key_type, K&&>,
238 std::pair<iterator, bool>>
239 try_emplace(K&& key, Args&&... args);
240
241 template <class K, class... Args>
242 std::enable_if_t<std::is_constructible_v<key_type, K&&>, iterator>
243 try_emplace(const_iterator hint, K&& key, Args&&... args);
244
245 // --------------------------------------------------------------------------
246 // General operations.
247 //
248 // Assume that swap invalidates iterators and references.
249
250 void swap(flat_map& other) noexcept;
251
swap(flat_map & lhs,flat_map & rhs)252 friend void swap(flat_map& lhs, flat_map& rhs) noexcept { lhs.swap(rhs); }
253 };
254
255 // ----------------------------------------------------------------------------
256 // Lookups.
257
258 template <class Key, class Mapped, class Compare, class Container>
259 template <class K>
260 auto flat_map<Key, Mapped, Compare, Container>::at(const K& key)
261 -> mapped_type& {
262 iterator found = tree::find(key);
263 CHECK(found != tree::end());
264 return found->second;
265 }
266
267 template <class Key, class Mapped, class Compare, class Container>
268 template <class K>
269 auto flat_map<Key, Mapped, Compare, Container>::at(const K& key) const
270 -> const mapped_type& {
271 const_iterator found = tree::find(key);
272 CHECK(found != tree::cend());
273 return found->second;
274 }
275
276 // ----------------------------------------------------------------------------
277 // Insert operations.
278
279 template <class Key, class Mapped, class Compare, class Container>
280 auto flat_map<Key, Mapped, Compare, Container>::operator[](const key_type& key)
281 -> mapped_type& {
282 iterator found = tree::lower_bound(key);
283 if (found == tree::end() || tree::key_comp()(key, found->first))
284 found = tree::unsafe_emplace(found, key, mapped_type());
285 return found->second;
286 }
287
288 template <class Key, class Mapped, class Compare, class Container>
289 auto flat_map<Key, Mapped, Compare, Container>::operator[](key_type&& key)
290 -> mapped_type& {
291 iterator found = tree::lower_bound(key);
292 if (found == tree::end() || tree::key_comp()(key, found->first))
293 found = tree::unsafe_emplace(found, std::move(key), mapped_type());
294 return found->second;
295 }
296
297 template <class Key, class Mapped, class Compare, class Container>
298 template <class K, class M>
299 auto flat_map<Key, Mapped, Compare, Container>::insert_or_assign(K&& key,
300 M&& obj)
301 -> std::pair<iterator, bool> {
302 auto result =
303 tree::emplace_key_args(key, std::forward<K>(key), std::forward<M>(obj));
304 if (!result.second)
305 result.first->second = std::forward<M>(obj);
306 return result;
307 }
308
309 template <class Key, class Mapped, class Compare, class Container>
310 template <class K, class M>
311 auto flat_map<Key, Mapped, Compare, Container>::insert_or_assign(
312 const_iterator hint,
313 K&& key,
314 M&& obj) -> iterator {
315 auto result = tree::emplace_hint_key_args(hint, key, std::forward<K>(key),
316 std::forward<M>(obj));
317 if (!result.second)
318 result.first->second = std::forward<M>(obj);
319 return result.first;
320 }
321
322 template <class Key, class Mapped, class Compare, class Container>
323 template <class K, class... Args>
324 auto flat_map<Key, Mapped, Compare, Container>::try_emplace(K&& key,
325 Args&&... args)
326 -> std::enable_if_t<std::is_constructible_v<key_type, K&&>,
327 std::pair<iterator, bool>> {
328 return tree::emplace_key_args(
329 key, std::piecewise_construct,
330 std::forward_as_tuple(std::forward<K>(key)),
331 std::forward_as_tuple(std::forward<Args>(args)...));
332 }
333
334 template <class Key, class Mapped, class Compare, class Container>
335 template <class K, class... Args>
336 auto flat_map<Key, Mapped, Compare, Container>::try_emplace(const_iterator hint,
337 K&& key,
338 Args&&... args)
339 -> std::enable_if_t<std::is_constructible_v<key_type, K&&>, iterator> {
340 return tree::emplace_hint_key_args(
341 hint, key, std::piecewise_construct,
342 std::forward_as_tuple(std::forward<K>(key)),
343 std::forward_as_tuple(std::forward<Args>(args)...))
344 .first;
345 }
346
347 // ----------------------------------------------------------------------------
348 // General operations.
349
350 template <class Key, class Mapped, class Compare, class Container>
swap(flat_map & other)351 void flat_map<Key, Mapped, Compare, Container>::swap(flat_map& other) noexcept {
352 tree::swap(other);
353 }
354
355 // ----------------------------------------------------------------------------
356 // Utility functions.
357
358 // Utility function to simplify constructing a flat_set from a fixed list of
359 // keys and values. The key/value pairs are obtained by applying |proj| to the
360 // |unprojected_elements|. The map's keys are sorted by |comp|.
361 //
362 // Example usage (creates a set {{16, "4"}, {9, "3"}, {4, "2"}, {1, "1"}}):
363 // auto map = base::MakeFlatMap<int, std::string>(
364 // std::vector<int>{1, 2, 3, 4},
365 // [](int i, int j) { return i > j; },
366 // [](int i) { return std::make_pair(i * i, base::NumberToString(i)); });
367 template <class Key,
368 class Mapped,
369 class KeyCompare = std::less<>,
370 class Container = std::vector<std::pair<Key, Mapped>>,
371 class InputContainer,
372 class Projection = std::identity>
373 constexpr flat_map<Key, Mapped, KeyCompare, Container> MakeFlatMap(
374 const InputContainer& unprojected_elements,
375 const KeyCompare& comp = KeyCompare(),
376 const Projection& proj = Projection()) {
377 Container elements;
378 internal::ReserveIfSupported(elements, unprojected_elements);
379 base::ranges::transform(unprojected_elements, std::back_inserter(elements),
380 proj);
381 return flat_map<Key, Mapped, KeyCompare, Container>(std::move(elements),
382 comp);
383 }
384
385 // Deduction guide to construct a flat_map from a Container of std::pair<Key,
386 // Mapped> elements. The container does not have to be sorted or contain only
387 // unique keys; construction will automatically discard duplicate keys, keeping
388 // only the first.
389 template <
390 class Container,
391 class Compare = std::less<>,
392 class Key = typename std::decay_t<Container>::value_type::first_type,
393 class Mapped = typename std::decay_t<Container>::value_type::second_type>
394 flat_map(Container&&, Compare comp = {})
395 -> flat_map<Key, Mapped, Compare, std::decay_t<Container>>;
396
397 } // namespace base
398
399 #endif // BASE_CONTAINERS_FLAT_MAP_H_
400