• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifdef UNSAFE_BUFFERS_BUILD
6 // TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
7 #pragma allow_unsafe_buffers
8 #endif
9 
10 #include "base/cpu.h"
11 
12 #include "base/containers/contains.h"
13 #include "base/logging.h"
14 #include "base/memory/protected_memory_buildflags.h"
15 #include "base/strings/string_util.h"
16 #include "base/test/gtest_util.h"
17 #include "build/build_config.h"
18 #include "testing/gtest/include/gtest/gtest.h"
19 
20 // Tests whether we can run extended instructions represented by the CPU
21 // information. This test actually executes some extended instructions (such as
22 // MMX, SSE, etc.) supported by the CPU and sees we can run them without
23 // "undefined instruction" exceptions. That is, this test succeeds when this
24 // test finishes without a crash.
TEST(CPU,RunExtendedInstructions)25 TEST(CPU, RunExtendedInstructions) {
26   // Retrieve the CPU information.
27   base::CPU cpu;
28 #if defined(ARCH_CPU_X86_FAMILY)
29   ASSERT_TRUE(cpu.has_mmx());
30   ASSERT_TRUE(cpu.has_sse());
31   ASSERT_TRUE(cpu.has_sse2());
32   ASSERT_TRUE(cpu.has_sse3());
33 
34   // Execute an MMX instruction.
35   __asm__ __volatile__("emms\n" : : : "mm0");
36 
37   // Execute an SSE instruction.
38   __asm__ __volatile__("xorps %%xmm0, %%xmm0\n" : : : "xmm0");
39 
40   // Execute an SSE 2 instruction.
41   __asm__ __volatile__("psrldq $0, %%xmm0\n" : : : "xmm0");
42 
43   // Execute an SSE 3 instruction.
44   __asm__ __volatile__("addsubpd %%xmm0, %%xmm0\n" : : : "xmm0");
45 
46   if (cpu.has_ssse3()) {
47     // Execute a Supplimental SSE 3 instruction.
48     __asm__ __volatile__("psignb %%xmm0, %%xmm0\n" : : : "xmm0");
49   }
50 
51   if (cpu.has_sse41()) {
52     // Execute an SSE 4.1 instruction.
53     __asm__ __volatile__("pmuldq %%xmm0, %%xmm0\n" : : : "xmm0");
54   }
55 
56   if (cpu.has_sse42()) {
57     // Execute an SSE 4.2 instruction.
58     __asm__ __volatile__("crc32 %%eax, %%eax\n" : : : "eax");
59   }
60 
61   if (cpu.has_popcnt()) {
62     // Execute a POPCNT instruction.
63     __asm__ __volatile__("popcnt %%eax, %%eax\n" : : : "eax");
64   }
65 
66   if (cpu.has_avx()) {
67     // Execute an AVX instruction.
68     __asm__ __volatile__("vzeroupper\n" : : : "xmm0");
69   }
70 
71   if (cpu.has_fma3()) {
72     // Execute a FMA3 instruction.
73     __asm__ __volatile__("vfmadd132ps %%xmm0, %%xmm0, %%xmm0\n" : : : "xmm0");
74   }
75 
76   if (cpu.has_avx2()) {
77     // Execute an AVX 2 instruction.
78     __asm__ __volatile__("vpunpcklbw %%ymm0, %%ymm0, %%ymm0\n" : : : "xmm0");
79   }
80 
81   if (cpu.has_avx_vnni()) {
82     // Execute an AVX VNNI instruction. {vex} prevents EVEX encoding, which
83     // would shift it to AVX512 VNNI.
84     __asm__ __volatile__("%{vex%} vpdpbusd %%ymm0, %%ymm0, %%ymm0\n"
85                          :
86                          :
87                          : "ymm0");
88   }
89 
90   if (cpu.has_avx512_f()) {
91     // Execute an AVX-512 Foundation (F) instruction.
92     __asm__ __volatile__("vpxorq %%zmm0, %%zmm0, %%zmm0\n" : : : "zmm0");
93   }
94 
95   if (cpu.has_avx512_bw()) {
96     // Execute an AVX-512 Byte & Word (BW) instruction.
97     __asm__ __volatile__("vpabsw %%zmm0, %%zmm0\n" : : : "zmm0");
98   }
99 
100   if (cpu.has_avx512_vnni()) {
101     // Execute an AVX-512 VNNI instruction.
102     __asm__ __volatile__("vpdpbusd %%zmm0, %%zmm0, %%zmm0\n" : : : "zmm0");
103   }
104 
105   if (cpu.has_pku()) {
106     // rdpkru
107     uint32_t pkru;
108     __asm__ __volatile__(".byte 0x0f,0x01,0xee\n"
109                          : "=a"(pkru)
110                          : "c"(0), "d"(0));
111   }
112 #endif  // defined(ARCH_CPU_X86_FAMILY)
113 
114 #if defined(ARCH_CPU_ARM64)
115   // Check that the CPU is correctly reporting support for the Armv8.5-A memory
116   // tagging extension. The new MTE instructions aren't encoded in NOP space
117   // like BTI/Pointer Authentication and will crash older cores with a SIGILL if
118   // used incorrectly. This test demonstrates how it should be done and that
119   // this approach works.
120   if (cpu.has_mte()) {
121 #if !defined(__ARM_FEATURE_MEMORY_TAGGING)
122     // In this section, we're running on an MTE-compatible core, but we're
123     // building this file without MTE support. Fail this test to indicate that
124     // there's a problem with the base/ build configuration.
125     GTEST_FAIL()
126         << "MTE support detected (but base/ built without MTE support)";
127 #else
128     char ptr[32];
129     uint64_t val;
130     // Execute a trivial MTE instruction. Normally, MTE should be used via the
131     // intrinsics documented at
132     // https://developer.arm.com/documentation/101028/0012/10--Memory-tagging-intrinsics,
133     // this test uses the irg (Insert Random Tag) instruction directly to make
134     // sure that it's not optimized out by the compiler.
135     __asm__ __volatile__("irg %0, %1" : "=r"(val) : "r"(ptr));
136 #endif  // __ARM_FEATURE_MEMORY_TAGGING
137   }
138 #endif  // ARCH_CPU_ARM64
139 }
140 
141 // For https://crbug.com/249713
TEST(CPU,BrandAndVendorContainsNoNUL)142 TEST(CPU, BrandAndVendorContainsNoNUL) {
143   base::CPU cpu;
144   EXPECT_FALSE(base::Contains(cpu.cpu_brand(), '\0'));
145   EXPECT_FALSE(base::Contains(cpu.vendor_name(), '\0'));
146 }
147 
148 #if defined(ARCH_CPU_X86_FAMILY)
149 // Tests that we compute the correct CPU family and model based on the vendor
150 // and CPUID signature.
TEST(CPU,X86FamilyAndModel)151 TEST(CPU, X86FamilyAndModel) {
152   base::internal::X86ModelInfo info;
153 
154   // Check with an Intel Skylake signature.
155   info = base::internal::ComputeX86FamilyAndModel("GenuineIntel", 0x000406e3);
156   EXPECT_EQ(info.family, 6);
157   EXPECT_EQ(info.model, 78);
158   EXPECT_EQ(info.ext_family, 0);
159   EXPECT_EQ(info.ext_model, 4);
160 
161   // Check with an Intel Airmont signature.
162   info = base::internal::ComputeX86FamilyAndModel("GenuineIntel", 0x000406c2);
163   EXPECT_EQ(info.family, 6);
164   EXPECT_EQ(info.model, 76);
165   EXPECT_EQ(info.ext_family, 0);
166   EXPECT_EQ(info.ext_model, 4);
167 
168   // Check with an Intel Prescott signature.
169   info = base::internal::ComputeX86FamilyAndModel("GenuineIntel", 0x00000f31);
170   EXPECT_EQ(info.family, 15);
171   EXPECT_EQ(info.model, 3);
172   EXPECT_EQ(info.ext_family, 0);
173   EXPECT_EQ(info.ext_model, 0);
174 
175   // Check with an AMD Excavator signature.
176   info = base::internal::ComputeX86FamilyAndModel("AuthenticAMD", 0x00670f00);
177   EXPECT_EQ(info.family, 21);
178   EXPECT_EQ(info.model, 112);
179   EXPECT_EQ(info.ext_family, 6);
180   EXPECT_EQ(info.ext_model, 7);
181 }
182 #endif  // defined(ARCH_CPU_X86_FAMILY)
183 
184 #if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
TEST(CPUDeathTest,VerifyModifyingCPUInstanceNoAllocationCrashes)185 TEST(CPUDeathTest, VerifyModifyingCPUInstanceNoAllocationCrashes) {
186   const base::CPU& cpu = base::CPU::GetInstanceNoAllocation();
187   uint8_t* const bytes =
188       const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(&cpu));
189 
190   // We try and flip a couple of bits and expect the test to die immediately.
191   // Checks are limited to every 15th byte, otherwise the tests run into
192   // time-outs.
193   for (size_t byte_index = 0; byte_index < sizeof(cpu); byte_index += 15) {
194     const size_t local_bit_index = byte_index % 8;
195     EXPECT_CHECK_DEATH_WITH(bytes[byte_index] ^= (0x01 << local_bit_index), "");
196   }
197 }
198 #endif
199