• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_loop/message_pump_android.h"
6 
7 #include <android/looper.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <jni.h>
11 #include <sys/eventfd.h>
12 #include <sys/timerfd.h>
13 #include <sys/types.h>
14 #include <unistd.h>
15 
16 #include <atomic>
17 #include <map>
18 #include <memory>
19 #include <utility>
20 
21 #include "base/android/input_hint_checker.h"
22 #include "base/android/jni_android.h"
23 #include "base/android/scoped_java_ref.h"
24 #include "base/check.h"
25 #include "base/check_op.h"
26 #include "base/message_loop/io_watcher.h"
27 #include "base/notreached.h"
28 #include "base/numerics/safe_conversions.h"
29 #include "base/run_loop.h"
30 #include "base/task/task_features.h"
31 #include "base/time/time.h"
32 #include "build/build_config.h"
33 
34 using base::android::InputHintChecker;
35 using base::android::InputHintResult;
36 
37 namespace base {
38 
39 namespace {
40 
41 // https://crbug.com/873588. The stack may not be aligned when the ALooper calls
42 // into our code due to the inconsistent ABI on older Android OS versions.
43 //
44 // https://crbug.com/330761384#comment3. Calls from libutils.so into
45 // NonDelayedLooperCallback() and DelayedLooperCallback() confuse aarch64 builds
46 // with orderfile instrumentation causing incorrect value in
47 // __builtin_return_address(0). Disable instrumentation for them. TODO(pasko):
48 // Add these symbols to the orderfile manually or fix the builtin.
49 #if defined(ARCH_CPU_X86)
50 #define NO_INSTRUMENT_STACK_ALIGN \
51   __attribute__((force_align_arg_pointer, no_instrument_function))
52 #else
53 #define NO_INSTRUMENT_STACK_ALIGN __attribute__((no_instrument_function))
54 #endif
55 
NonDelayedLooperCallback(int fd,int events,void * data)56 NO_INSTRUMENT_STACK_ALIGN int NonDelayedLooperCallback(int fd,
57                                                        int events,
58                                                        void* data) {
59   if (events & ALOOPER_EVENT_HANGUP)
60     return 0;
61 
62   DCHECK(events & ALOOPER_EVENT_INPUT);
63   MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
64   pump->OnNonDelayedLooperCallback();
65   return 1;  // continue listening for events
66 }
67 
DelayedLooperCallback(int fd,int events,void * data)68 NO_INSTRUMENT_STACK_ALIGN int DelayedLooperCallback(int fd,
69                                                     int events,
70                                                     void* data) {
71   if (events & ALOOPER_EVENT_HANGUP)
72     return 0;
73 
74   DCHECK(events & ALOOPER_EVENT_INPUT);
75   MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
76   pump->OnDelayedLooperCallback();
77   return 1;  // continue listening for events
78 }
79 
80 // A bit added to the |non_delayed_fd_| to keep it signaled when we yield to
81 // native work below.
82 constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32;
83 
84 std::atomic_bool g_fast_to_sleep = false;
85 
86 // Implements IOWatcher to allow any MessagePumpAndroid thread to watch
87 // arbitrary file descriptors for I/O events.
88 class IOWatcherImpl : public IOWatcher {
89  public:
IOWatcherImpl(ALooper * looper)90   explicit IOWatcherImpl(ALooper* looper) : looper_(looper) {}
91 
~IOWatcherImpl()92   ~IOWatcherImpl() override {
93     for (auto& [fd, watches] : watched_fds_) {
94       ALooper_removeFd(looper_, fd);
95       if (auto read_watch = std::exchange(watches.read_watch, nullptr)) {
96         read_watch->Detach();
97       }
98       if (auto write_watch = std::exchange(watches.write_watch, nullptr)) {
99         write_watch->Detach();
100       }
101     }
102   }
103 
104   // IOWatcher:
WatchFileDescriptorImpl(int fd,FdWatchDuration duration,FdWatchMode mode,IOWatcher::FdWatcher & watcher,const Location & location)105   std::unique_ptr<IOWatcher::FdWatch> WatchFileDescriptorImpl(
106       int fd,
107       FdWatchDuration duration,
108       FdWatchMode mode,
109       IOWatcher::FdWatcher& watcher,
110       const Location& location) override {
111     auto& watches = watched_fds_[fd];
112     auto watch = std::make_unique<FdWatchImpl>(*this, fd, duration, watcher);
113     if (mode == FdWatchMode::kRead || mode == FdWatchMode::kReadWrite) {
114       CHECK(!watches.read_watch) << "Only one watch per FD per condition.";
115       watches.read_watch = watch.get();
116     }
117     if (mode == FdWatchMode::kWrite || mode == FdWatchMode::kReadWrite) {
118       CHECK(!watches.write_watch) << "Only one watch per FD per condition.";
119       watches.write_watch = watch.get();
120     }
121 
122     const int events = (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
123                        (watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
124     ALooper_addFd(looper_, fd, 0, events, &OnFdIoEvent, this);
125     return watch;
126   }
127 
128  private:
129   // Scopes the maximum lifetime of an FD watch started by WatchFileDescriptor.
130   class FdWatchImpl : public FdWatch {
131    public:
FdWatchImpl(IOWatcherImpl & io_watcher,int fd,FdWatchDuration duration,FdWatcher & fd_watcher)132     FdWatchImpl(IOWatcherImpl& io_watcher,
133                 int fd,
134                 FdWatchDuration duration,
135                 FdWatcher& fd_watcher)
136         : fd_(fd),
137           duration_(duration),
138           fd_watcher_(fd_watcher),
139           io_watcher_(&io_watcher) {}
140 
~FdWatchImpl()141     ~FdWatchImpl() override {
142       Stop();
143       if (destruction_flag_) {
144         *destruction_flag_ = true;
145       }
146     }
147 
set_destruction_flag(bool * flag)148     void set_destruction_flag(bool* flag) { destruction_flag_ = flag; }
fd() const149     int fd() const { return fd_; }
fd_watcher() const150     FdWatcher& fd_watcher() const { return *fd_watcher_; }
151 
is_persistent() const152     bool is_persistent() const {
153       return duration_ == FdWatchDuration::kPersistent;
154     }
155 
Detach()156     void Detach() { io_watcher_ = nullptr; }
157 
Stop()158     void Stop() {
159       if (io_watcher_) {
160         std::exchange(io_watcher_, nullptr)->StopWatching(*this);
161       }
162     }
163 
164    private:
165     const int fd_;
166     const FdWatchDuration duration_;
167     raw_ref<FdWatcher> fd_watcher_;
168     raw_ptr<IOWatcherImpl> io_watcher_;
169 
170     // If non-null during destruction, the pointee is set to true. Used to
171     // detect reentrant destruction during dispatch.
172     raw_ptr<bool> destruction_flag_ = nullptr;
173   };
174 
175   enum class EventResult {
176     kStopWatching,
177     kKeepWatching,
178   };
179 
OnFdIoEvent(int fd,int events,void * data)180   static NO_INSTRUMENT_STACK_ALIGN int OnFdIoEvent(int fd,
181                                                    int events,
182                                                    void* data) {
183     switch (static_cast<IOWatcherImpl*>(data)->HandleEvent(fd, events)) {
184       case EventResult::kStopWatching:
185         return 0;
186       case EventResult::kKeepWatching:
187         return 1;
188     }
189   }
190 
HandleEvent(int fd,int events)191   EventResult HandleEvent(int fd, int events) {
192     // NOTE: It is possible for Looper to dispatch one last event for `fd`
193     // *after* we have removed the FD from the Looper - for example if multiple
194     // FDs wake the thread at the same time, and a handler for another FD runs
195     // first and removes the watch for `fd`; this callback will have already
196     // been queued for `fd` and will still run. As such, we must gracefully
197     // tolerate receiving a callback for an FD that is no longer watched.
198     auto it = watched_fds_.find(fd);
199     if (it == watched_fds_.end()) {
200       return EventResult::kStopWatching;
201     }
202 
203     auto& watches = it->second;
204     const bool is_readable =
205         events & (ALOOPER_EVENT_INPUT | ALOOPER_EVENT_HANGUP);
206     const bool is_writable =
207         events & (ALOOPER_EVENT_OUTPUT | ALOOPER_EVENT_HANGUP);
208     auto* read_watch = watches.read_watch.get();
209     auto* write_watch = watches.write_watch.get();
210 
211     // Any event dispatch can stop any number of watches, so we're careful to
212     // set up destruction observation before dispatching anything.
213     bool read_watch_destroyed = false;
214     bool write_watch_destroyed = false;
215     bool fd_removed = false;
216     if (read_watch) {
217       read_watch->set_destruction_flag(&read_watch_destroyed);
218     }
219     if (write_watch && read_watch != write_watch) {
220       write_watch->set_destruction_flag(&write_watch_destroyed);
221     }
222     watches.removed_flag = &fd_removed;
223 
224     bool did_observe_one_shot_read = false;
225     if (read_watch && is_readable) {
226       DCHECK_EQ(read_watch->fd(), fd);
227       did_observe_one_shot_read = !read_watch->is_persistent();
228       read_watch->fd_watcher().OnFdReadable(fd);
229       if (!read_watch_destroyed && did_observe_one_shot_read) {
230         read_watch->Stop();
231       }
232     }
233 
234     // If the read and write watches are the same object, it may have been
235     // destroyed; or it may have been a one-shot watch already consumed by a
236     // read above. In either case we inhibit write dispatch.
237     if (read_watch == write_watch &&
238         (read_watch_destroyed || did_observe_one_shot_read)) {
239       write_watch = nullptr;
240     }
241 
242     if (write_watch && is_writable && !write_watch_destroyed) {
243       DCHECK_EQ(write_watch->fd(), fd);
244       const bool is_persistent = write_watch->is_persistent();
245       write_watch->fd_watcher().OnFdWritable(fd);
246       if (!write_watch_destroyed && !is_persistent) {
247         write_watch->Stop();
248       }
249     }
250 
251     if (read_watch && !read_watch_destroyed) {
252       read_watch->set_destruction_flag(nullptr);
253     }
254     if (write_watch && !write_watch_destroyed) {
255       write_watch->set_destruction_flag(nullptr);
256     }
257 
258     if (fd_removed) {
259       return EventResult::kStopWatching;
260     }
261 
262     watches.removed_flag = nullptr;
263     return EventResult::kKeepWatching;
264   }
265 
StopWatching(FdWatchImpl & watch)266   void StopWatching(FdWatchImpl& watch) {
267     const int fd = watch.fd();
268     auto it = watched_fds_.find(fd);
269     if (it == watched_fds_.end()) {
270       return;
271     }
272 
273     WatchPair& watches = it->second;
274     if (watches.read_watch == &watch) {
275       watches.read_watch = nullptr;
276     }
277     if (watches.write_watch == &watch) {
278       watches.write_watch = nullptr;
279     }
280 
281     const int remaining_events =
282         (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
283         (watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
284     if (remaining_events) {
285       ALooper_addFd(looper_, fd, 0, remaining_events, &OnFdIoEvent, this);
286       return;
287     }
288 
289     ALooper_removeFd(looper_, fd);
290     if (watches.removed_flag) {
291       *watches.removed_flag = true;
292     }
293     watched_fds_.erase(it);
294   }
295 
296  private:
297   const raw_ptr<ALooper> looper_;
298 
299   // The set of active FdWatches. Note that each FD may have up to two active
300   // watches only - one for read and one for write. No two FdWatches can watch
301   // the same FD for the same signal. `read_watch` and `write_watch` may point
302   // to the same object.
303   struct WatchPair {
304     raw_ptr<FdWatchImpl> read_watch = nullptr;
305     raw_ptr<FdWatchImpl> write_watch = nullptr;
306 
307     // If non-null when this WatchPair is removed, the pointee is set to true.
308     // Used to track reentrant map mutations during dispatch.
309     raw_ptr<bool> removed_flag = nullptr;
310   };
311   std::map<int, WatchPair> watched_fds_;
312 };
313 
314 }  // namespace
315 
MessagePumpAndroid()316 MessagePumpAndroid::MessagePumpAndroid()
317     : env_(base::android::AttachCurrentThread()) {
318   // The Android native ALooper uses epoll to poll our file descriptors and wake
319   // us up. We use a simple level-triggered eventfd to signal that non-delayed
320   // work is available, and a timerfd to signal when delayed work is ready to
321   // be run.
322   non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
323   CHECK_NE(non_delayed_fd_, -1);
324   DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);
325 
326   delayed_fd_ = checked_cast<int>(
327       timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC));
328   CHECK_NE(delayed_fd_, -1);
329 
330   looper_ = ALooper_prepare(0);
331   DCHECK(looper_);
332   // Add a reference to the looper so it isn't deleted on us.
333   ALooper_acquire(looper_);
334   ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
335                 &NonDelayedLooperCallback, reinterpret_cast<void*>(this));
336   ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
337                 &DelayedLooperCallback, reinterpret_cast<void*>(this));
338 }
339 
~MessagePumpAndroid()340 MessagePumpAndroid::~MessagePumpAndroid() {
341   DCHECK_EQ(ALooper_forThread(), looper_);
342   io_watcher_.reset();
343   ALooper_removeFd(looper_, non_delayed_fd_);
344   ALooper_removeFd(looper_, delayed_fd_);
345   ALooper_release(looper_);
346   looper_ = nullptr;
347 
348   close(non_delayed_fd_);
349   close(delayed_fd_);
350 }
351 
InitializeFeatures()352 void MessagePumpAndroid::InitializeFeatures() {
353   g_fast_to_sleep = base::FeatureList::IsEnabled(kPumpFastToSleepAndroid);
354 }
355 
OnDelayedLooperCallback()356 void MessagePumpAndroid::OnDelayedLooperCallback() {
357   OnReturnFromLooper();
358   // There may be non-Chromium callbacks on the same ALooper which may have left
359   // a pending exception set, and ALooper does not check for this between
360   // callbacks. Check here, and if there's already an exception, just skip this
361   // iteration without clearing the fd. If the exception ends up being non-fatal
362   // then we'll just get called again on the next polling iteration.
363   if (base::android::HasException(env_))
364     return;
365 
366   // ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback()
367   // resulted in Quit() in the same round.
368   if (ShouldQuit())
369     return;
370 
371   // Clear the fd.
372   uint64_t value;
373   long ret = read(delayed_fd_, &value, sizeof(value));
374 
375   // TODO(mthiesse): Figure out how it's possible to hit EAGAIN here.
376   // According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html
377   // EAGAIN only happens if no timer has expired. Also according to the man page
378   // poll only returns readable when a timer has expired. So this function will
379   // only be called when a timer has expired, but reading reveals no timer has
380   // expired...
381   // Quit() and ScheduleDelayedWork() are the only other functions that touch
382   // the timerfd, and they both run on the same thread as this callback, so
383   // there are no obvious timing or multi-threading related issues.
384   DPCHECK(ret >= 0 || errno == EAGAIN);
385   DoDelayedLooperWork();
386 }
387 
DoDelayedLooperWork()388 void MessagePumpAndroid::DoDelayedLooperWork() {
389   delayed_scheduled_time_.reset();
390 
391   Delegate::NextWorkInfo next_work_info = delegate_->DoWork();
392 
393   if (ShouldQuit())
394     return;
395 
396   if (next_work_info.is_immediate()) {
397     ScheduleWork();
398     return;
399   }
400 
401   delegate_->DoIdleWork();
402   if (!next_work_info.delayed_run_time.is_max())
403     ScheduleDelayedWork(next_work_info);
404 }
405 
OnNonDelayedLooperCallback()406 void MessagePumpAndroid::OnNonDelayedLooperCallback() {
407   OnReturnFromLooper();
408   // There may be non-Chromium callbacks on the same ALooper which may have left
409   // a pending exception set, and ALooper does not check for this between
410   // callbacks. Check here, and if there's already an exception, just skip this
411   // iteration without clearing the fd. If the exception ends up being non-fatal
412   // then we'll just get called again on the next polling iteration.
413   if (base::android::HasException(env_))
414     return;
415 
416   // ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback()
417   // resulted in Quit() in the same round.
418   if (ShouldQuit())
419     return;
420 
421   // We're about to process all the work requested by ScheduleWork().
422   // MessagePump users are expected to do their best not to invoke
423   // ScheduleWork() again before DoWork() returns a non-immediate
424   // NextWorkInfo below. Hence, capturing the file descriptor's value now and
425   // resetting its contents to 0 should be okay. The value currently stored
426   // should be greater than 0 since work having been scheduled is the reason
427   // we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html
428   uint64_t value = 0;
429   long ret = read(non_delayed_fd_, &value, sizeof(value));
430   DPCHECK(ret >= 0);
431   DCHECK_GT(value, 0U);
432   bool do_idle_work = value == kTryNativeWorkBeforeIdleBit;
433   DoNonDelayedLooperWork(do_idle_work);
434 }
435 
DoNonDelayedLooperWork(bool do_idle_work)436 void MessagePumpAndroid::DoNonDelayedLooperWork(bool do_idle_work) {
437   // Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no
438   // additional ScheduleWork() since yielding to native) as delayed tasks might
439   // have come in and we need to re-sample |next_work_info|.
440 
441   // Runs all application tasks scheduled to run.
442   Delegate::NextWorkInfo next_work_info;
443   do {
444     if (ShouldQuit())
445       return;
446 
447     next_work_info = delegate_->DoWork();
448 
449     // If we are prioritizing native, and the next work would normally run
450     // immediately, skip the next work and let the native work items have a
451     // chance to run. This is useful when user input is waiting for native to
452     // have a chance to run.
453     if (next_work_info.is_immediate() && next_work_info.yield_to_native) {
454       ScheduleWork();
455       return;
456     }
457 
458     // As an optimization, yield to the Looper when input events are waiting to
459     // be handled. In some cases input events can remain undetected. Such "input
460     // hint false negatives" happen, for example, during initialization, in
461     // multi-window cases, or when a previous value is cached to throttle
462     // polling the input channel.
463     if (is_type_ui_ && next_work_info.is_immediate() &&
464         InputHintChecker::HasInput()) {
465       InputHintChecker::GetInstance().set_is_after_input_yield(true);
466       ScheduleWork();
467       return;
468     }
469   } while (next_work_info.is_immediate());
470 
471   // Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't
472   // allow nesting so needing to resume in an outer loop is not an issue
473   // either).
474   if (ShouldQuit())
475     return;
476 
477   // Under the fast to sleep feature, `do_idle_work` is ignored, and the pump
478   // will always "sleep" after finishing all its work items.
479   if (!g_fast_to_sleep) {
480     // Before declaring this loop idle, yield to native work items and arrange
481     // to be called again (unless we're already in that second call).
482     if (!do_idle_work) {
483       ScheduleWorkInternal(/*do_idle_work=*/true);
484       return;
485     }
486 
487     // We yielded to native work items already and they didn't generate a
488     // ScheduleWork() request so we can declare idleness. It's possible for a
489     // ScheduleWork() request to come in racily while this method unwinds, this
490     // is fine and will merely result in it being re-invoked shortly after it
491     // returns.
492     // TODO(scheduler-dev): this doesn't account for tasks that don't ever call
493     // SchedulerWork() but still keep the system non-idle (e.g., the Java
494     // Handler API). It would be better to add an API to query the presence of
495     // native tasks instead of relying on yielding once +
496     // kTryNativeWorkBeforeIdleBit.
497     DCHECK(do_idle_work);
498   }
499 
500   if (ShouldQuit()) {
501     return;
502   }
503 
504   // Do the idle work.
505   //
506   // At this point, the Java Looper might not be idle. It is possible to skip
507   // idle work if !MessageQueue.isIdle(), but this check is not very accurate
508   // because the MessageQueue does not know about the additional tasks
509   // potentially waiting in the Looper.
510   //
511   // Note that this won't cause us to fail to run java tasks using QuitWhenIdle,
512   // as the JavaHandlerThread will finish running all currently scheduled tasks
513   // before it quits. Also note that we can't just add an idle callback to the
514   // java looper, as that will fire even if application tasks are still queued
515   // up.
516   delegate_->DoIdleWork();
517   if (!next_work_info.delayed_run_time.is_max()) {
518     ScheduleDelayedWork(next_work_info);
519   }
520 }
521 
Run(Delegate * delegate)522 void MessagePumpAndroid::Run(Delegate* delegate) {
523   NOTREACHED() << "Unexpected call to Run()";
524 }
525 
Attach(Delegate * delegate)526 void MessagePumpAndroid::Attach(Delegate* delegate) {
527   DCHECK(!quit_);
528 
529   // Since the Looper is controlled by the UI thread or JavaHandlerThread, we
530   // can't use Run() like we do on other platforms or we would prevent Java
531   // tasks from running. Instead we create and initialize a run loop here, then
532   // return control back to the Looper.
533 
534   SetDelegate(delegate);
535   run_loop_ = std::make_unique<RunLoop>();
536   // Since the RunLoop was just created above, BeforeRun should be guaranteed to
537   // return true (it only returns false if the RunLoop has been Quit already).
538   CHECK(run_loop_->BeforeRun());
539 }
540 
Quit()541 void MessagePumpAndroid::Quit() {
542   if (quit_)
543     return;
544 
545   quit_ = true;
546 
547   int64_t value;
548   // Clear any pending timer.
549   read(delayed_fd_, &value, sizeof(value));
550   // Clear the eventfd.
551   read(non_delayed_fd_, &value, sizeof(value));
552 
553   if (run_loop_) {
554     run_loop_->AfterRun();
555     run_loop_ = nullptr;
556   }
557   if (on_quit_callback_) {
558     std::move(on_quit_callback_).Run();
559   }
560 }
561 
ScheduleWork()562 void MessagePumpAndroid::ScheduleWork() {
563   ScheduleWorkInternal(/*do_idle_work=*/false);
564 }
565 
ScheduleWorkInternal(bool do_idle_work)566 void MessagePumpAndroid::ScheduleWorkInternal(bool do_idle_work) {
567   // Write (add) |value| to the eventfd. This tells the Looper to wake up and
568   // call our callback, allowing us to run tasks. This also allows us to detect,
569   // when we clear the fd, whether additional work was scheduled after we
570   // finished performing work, but before we cleared the fd, as we'll read back
571   // >=2 instead of 1 in that case. See the eventfd man pages
572   // (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
573   // the read and write APIs for this file descriptor work, specifically without
574   // EFD_SEMAPHORE.
575   // Note: Calls with |do_idle_work| set to true may race with potential calls
576   // where the parameter is false. This is fine as write() is adding |value|,
577   // not overwriting the existing value, and as such racing calls would merely
578   // have their values added together. Since idle work is only executed when the
579   // value read equals kTryNativeWorkBeforeIdleBit, a race would prevent idle
580   // work from being run and trigger another call to this method with
581   // |do_idle_work| set to true.
582   uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1;
583   long ret = write(non_delayed_fd_, &value, sizeof(value));
584   DPCHECK(ret >= 0);
585 }
586 
OnReturnFromLooper()587 void MessagePumpAndroid::OnReturnFromLooper() {
588   if (!is_type_ui_) {
589     return;
590   }
591   auto& checker = InputHintChecker::GetInstance();
592   if (checker.is_after_input_yield()) {
593     InputHintChecker::RecordInputHintResult(InputHintResult::kBackToNative);
594   }
595   checker.set_is_after_input_yield(false);
596 }
597 
ScheduleDelayedWork(const Delegate::NextWorkInfo & next_work_info)598 void MessagePumpAndroid::ScheduleDelayedWork(
599     const Delegate::NextWorkInfo& next_work_info) {
600   if (ShouldQuit())
601     return;
602 
603   if (delayed_scheduled_time_ &&
604       *delayed_scheduled_time_ == next_work_info.delayed_run_time) {
605     return;
606   }
607 
608   DCHECK(!next_work_info.is_immediate());
609   delayed_scheduled_time_ = next_work_info.delayed_run_time;
610   int64_t nanos =
611       next_work_info.delayed_run_time.since_origin().InNanoseconds();
612   struct itimerspec ts;
613   ts.it_interval.tv_sec = 0;  // Don't repeat.
614   ts.it_interval.tv_nsec = 0;
615   ts.it_value.tv_sec =
616       static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond);
617   ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;
618 
619   long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
620   DPCHECK(ret >= 0);
621 }
622 
GetIOWatcher()623 IOWatcher* MessagePumpAndroid::GetIOWatcher() {
624   if (!io_watcher_) {
625     io_watcher_ = std::make_unique<IOWatcherImpl>(looper_);
626   }
627   return io_watcher_.get();
628 }
629 
QuitWhenIdle(base::OnceClosure callback)630 void MessagePumpAndroid::QuitWhenIdle(base::OnceClosure callback) {
631   DCHECK(!on_quit_callback_);
632   DCHECK(run_loop_);
633   on_quit_callback_ = std::move(callback);
634   run_loop_->QuitWhenIdle();
635   // Pump the loop in case we're already idle.
636   ScheduleWork();
637 }
638 
SetDelegate(Delegate * delegate)639 MessagePump::Delegate* MessagePumpAndroid::SetDelegate(Delegate* delegate) {
640   return std::exchange(delegate_, delegate);
641 }
642 
SetQuit(bool quit)643 bool MessagePumpAndroid::SetQuit(bool quit) {
644   return std::exchange(quit_, quit);
645 }
646 
647 }  // namespace base
648