• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/profiler/stack_copier_signal.h"
6 
7 #include <errno.h>
8 #include <linux/futex.h>
9 #include <signal.h>
10 #include <stdint.h>
11 #include <sys/ucontext.h>
12 #include <syscall.h>
13 
14 #include <atomic>
15 #include <cstring>
16 #include <optional>
17 
18 #include "base/check.h"
19 #include "base/memory/raw_ptr.h"
20 #include "base/memory/raw_ptr_exclusion.h"
21 #include "base/notreached.h"
22 #include "base/profiler/register_context.h"
23 #include "base/profiler/stack_buffer.h"
24 #include "base/profiler/suspendable_thread_delegate.h"
25 #include "base/time/time_override.h"
26 #include "base/trace_event/base_tracing.h"
27 #include "build/build_config.h"
28 
29 namespace base {
30 
31 namespace {
32 
33 // Waitable event implementation with futex and without DCHECK(s), since signal
34 // handlers cannot allocate memory or use pthread api.
35 class AsyncSafeWaitableEvent {
36  public:
AsyncSafeWaitableEvent()37   AsyncSafeWaitableEvent() {
38     futex_.store(kNotSignaled, std::memory_order_release);
39   }
40   ~AsyncSafeWaitableEvent() = default;
41   AsyncSafeWaitableEvent(const AsyncSafeWaitableEvent&) = delete;
42   AsyncSafeWaitableEvent& operator=(const AsyncSafeWaitableEvent&) = delete;
43 
Wait()44   bool Wait() {
45     // futex() can wake up spuriously if this memory address was previously used
46     // for a pthread mutex or we get a signal. So, also check the condition.
47     while (true) {
48       long res =
49           syscall(SYS_futex, futex_ptr(), FUTEX_WAIT | FUTEX_PRIVATE_FLAG,
50                   kNotSignaled, nullptr, nullptr, 0);
51       int futex_errno = errno;
52       if (futex_.load(std::memory_order_acquire) != kNotSignaled) {
53         return true;
54       }
55       if (res != 0) {
56         // EINTR indicates the wait was interrupted by a signal; retry the wait.
57         // EAGAIN happens if this thread sees the FUTEX_WAKE before it sees the
58         // atomic_int store in Signal. This can't happen in an unoptimized
59         // single total modification order threading model; however, since we
60         // using release-acquire semantics on the atomic_uint32_t, it might be.
61         // (The futex docs aren't clear what memory/threading model they are
62         // using.)
63         if (futex_errno != EINTR && futex_errno != EAGAIN) {
64           return false;
65         }
66       }
67     }
68   }
69 
Signal()70   void Signal() {
71     futex_.store(kSignaled, std::memory_order_release);
72     syscall(SYS_futex, futex_ptr(), FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1, nullptr,
73             nullptr, 0);
74   }
75 
76  private:
77   // The possible values in the futex / atomic_int.
78   static constexpr uint32_t kNotSignaled = 0;
79   static constexpr uint32_t kSignaled = 1;
80 
81   // Provides a pointer to the atomic's storage. std::atomic_uint32_t has
82   // standard layout so its address can be used for the pointer as long as it
83   // only contains the uint32_t.
futex_ptr()84   uint32_t* futex_ptr() {
85     // futex documents state the futex is 32 bits regardless of the platform
86     // size.
87     static_assert(sizeof(futex_) == sizeof(uint32_t),
88                   "Expected std::atomic_uint32_t to be the same size as "
89                   "uint32_t");
90     return reinterpret_cast<uint32_t*>(&futex_);
91   }
92 
93   std::atomic_uint32_t futex_{kNotSignaled};
94 };
95 
96 // Scoped signal event that calls Signal on the AsyncSafeWaitableEvent at
97 // destructor.
98 class ScopedEventSignaller {
99  public:
ScopedEventSignaller(AsyncSafeWaitableEvent * event)100   ScopedEventSignaller(AsyncSafeWaitableEvent* event) : event_(event) {}
~ScopedEventSignaller()101   ~ScopedEventSignaller() { event_->Signal(); }
102 
103  private:
104   // RAW_PTR_EXCLUSION: raw_ptr<> is not safe within a signal handler.
105   RAW_PTR_EXCLUSION AsyncSafeWaitableEvent* event_;
106 };
107 
108 // Struct to store the arguments to the signal handler.
109 struct HandlerParams {
110   uintptr_t stack_base_address;
111 
112   // RAW_PTR_EXCLUSION: raw_ptr<> is not safe within a signal handler,
113   // as the target thread could be in the middle of an allocation and
114   // PartitionAlloc's external invariants might be violated. So all
115   // the pointers below are C pointers.
116 
117   // The event is signalled when signal handler is done executing.
118   RAW_PTR_EXCLUSION AsyncSafeWaitableEvent* event;
119 
120   // Return values:
121 
122   // Successfully copied the stack segment.
123   RAW_PTR_EXCLUSION bool* success;
124 
125   // The thread context of the leaf function.
126   RAW_PTR_EXCLUSION mcontext_t* context;
127 
128   // Buffer to copy the stack segment.
129   RAW_PTR_EXCLUSION StackBuffer* stack_buffer;
130   RAW_PTR_EXCLUSION const uint8_t** stack_copy_bottom;
131 
132   // The timestamp when the stack was copied.
133   RAW_PTR_EXCLUSION std::optional<TimeTicks>* maybe_timestamp;
134 
135   // The delegate provided to the StackCopier.
136   RAW_PTR_EXCLUSION StackCopier::Delegate* stack_copier_delegate;
137 };
138 
139 // Pointer to the parameters to be "passed" to the CopyStackSignalHandler() from
140 // the sampling thread to the sampled (stopped) thread. This value is set just
141 // before sending the signal to the thread and reset when the handler is done.
142 std::atomic<HandlerParams*> g_handler_params;
143 
144 // CopyStackSignalHandler is invoked on the stopped thread and records the
145 // thread's stack and register context at the time the signal was received. This
146 // function may only call reentrant code.
CopyStackSignalHandler(int n,siginfo_t * siginfo,void * sigcontext)147 void CopyStackSignalHandler(int n, siginfo_t* siginfo, void* sigcontext) {
148   HandlerParams* params = g_handler_params.load(std::memory_order_acquire);
149 
150   // MaybeTimeTicksNowIgnoringOverride() is implemented in terms of
151   // clock_gettime on Linux, which is signal safe per the signal-safety(7) man
152   // page, but is not garanteed to succeed, in which case std::nullopt is
153   // returned. TimeTicks::Now() can't be used because it expects clock_gettime
154   // to always succeed and is thus not signal-safe.
155   *params->maybe_timestamp = subtle::MaybeTimeTicksNowIgnoringOverride();
156 
157   ScopedEventSignaller e(params->event);
158   *params->success = false;
159 
160   const ucontext_t* ucontext = static_cast<ucontext_t*>(sigcontext);
161   std::memcpy(params->context, &ucontext->uc_mcontext, sizeof(mcontext_t));
162 
163   const uintptr_t bottom = RegisterContextStackPointer(params->context);
164   const uintptr_t top = params->stack_base_address;
165   if ((top - bottom) > params->stack_buffer->size()) {
166     // The stack exceeds the size of the allocated buffer. The buffer is sized
167     // such that this shouldn't happen under typical execution so we can safely
168     // punt in this situation.
169     return;
170   }
171 
172   params->stack_copier_delegate->OnStackCopy();
173 
174   *params->stack_copy_bottom =
175       StackCopierSignal::CopyStackContentsAndRewritePointers(
176           reinterpret_cast<uint8_t*>(bottom), reinterpret_cast<uintptr_t*>(top),
177           StackBuffer::kPlatformStackAlignment, params->stack_buffer->buffer());
178 
179   *params->success = true;
180 }
181 
182 // Sets the global handler params for the signal handler function.
183 class ScopedSetSignalHandlerParams {
184  public:
ScopedSetSignalHandlerParams(HandlerParams * params)185   ScopedSetSignalHandlerParams(HandlerParams* params) {
186     g_handler_params.store(params, std::memory_order_release);
187   }
188 
~ScopedSetSignalHandlerParams()189   ~ScopedSetSignalHandlerParams() {
190     g_handler_params.store(nullptr, std::memory_order_release);
191   }
192 };
193 
194 class ScopedSigaction {
195  public:
ScopedSigaction(int signal,struct sigaction * action,struct sigaction * original_action)196   ScopedSigaction(int signal,
197                   struct sigaction* action,
198                   struct sigaction* original_action)
199       : signal_(signal),
200         action_(action),
201         original_action_(original_action),
202         succeeded_(sigaction(signal, action, original_action) == 0) {}
203 
succeeded() const204   bool succeeded() const { return succeeded_; }
205 
~ScopedSigaction()206   ~ScopedSigaction() {
207     if (!succeeded_)
208       return;
209 
210     bool reset_succeeded = sigaction(signal_, original_action_, action_) == 0;
211     DCHECK(reset_succeeded);
212   }
213 
214  private:
215   const int signal_;
216   const raw_ptr<struct sigaction> action_;
217   const raw_ptr<struct sigaction> original_action_;
218   const bool succeeded_;
219 };
220 
221 }  // namespace
222 
StackCopierSignal(std::unique_ptr<ThreadDelegate> thread_delegate)223 StackCopierSignal::StackCopierSignal(
224     std::unique_ptr<ThreadDelegate> thread_delegate)
225     : thread_delegate_(std::move(thread_delegate)) {}
226 
227 StackCopierSignal::~StackCopierSignal() = default;
228 
CopyStack(StackBuffer * stack_buffer,uintptr_t * stack_top,TimeTicks * timestamp,RegisterContext * thread_context,Delegate * delegate)229 bool StackCopierSignal::CopyStack(StackBuffer* stack_buffer,
230                                   uintptr_t* stack_top,
231                                   TimeTicks* timestamp,
232                                   RegisterContext* thread_context,
233                                   Delegate* delegate) {
234   AsyncSafeWaitableEvent wait_event;
235   bool copied = false;
236   const uint8_t* stack_copy_bottom = nullptr;
237   const uintptr_t stack_base_address = thread_delegate_->GetStackBaseAddress();
238   std::optional<TimeTicks> maybe_timestamp;
239   HandlerParams params = {stack_base_address, &wait_event,  &copied,
240                           thread_context,     stack_buffer, &stack_copy_bottom,
241                           &maybe_timestamp,   delegate};
242   {
243     ScopedSetSignalHandlerParams scoped_handler_params(&params);
244 
245     // Set the signal handler for the thread to the stack copy function.
246     struct sigaction action;
247     struct sigaction original_action;
248     memset(&action, 0, sizeof(action));
249     action.sa_sigaction = CopyStackSignalHandler;
250     action.sa_flags = SA_RESTART | SA_SIGINFO;
251     sigemptyset(&action.sa_mask);
252     TRACE_EVENT_BEGIN0(TRACE_DISABLED_BY_DEFAULT("cpu_profiler.debug"),
253                        "StackCopierSignal copy stack");
254     // SIGURG is chosen here because we observe no crashes with this signal and
255     // neither Chrome or the AOSP sets up a special handler for this signal.
256     ScopedSigaction scoped_sigaction(SIGURG, &action, &original_action);
257     if (!scoped_sigaction.succeeded())
258       return false;
259 
260     if (syscall(SYS_tgkill, getpid(), thread_delegate_->GetThreadId(),
261                 SIGURG) != 0) {
262       NOTREACHED();
263     }
264     bool finished_waiting = wait_event.Wait();
265     TRACE_EVENT_END0(TRACE_DISABLED_BY_DEFAULT("cpu_profiler.debug"),
266                      "StackCopierSignal copy stack");
267     CHECK(finished_waiting);
268     // Ideally, an accurate timestamp is captured while the sampled thread is
269     // paused. In rare cases, this may fail, in which case we resort to
270     // capturing an delayed timestamp here instead.
271     if (maybe_timestamp.has_value())
272       *timestamp = maybe_timestamp.value();
273     else {
274       TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cpu_profiler.debug"),
275                    "Fallback on TimeTicks::Now()");
276       *timestamp = TimeTicks::Now();
277     }
278   }
279 
280   const uintptr_t bottom = RegisterContextStackPointer(params.context);
281   for (uintptr_t* reg :
282        thread_delegate_->GetRegistersToRewrite(thread_context)) {
283     *reg = StackCopierSignal::RewritePointerIfInOriginalStack(
284         reinterpret_cast<uint8_t*>(bottom),
285         reinterpret_cast<uintptr_t*>(stack_base_address), stack_copy_bottom,
286         *reg);
287   }
288 
289   *stack_top = reinterpret_cast<uintptr_t>(stack_copy_bottom) +
290                (stack_base_address - bottom);
291 
292   return copied;
293 }
294 
GetRegistersToRewrite(RegisterContext * thread_context)295 std::vector<uintptr_t*> StackCopierSignal::GetRegistersToRewrite(
296     RegisterContext* thread_context) {
297   return thread_delegate_->GetRegistersToRewrite(thread_context);
298 }
299 
300 }  // namespace base
301