• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/rand_util.h"
6 
7 #include <limits.h>
8 #include <math.h>
9 #include <stdint.h>
10 
11 #include <algorithm>
12 #include <atomic>
13 #include <limits>
14 
15 #include "base/check_op.h"
16 #include "base/time/time.h"
17 
18 namespace base {
19 
20 namespace {
21 
22 // A MetricSubsampler instance is not thread-safe. However, the global
23 // sampling state may be read concurrently with writing it via testing
24 // scopers, hence the need to use atomics. All operations use
25 // memory_order_relaxed because there are no dependent memory accesses.
26 std::atomic<bool> g_subsampling_always_sample = false;
27 std::atomic<bool> g_subsampling_never_sample = false;
28 
29 }  // namespace
30 
RandUint64()31 uint64_t RandUint64() {
32   uint64_t number;
33   RandBytes(base::byte_span_from_ref(number));
34   return number;
35 }
36 
RandInt(int min,int max)37 int RandInt(int min, int max) {
38   DCHECK_LE(min, max);
39 
40   uint64_t range = static_cast<uint64_t>(max) - static_cast<uint64_t>(min) + 1;
41   // |range| is at most UINT_MAX + 1, so the result of RandGenerator(range)
42   // is at most UINT_MAX.  Hence it's safe to cast it from uint64_t to int64_t.
43   int result =
44       static_cast<int>(min + static_cast<int64_t>(base::RandGenerator(range)));
45   DCHECK_GE(result, min);
46   DCHECK_LE(result, max);
47   return result;
48 }
49 
RandDouble()50 double RandDouble() {
51   return BitsToOpenEndedUnitInterval(base::RandUint64());
52 }
53 
RandFloat()54 float RandFloat() {
55   return BitsToOpenEndedUnitIntervalF(base::RandUint64());
56 }
57 
RandTimeDelta(TimeDelta start,TimeDelta limit)58 TimeDelta RandTimeDelta(TimeDelta start, TimeDelta limit) {
59   // We must have a finite, non-empty, non-reversed interval.
60   CHECK_LT(start, limit);
61   CHECK(!start.is_min());
62   CHECK(!limit.is_max());
63 
64   const int64_t range = (limit - start).InMicroseconds();
65   // Because of the `CHECK_LT()` above, range > 0, so this cast is safe.
66   const uint64_t delta_us = base::RandGenerator(static_cast<uint64_t>(range));
67   // ...and because `range` fit in an `int64_t`, so will `delta_us`.
68   return start + Microseconds(static_cast<int64_t>(delta_us));
69 }
70 
RandTimeDeltaUpTo(TimeDelta limit)71 TimeDelta RandTimeDeltaUpTo(TimeDelta limit) {
72   return RandTimeDelta(TimeDelta(), limit);
73 }
74 
BitsToOpenEndedUnitInterval(uint64_t bits)75 double BitsToOpenEndedUnitInterval(uint64_t bits) {
76   // We try to get maximum precision by masking out as many bits as will fit
77   // in the target type's mantissa, and raising it to an appropriate power to
78   // produce output in the range [0, 1).  For IEEE 754 doubles, the mantissa
79   // is expected to accommodate 53 bits (including the implied bit).
80   static_assert(std::numeric_limits<double>::radix == 2,
81                 "otherwise use scalbn");
82   constexpr int kBits = std::numeric_limits<double>::digits;
83   return ldexp(bits & ((UINT64_C(1) << kBits) - 1u), -kBits);
84 }
85 
BitsToOpenEndedUnitIntervalF(uint64_t bits)86 float BitsToOpenEndedUnitIntervalF(uint64_t bits) {
87   // We try to get maximum precision by masking out as many bits as will fit
88   // in the target type's mantissa, and raising it to an appropriate power to
89   // produce output in the range [0, 1).  For IEEE 754 floats, the mantissa is
90   // expected to accommodate 12 bits (including the implied bit).
91   static_assert(std::numeric_limits<float>::radix == 2, "otherwise use scalbn");
92   constexpr int kBits = std::numeric_limits<float>::digits;
93   return ldexpf(bits & ((UINT64_C(1) << kBits) - 1u), -kBits);
94 }
95 
RandGenerator(uint64_t range)96 uint64_t RandGenerator(uint64_t range) {
97   DCHECK_GT(range, 0u);
98   // We must discard random results above this number, as they would
99   // make the random generator non-uniform (consider e.g. if
100   // MAX_UINT64 was 7 and |range| was 5, then a result of 1 would be twice
101   // as likely as a result of 3 or 4).
102   uint64_t max_acceptable_value =
103       (std::numeric_limits<uint64_t>::max() / range) * range - 1;
104 
105   uint64_t value;
106   do {
107     value = base::RandUint64();
108   } while (value > max_acceptable_value);
109 
110   return value % range;
111 }
112 
RandBytesAsString(size_t length)113 std::string RandBytesAsString(size_t length) {
114   std::string result(length, '\0');
115   RandBytes(as_writable_byte_span(result));
116   return result;
117 }
118 
RandBytesAsVector(size_t length)119 std::vector<uint8_t> RandBytesAsVector(size_t length) {
120   std::vector<uint8_t> result(length);
121   RandBytes(result);
122   return result;
123 }
124 
InsecureRandomGenerator()125 InsecureRandomGenerator::InsecureRandomGenerator() {
126   a_ = base::RandUint64();
127   b_ = base::RandUint64();
128 }
129 
ReseedForTesting(uint64_t seed)130 void InsecureRandomGenerator::ReseedForTesting(uint64_t seed) {
131   a_ = seed;
132   b_ = seed;
133 }
134 
RandUint64()135 uint64_t InsecureRandomGenerator::RandUint64() {
136   // Using XorShift128+, which is simple and widely used. See
137   // https://en.wikipedia.org/wiki/Xorshift#xorshift+ for details.
138   uint64_t t = a_;
139   const uint64_t s = b_;
140 
141   a_ = s;
142   t ^= t << 23;
143   t ^= t >> 17;
144   t ^= s ^ (s >> 26);
145   b_ = t;
146 
147   return t + s;
148 }
149 
RandUint32()150 uint32_t InsecureRandomGenerator::RandUint32() {
151   // The generator usually returns an uint64_t, truncate it.
152   //
153   // It is noted in this paper (https://arxiv.org/abs/1810.05313) that the
154   // lowest 32 bits fail some statistical tests from the Big Crush
155   // suite. Use the higher ones instead.
156   return this->RandUint64() >> 32;
157 }
158 
RandDouble()159 double InsecureRandomGenerator::RandDouble() {
160   uint64_t x = RandUint64();
161   // From https://vigna.di.unimi.it/xorshift/.
162   // 53 bits of mantissa, hence the "hexadecimal exponent" 1p-53.
163   return (x >> 11) * 0x1.0p-53;
164 }
165 
166 MetricsSubSampler::MetricsSubSampler() = default;
ShouldSample(double probability)167 bool MetricsSubSampler::ShouldSample(double probability) {
168   if (g_subsampling_always_sample.load(std::memory_order_relaxed)) {
169     return true;
170   }
171   if (g_subsampling_never_sample.load(std::memory_order_relaxed)) {
172     return false;
173   }
174 
175   return generator_.RandDouble() < probability;
176 }
177 
178 MetricsSubSampler::ScopedAlwaysSampleForTesting::
ScopedAlwaysSampleForTesting()179     ScopedAlwaysSampleForTesting() {
180   DCHECK(!g_subsampling_always_sample.load(std::memory_order_relaxed));
181   DCHECK(!g_subsampling_never_sample.load(std::memory_order_relaxed));
182   g_subsampling_always_sample.store(true, std::memory_order_relaxed);
183 }
184 
185 MetricsSubSampler::ScopedAlwaysSampleForTesting::
~ScopedAlwaysSampleForTesting()186     ~ScopedAlwaysSampleForTesting() {
187   DCHECK(g_subsampling_always_sample.load(std::memory_order_relaxed));
188   DCHECK(!g_subsampling_never_sample.load(std::memory_order_relaxed));
189   g_subsampling_always_sample.store(false, std::memory_order_relaxed);
190 }
191 
ScopedNeverSampleForTesting()192 MetricsSubSampler::ScopedNeverSampleForTesting::ScopedNeverSampleForTesting() {
193   DCHECK(!g_subsampling_always_sample.load(std::memory_order_relaxed));
194   DCHECK(!g_subsampling_never_sample.load(std::memory_order_relaxed));
195   g_subsampling_never_sample.store(true, std::memory_order_relaxed);
196 }
197 
~ScopedNeverSampleForTesting()198 MetricsSubSampler::ScopedNeverSampleForTesting::~ScopedNeverSampleForTesting() {
199   DCHECK(!g_subsampling_always_sample);
200   DCHECK(g_subsampling_never_sample);
201   g_subsampling_never_sample.store(false, std::memory_order_relaxed);
202 }
203 
204 }  // namespace base
205