1 // Copyright 2014 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifdef UNSAFE_BUFFERS_BUILD
6 // TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
7 #pragma allow_unsafe_buffers
8 #endif
9
10 #include "base/threading/thread_local_storage.h"
11
12 #include <algorithm>
13 #include <atomic>
14
15 #include "base/check_op.h"
16 #include "base/compiler_specific.h"
17 #include "base/memory/raw_ptr_exclusion.h"
18 #include "base/notreached.h"
19 #include "base/synchronization/lock.h"
20 #include "build/build_config.h"
21
22 #if BUILDFLAG(IS_MAC) && defined(ARCH_CPU_X86_64)
23 #include <pthread.h>
24 #include <type_traits>
25 #endif
26
27 using base::internal::PlatformThreadLocalStorage;
28
29 // Chrome Thread Local Storage (TLS)
30 //
31 // This TLS system allows Chrome to use a single OS level TLS slot process-wide,
32 // and allows us to control the slot limits instead of being at the mercy of the
33 // platform. To do this, Chrome TLS replicates an array commonly found in the OS
34 // thread metadata.
35 //
36 // Overview:
37 //
38 // OS TLS Slots Per-Thread Per-Process Global
39 // ...
40 // [] Chrome TLS Array Chrome TLS Metadata
41 // [] ----------> [][][][][ ][][][][] [][][][][ ][][][][]
42 // [] | |
43 // ... V V
44 // Metadata Version Slot Information
45 // Your Data!
46 //
47 // Using a single OS TLS slot, Chrome TLS allocates an array on demand for the
48 // lifetime of each thread that requests Chrome TLS data. Each per-thread TLS
49 // array matches the length of the per-process global metadata array.
50 //
51 // A per-process global TLS metadata array tracks information about each item in
52 // the per-thread array:
53 // * Status: Tracks if the slot is allocated or free to assign.
54 // * Destructor: An optional destructor to call on thread destruction for that
55 // specific slot.
56 // * Version: Tracks the current version of the TLS slot. Each TLS slot
57 // allocation is associated with a unique version number.
58 //
59 // Most OS TLS APIs guarantee that a newly allocated TLS slot is
60 // initialized to 0 for all threads. The Chrome TLS system provides
61 // this guarantee by tracking the version for each TLS slot here
62 // on each per-thread Chrome TLS array entry. Threads that access
63 // a slot with a mismatched version will receive 0 as their value.
64 // The metadata version is incremented when the client frees a
65 // slot. The per-thread metadata version is updated when a client
66 // writes to the slot. This scheme allows for constant time
67 // invalidation and avoids the need to iterate through each Chrome
68 // TLS array to mark the slot as zero.
69 //
70 // Just like an OS TLS API, clients of the Chrome TLS are responsible for
71 // managing any necessary lifetime of the data in their slots. The only
72 // convenience provided is automatic destruction when a thread ends. If a client
73 // frees a slot, that client is responsible for destroying the data in the slot.
74
75 namespace {
76 // In order to make TLS destructors work, we need to keep around a function
77 // pointer to the destructor for each slot. We keep this array of pointers in a
78 // global (static) array.
79 // We use the single OS-level TLS slot (giving us one pointer per thread) to
80 // hold a pointer to a per-thread array (table) of slots that we allocate to
81 // Chromium consumers.
82
83 // g_native_tls_key is the one native TLS that we use. It stores our table.
84
85 std::atomic<PlatformThreadLocalStorage::TLSKey> g_native_tls_key{
86 PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES};
87
88 // The OS TLS slot has the following states. The TLS slot's lower 2 bits contain
89 // the state, the upper bits the TlsVectorEntry*.
90 // * kUninitialized: Any call to Slot::Get()/Set() will create the base
91 // per-thread TLS state. kUninitialized must be null.
92 // * kInUse: value has been created and is in use.
93 // * kDestroying: Set when the thread is exiting prior to deleting any of the
94 // values stored in the TlsVectorEntry*. This state is necessary so that
95 // sequence/task checks won't be done while in the process of deleting the
96 // tls entries (see comments in SequenceCheckerImpl for more details).
97 // * kDestroyed: All of the values in the vector have been deallocated and
98 // the TlsVectorEntry has been deleted.
99 //
100 // Final States:
101 // * Windows: kDestroyed. Windows does not iterate through the OS TLS to clean
102 // up the values.
103 // * POSIX: kUninitialized. POSIX iterates through TLS until all slots contain
104 // nullptr.
105 //
106 // More details on this design:
107 // We need some type of thread-local state to indicate that the TLS system has
108 // been destroyed. To do so, we leverage the multi-pass nature of destruction
109 // of pthread_key.
110 //
111 // a) After destruction of TLS system, we set the pthread_key to a sentinel
112 // kDestroyed.
113 // b) All calls to Slot::Get() DCHECK that the state is not kDestroyed, and
114 // any system which might potentially invoke Slot::Get() after destruction
115 // of TLS must check ThreadLocalStorage::ThreadIsBeingDestroyed().
116 // c) After a full pass of the pthread_keys, on the next invocation of
117 // ConstructTlsVector(), we'll then set the key to nullptr.
118 // d) At this stage, the TLS system is back in its uninitialized state.
119 // e) If in the second pass of destruction of pthread_keys something were to
120 // re-initialize TLS [this should never happen! Since the only code which
121 // uses Chrome TLS is Chrome controlled, we should really be striving for
122 // single-pass destruction], then TLS will be re-initialized and then go
123 // through the 2-pass destruction system again. Everything should just
124 // work (TM).
125
126 // The state of the tls-entry.
127 enum class TlsVectorState {
128 kUninitialized = 0,
129
130 // In the process of destroying the entries in the vector.
131 kDestroying,
132
133 // All of the entries and the vector has been destroyed.
134 kDestroyed,
135
136 // The vector has been initialized and is in use.
137 kInUse,
138
139 kMaxValue = kInUse
140 };
141
142 // Bit-mask used to store TlsVectorState.
143 constexpr uintptr_t kVectorStateBitMask = 3;
144 static_assert(static_cast<int>(TlsVectorState::kMaxValue) <=
145 kVectorStateBitMask,
146 "number of states must fit in header");
147 static_assert(static_cast<int>(TlsVectorState::kUninitialized) == 0,
148 "kUninitialized must be null");
149
150 // The maximum number of slots in our thread local storage stack.
151 constexpr size_t kThreadLocalStorageSize = 256;
152
153 enum TlsStatus {
154 FREE,
155 IN_USE,
156 };
157
158 struct TlsMetadata {
159 TlsStatus status;
160 base::ThreadLocalStorage::TLSDestructorFunc destructor;
161 // Incremented every time a slot is reused. Used to detect reuse of slots.
162 uint32_t version;
163 // Tracks slot creation order. Used to destroy slots in the reverse order:
164 // from last created to first created.
165 uint32_t sequence_num;
166 };
167
168 struct TlsVectorEntry {
169 // `data` is not a raw_ptr<...> for performance reasons (based on analysis of
170 // sampling profiler data and tab_search:top100:2020).
171 RAW_PTR_EXCLUSION void* data;
172
173 uint32_t version;
174 };
175
176 // This lock isn't needed until after we've constructed the per-thread TLS
177 // vector, so it's safe to use.
GetTLSMetadataLock()178 base::Lock* GetTLSMetadataLock() {
179 static auto* lock = new base::Lock();
180 return lock;
181 }
182 TlsMetadata g_tls_metadata[kThreadLocalStorageSize];
183 size_t g_last_assigned_slot = 0;
184 uint32_t g_sequence_num = 0;
185
186 // The maximum number of times to try to clear slots by calling destructors.
187 // Use pthread naming convention for clarity.
188 constexpr size_t kMaxDestructorIterations = kThreadLocalStorageSize;
189
190 // Sets the value and state of the vector.
SetTlsVectorValue(PlatformThreadLocalStorage::TLSKey key,TlsVectorEntry * tls_data,TlsVectorState state)191 void SetTlsVectorValue(PlatformThreadLocalStorage::TLSKey key,
192 TlsVectorEntry* tls_data,
193 TlsVectorState state) {
194 DCHECK(tls_data || (state == TlsVectorState::kUninitialized) ||
195 (state == TlsVectorState::kDestroyed));
196 PlatformThreadLocalStorage::SetTLSValue(
197 key, reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(tls_data) |
198 static_cast<uintptr_t>(state)));
199 }
200
201 // Returns the tls vector and current state from the raw tls value.
GetTlsVectorStateAndValue(void * tls_value,TlsVectorEntry ** entry=nullptr)202 TlsVectorState GetTlsVectorStateAndValue(void* tls_value,
203 TlsVectorEntry** entry = nullptr) {
204 if (entry) {
205 *entry = reinterpret_cast<TlsVectorEntry*>(
206 reinterpret_cast<uintptr_t>(tls_value) & ~kVectorStateBitMask);
207 }
208 return static_cast<TlsVectorState>(reinterpret_cast<uintptr_t>(tls_value) &
209 kVectorStateBitMask);
210 }
211
212 // Returns the tls vector and state using the tls key.
GetTlsVectorStateAndValue(PlatformThreadLocalStorage::TLSKey key,TlsVectorEntry ** entry=nullptr)213 TlsVectorState GetTlsVectorStateAndValue(PlatformThreadLocalStorage::TLSKey key,
214 TlsVectorEntry** entry = nullptr) {
215 // Only on x86_64, the implementation is not stable on ARM64. For instance, in
216 // macOS 11, the TPIDRRO_EL0 registers holds the CPU index in the low bits,
217 // which is not the case in macOS 12. See libsyscall/os/tsd.h in XNU
218 // (_os_tsd_get_direct() is used by pthread_getspecific() internally).
219 #if BUILDFLAG(IS_MAC) && defined(ARCH_CPU_X86_64)
220 // On macOS, pthread_getspecific() is in libSystem, so a call to it has to go
221 // through PLT. However, and contrary to some other platforms, *all* TLS keys
222 // are in a static array in the thread structure. So they are *always* at a
223 // fixed offset from the segment register holding the thread structure
224 // address.
225 //
226 // We could use _pthread_getspecific_direct(), but it is not
227 // exported. However, on all macOS versions we support, the TLS array is at
228 // %gs. This is used in V8 and PartitionAlloc, and can also be seen by looking
229 // at pthread_getspecific() disassembly:
230 //
231 // libsystem_pthread.dylib`pthread_getspecific:
232 // libsystem_pthread.dylib[0x7ff800316099] <+0>: movq %gs:(,%rdi,8), %rax
233 // libsystem_pthread.dylib[0x7ff8003160a2] <+9>: retq
234 //
235 // This function is essentially inlining the content of pthread_getspecific()
236 // here.
237 //
238 // Note that this likely ends up being even faster than thread_local for
239 // typical Chromium builds where the code is in a dynamic library. For the
240 // static executable case, this is likely equivalent.
241 static_assert(
242 std::is_same_v<PlatformThreadLocalStorage::TLSKey, pthread_key_t>,
243 "The special-case below assumes that the platform TLS implementation is "
244 "pthread.");
245
246 intptr_t platform_tls_value;
247 asm("movq %%gs:(,%1,8), %0;" : "=r"(platform_tls_value) : "r"(key));
248
249 return GetTlsVectorStateAndValue(reinterpret_cast<void*>(platform_tls_value),
250 entry);
251 #else
252 return GetTlsVectorStateAndValue(PlatformThreadLocalStorage::GetTLSValue(key),
253 entry);
254 #endif
255 }
256
257 // This function is called to initialize our entire Chromium TLS system.
258 // It may be called very early, and we need to complete most all of the setup
259 // (initialization) before calling *any* memory allocator functions, which may
260 // recursively depend on this initialization.
261 // As a result, we use Atomics, and avoid anything (like a singleton) that might
262 // require memory allocations.
ConstructTlsVector()263 TlsVectorEntry* ConstructTlsVector() {
264 PlatformThreadLocalStorage::TLSKey key =
265 g_native_tls_key.load(std::memory_order_relaxed);
266 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
267 CHECK(PlatformThreadLocalStorage::AllocTLS(&key));
268
269 // The TLS_KEY_OUT_OF_INDEXES is used to find out whether the key is set or
270 // not in NoBarrier_CompareAndSwap, but Posix doesn't have invalid key, we
271 // define an almost impossible value be it.
272 // If we really get TLS_KEY_OUT_OF_INDEXES as value of key, just alloc
273 // another TLS slot.
274 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
275 PlatformThreadLocalStorage::TLSKey tmp = key;
276 CHECK(PlatformThreadLocalStorage::AllocTLS(&key) &&
277 key != PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES);
278 PlatformThreadLocalStorage::FreeTLS(tmp);
279 }
280 // Atomically test-and-set the tls_key. If the key is
281 // TLS_KEY_OUT_OF_INDEXES, go ahead and set it. Otherwise, do nothing, as
282 // another thread already did our dirty work.
283 PlatformThreadLocalStorage::TLSKey old_key =
284 PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES;
285 if (!g_native_tls_key.compare_exchange_strong(old_key, key,
286 std::memory_order_relaxed,
287 std::memory_order_relaxed)) {
288 // We've been shortcut. Another thread replaced g_native_tls_key first so
289 // we need to destroy our index and use the one the other thread got
290 // first.
291 PlatformThreadLocalStorage::FreeTLS(key);
292 key = g_native_tls_key.load(std::memory_order_relaxed);
293 }
294 }
295 CHECK_EQ(GetTlsVectorStateAndValue(key), TlsVectorState::kUninitialized);
296
297 // Some allocators, such as TCMalloc, make use of thread local storage. As a
298 // result, any attempt to call new (or malloc) will lazily cause such a system
299 // to initialize, which will include registering for a TLS key. If we are not
300 // careful here, then that request to create a key will call new back, and
301 // we'll have an infinite loop. We avoid that as follows: Use a stack
302 // allocated vector, so that we don't have dependence on our allocator until
303 // our service is in place. (i.e., don't even call new until after we're
304 // setup)
305 TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
306 memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
307 // Ensure that any rentrant calls change the temp version.
308 SetTlsVectorValue(key, stack_allocated_tls_data, TlsVectorState::kInUse);
309
310 // Allocate an array to store our data.
311 TlsVectorEntry* tls_data = new TlsVectorEntry[kThreadLocalStorageSize];
312 memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
313 SetTlsVectorValue(key, tls_data, TlsVectorState::kInUse);
314 return tls_data;
315 }
316
OnThreadExitInternal(TlsVectorEntry * tls_data)317 void OnThreadExitInternal(TlsVectorEntry* tls_data) {
318 DCHECK(tls_data);
319 // Some allocators, such as TCMalloc, use TLS. As a result, when a thread
320 // terminates, one of the destructor calls we make may be to shut down an
321 // allocator. We have to be careful that after we've shutdown all of the known
322 // destructors (perchance including an allocator), that we don't call the
323 // allocator and cause it to resurrect itself (with no possibly destructor
324 // call to follow). We handle this problem as follows: Switch to using a stack
325 // allocated vector, so that we don't have dependence on our allocator after
326 // we have called all g_tls_metadata destructors. (i.e., don't even call
327 // delete[] after we're done with destructors.)
328 TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
329 memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
330 // Ensure that any re-entrant calls change the temp version.
331 PlatformThreadLocalStorage::TLSKey key =
332 g_native_tls_key.load(std::memory_order_relaxed);
333 SetTlsVectorValue(key, stack_allocated_tls_data, TlsVectorState::kDestroying);
334 delete[] tls_data; // Our last dependence on an allocator.
335
336 size_t remaining_attempts = kMaxDestructorIterations + 1;
337 bool need_to_scan_destructors = true;
338 while (need_to_scan_destructors) {
339 need_to_scan_destructors = false;
340
341 // Snapshot the TLS Metadata so we don't have to lock on every access.
342 TlsMetadata tls_metadata[kThreadLocalStorageSize];
343 {
344 base::AutoLock auto_lock(*GetTLSMetadataLock());
345 memcpy(tls_metadata, g_tls_metadata, sizeof(g_tls_metadata));
346 }
347
348 // We destroy slots in reverse order (i.e. destroy the first-created slot
349 // last), for the following reasons:
350 // 1) Slots that are created early belong to basic services (like an
351 // allocator) and might have to be recreated by destructors of other
352 // services. So we save iterations here by destroying them last.
353 // 2) Perfetto tracing service allocates a slot early and relies on it to
354 // keep emitting trace events while destructors of other slots are called,
355 // so it's important to keep it live to avoid use-after-free errors.
356 // To achieve this, we sort all slots in the order of decreasing sequence
357 // numbers.
358 struct OrderedSlot {
359 uint32_t sequence_num;
360 uint16_t slot;
361 } slot_destruction_order[kThreadLocalStorageSize];
362 for (uint16_t i = 0; i < kThreadLocalStorageSize; ++i) {
363 slot_destruction_order[i].sequence_num = tls_metadata[i].sequence_num;
364 slot_destruction_order[i].slot = i;
365 }
366 std::sort(std::begin(slot_destruction_order),
367 std::end(slot_destruction_order),
368 [](const OrderedSlot& s1, const OrderedSlot& s2) {
369 return s1.sequence_num > s2.sequence_num;
370 });
371
372 for (const auto& ordered_slot : slot_destruction_order) {
373 size_t slot = ordered_slot.slot;
374 void* tls_value = stack_allocated_tls_data[slot].data;
375 if (!tls_value || tls_metadata[slot].status == TlsStatus::FREE ||
376 stack_allocated_tls_data[slot].version != tls_metadata[slot].version)
377 continue;
378
379 base::ThreadLocalStorage::TLSDestructorFunc destructor =
380 tls_metadata[slot].destructor;
381 if (!destructor)
382 continue;
383 stack_allocated_tls_data[slot].data = nullptr; // pre-clear the slot.
384 destructor(tls_value);
385 // Any destructor might have called a different service, which then set a
386 // different slot to a non-null value. Hence we need to check the whole
387 // vector again. This is a pthread standard.
388 need_to_scan_destructors = true;
389 }
390
391 if (--remaining_attempts == 0) {
392 NOTREACHED(); // Destructors might not have been called.
393 }
394 }
395
396 // Remove our stack allocated vector.
397 SetTlsVectorValue(key, nullptr, TlsVectorState::kDestroyed);
398 }
399
400 } // namespace
401
402 namespace base {
403
404 namespace internal {
405
406 #if BUILDFLAG(IS_WIN)
OnThreadExit()407 void PlatformThreadLocalStorage::OnThreadExit() {
408 PlatformThreadLocalStorage::TLSKey key =
409 g_native_tls_key.load(std::memory_order_relaxed);
410 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
411 return;
412 TlsVectorEntry* tls_vector = nullptr;
413 const TlsVectorState state = GetTlsVectorStateAndValue(key, &tls_vector);
414
415 // On Windows, thread destruction callbacks are only invoked once per module,
416 // so there should be no way that this could be invoked twice.
417 DCHECK_NE(state, TlsVectorState::kDestroyed);
418
419 // Maybe we have never initialized TLS for this thread.
420 if (state == TlsVectorState::kUninitialized)
421 return;
422 OnThreadExitInternal(tls_vector);
423 }
424 #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
425 void PlatformThreadLocalStorage::OnThreadExit(void* value) {
426 // On posix this function may be called twice. The first pass calls dtors and
427 // sets state to kDestroyed. The second pass sets kDestroyed to
428 // kUninitialized.
429 TlsVectorEntry* tls_vector = nullptr;
430 const TlsVectorState state = GetTlsVectorStateAndValue(value, &tls_vector);
431 if (state == TlsVectorState::kDestroyed) {
432 PlatformThreadLocalStorage::TLSKey key =
433 g_native_tls_key.load(std::memory_order_relaxed);
434 SetTlsVectorValue(key, nullptr, TlsVectorState::kUninitialized);
435 return;
436 }
437
438 OnThreadExitInternal(tls_vector);
439 }
440 #endif // BUILDFLAG(IS_WIN)
441
442 } // namespace internal
443
444 // static
HasBeenDestroyed()445 bool ThreadLocalStorage::HasBeenDestroyed() {
446 PlatformThreadLocalStorage::TLSKey key =
447 g_native_tls_key.load(std::memory_order_relaxed);
448 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
449 return false;
450 const TlsVectorState state = GetTlsVectorStateAndValue(key);
451 return state == TlsVectorState::kDestroying ||
452 state == TlsVectorState::kDestroyed;
453 }
454
Initialize(TLSDestructorFunc destructor)455 void ThreadLocalStorage::Slot::Initialize(TLSDestructorFunc destructor) {
456 PlatformThreadLocalStorage::TLSKey key =
457 g_native_tls_key.load(std::memory_order_relaxed);
458 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES ||
459 GetTlsVectorStateAndValue(key) == TlsVectorState::kUninitialized) {
460 ConstructTlsVector();
461 }
462
463 // Grab a new slot.
464 {
465 base::AutoLock auto_lock(*GetTLSMetadataLock());
466 for (size_t i = 0; i < kThreadLocalStorageSize; ++i) {
467 // Tracking the last assigned slot is an attempt to find the next
468 // available slot within one iteration. Under normal usage, slots remain
469 // in use for the lifetime of the process (otherwise before we reclaimed
470 // slots, we would have run out of slots). This makes it highly likely the
471 // next slot is going to be a free slot.
472 size_t slot_candidate =
473 (g_last_assigned_slot + 1 + i) % kThreadLocalStorageSize;
474 if (g_tls_metadata[slot_candidate].status == TlsStatus::FREE) {
475 g_tls_metadata[slot_candidate].status = TlsStatus::IN_USE;
476 g_tls_metadata[slot_candidate].destructor = destructor;
477 g_tls_metadata[slot_candidate].sequence_num = ++g_sequence_num;
478 g_last_assigned_slot = slot_candidate;
479 DCHECK_EQ(kInvalidSlotValue, slot_);
480 slot_ = slot_candidate;
481 version_ = g_tls_metadata[slot_candidate].version;
482 break;
483 }
484 }
485 }
486 CHECK_LT(slot_, kThreadLocalStorageSize);
487 }
488
Free()489 void ThreadLocalStorage::Slot::Free() {
490 DCHECK_LT(slot_, kThreadLocalStorageSize);
491 {
492 base::AutoLock auto_lock(*GetTLSMetadataLock());
493 g_tls_metadata[slot_].status = TlsStatus::FREE;
494 g_tls_metadata[slot_].destructor = nullptr;
495 ++(g_tls_metadata[slot_].version);
496 }
497 slot_ = kInvalidSlotValue;
498 }
499
Get() const500 void* ThreadLocalStorage::Slot::Get() const {
501 TlsVectorEntry* tls_data = nullptr;
502 const TlsVectorState state = GetTlsVectorStateAndValue(
503 g_native_tls_key.load(std::memory_order_relaxed), &tls_data);
504 DCHECK_NE(state, TlsVectorState::kDestroyed);
505 if (!tls_data)
506 return nullptr;
507 DCHECK_LT(slot_, kThreadLocalStorageSize);
508 // Version mismatches means this slot was previously freed.
509 if (tls_data[slot_].version != version_)
510 return nullptr;
511 return tls_data[slot_].data;
512 }
513
Set(void * value)514 void ThreadLocalStorage::Slot::Set(void* value) {
515 TlsVectorEntry* tls_data = nullptr;
516 const TlsVectorState state = GetTlsVectorStateAndValue(
517 g_native_tls_key.load(std::memory_order_relaxed), &tls_data);
518 DCHECK_NE(state, TlsVectorState::kDestroyed);
519 if (!tls_data) [[unlikely]] {
520 if (!value)
521 return;
522 tls_data = ConstructTlsVector();
523 }
524 DCHECK_LT(slot_, kThreadLocalStorageSize);
525 tls_data[slot_].data = value;
526 tls_data[slot_].version = version_;
527 }
528
Slot(TLSDestructorFunc destructor)529 ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) {
530 Initialize(destructor);
531 }
532
~Slot()533 ThreadLocalStorage::Slot::~Slot() {
534 Free();
535 }
536
537 } // namespace base
538