• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `node_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`. However, if you need pointer stability and cannot store
29 // a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
30 // valid alternative. As well, if you are migrating your code from using
31 // `std::unordered_map`, a `node_hash_map` provides a more straightforward
32 // migration, because it guarantees pointer stability. Consider migrating to
33 // `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
34 // upon further review.
35 //
36 // `node_hash_map` is not exception-safe.
37 
38 #ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
39 #define ABSL_CONTAINER_NODE_HASH_MAP_H_
40 
41 #include <cstddef>
42 #include <memory>
43 #include <type_traits>
44 #include <utility>
45 
46 #include "absl/algorithm/container.h"
47 #include "absl/base/attributes.h"
48 #include "absl/container/hash_container_defaults.h"
49 #include "absl/container/internal/container_memory.h"
50 #include "absl/container/internal/node_slot_policy.h"
51 #include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export
52 #include "absl/memory/memory.h"
53 #include "absl/meta/type_traits.h"
54 
55 namespace absl {
56 ABSL_NAMESPACE_BEGIN
57 namespace container_internal {
58 template <class Key, class Value>
59 class NodeHashMapPolicy;
60 }  // namespace container_internal
61 
62 // -----------------------------------------------------------------------------
63 // absl::node_hash_map
64 // -----------------------------------------------------------------------------
65 //
66 // An `absl::node_hash_map<K, V>` is an unordered associative container which
67 // has been optimized for both speed and memory footprint in most common use
68 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
69 // the following notable differences:
70 //
71 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
72 //   `insert()`, provided that the map is provided a compatible heterogeneous
73 //   hashing function and equality operator. See below for details.
74 // * Contains a `capacity()` member function indicating the number of element
75 //   slots (open, deleted, and empty) within the hash map.
76 // * Returns `void` from the `erase(iterator)` overload.
77 //
78 // By default, `node_hash_map` uses the `absl::Hash` hashing framework.
79 // All fundamental and Abseil types that support the `absl::Hash` framework have
80 // a compatible equality operator for comparing insertions into `node_hash_map`.
81 // If your type is not yet supported by the `absl::Hash` framework, see
82 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
83 // types.
84 //
85 // Using `absl::node_hash_map` at interface boundaries in dynamically loaded
86 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
87 // be randomized across dynamically loaded libraries.
88 //
89 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
90 // parameters can be used or `T` should have public inner types
91 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
92 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
93 // well-formed. Both types are basically functors:
94 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
95 // for the given `val`.
96 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
97 // if `lhs` is equal to `rhs`.
98 //
99 // In most cases `T` needs only to provide the `absl_container_hash`. In this
100 // case `std::equal_to<void>` will be used instead of `eq` part.
101 //
102 // Example:
103 //
104 //   // Create a node hash map of three strings (that map to strings)
105 //   absl::node_hash_map<std::string, std::string> ducks =
106 //     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
107 //
108 //  // Insert a new element into the node hash map
109 //  ducks.insert({"d", "donald"}};
110 //
111 //  // Force a rehash of the node hash map
112 //  ducks.rehash(0);
113 //
114 //  // Find the element with the key "b"
115 //  std::string search_key = "b";
116 //  auto result = ducks.find(search_key);
117 //  if (result != ducks.end()) {
118 //    std::cout << "Result: " << result->second << std::endl;
119 //  }
120 template <class Key, class Value, class Hash = DefaultHashContainerHash<Key>,
121           class Eq = DefaultHashContainerEq<Key>,
122           class Alloc = std::allocator<std::pair<const Key, Value>>>
123 class ABSL_ATTRIBUTE_OWNER node_hash_map
124     : public absl::container_internal::raw_hash_map<
125           absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
126           Alloc> {
127   using Base = typename node_hash_map::raw_hash_map;
128 
129  public:
130   // Constructors and Assignment Operators
131   //
132   // A node_hash_map supports the same overload set as `std::unordered_map`
133   // for construction and assignment:
134   //
135   // *  Default constructor
136   //
137   //    // No allocation for the table's elements is made.
138   //    absl::node_hash_map<int, std::string> map1;
139   //
140   // * Initializer List constructor
141   //
142   //   absl::node_hash_map<int, std::string> map2 =
143   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
144   //
145   // * Copy constructor
146   //
147   //   absl::node_hash_map<int, std::string> map3(map2);
148   //
149   // * Copy assignment operator
150   //
151   //  // Hash functor and Comparator are copied as well
152   //  absl::node_hash_map<int, std::string> map4;
153   //  map4 = map3;
154   //
155   // * Move constructor
156   //
157   //   // Move is guaranteed efficient
158   //   absl::node_hash_map<int, std::string> map5(std::move(map4));
159   //
160   // * Move assignment operator
161   //
162   //   // May be efficient if allocators are compatible
163   //   absl::node_hash_map<int, std::string> map6;
164   //   map6 = std::move(map5);
165   //
166   // * Range constructor
167   //
168   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
169   //   absl::node_hash_map<int, std::string> map7(v.begin(), v.end());
node_hash_map()170   node_hash_map() {}
171   using Base::Base;
172 
173   // node_hash_map::begin()
174   //
175   // Returns an iterator to the beginning of the `node_hash_map`.
176   using Base::begin;
177 
178   // node_hash_map::cbegin()
179   //
180   // Returns a const iterator to the beginning of the `node_hash_map`.
181   using Base::cbegin;
182 
183   // node_hash_map::cend()
184   //
185   // Returns a const iterator to the end of the `node_hash_map`.
186   using Base::cend;
187 
188   // node_hash_map::end()
189   //
190   // Returns an iterator to the end of the `node_hash_map`.
191   using Base::end;
192 
193   // node_hash_map::capacity()
194   //
195   // Returns the number of element slots (assigned, deleted, and empty)
196   // available within the `node_hash_map`.
197   //
198   // NOTE: this member function is particular to `absl::node_hash_map` and is
199   // not provided in the `std::unordered_map` API.
200   using Base::capacity;
201 
202   // node_hash_map::empty()
203   //
204   // Returns whether or not the `node_hash_map` is empty.
205   using Base::empty;
206 
207   // node_hash_map::max_size()
208   //
209   // Returns the largest theoretical possible number of elements within a
210   // `node_hash_map` under current memory constraints. This value can be thought
211   // of as the largest value of `std::distance(begin(), end())` for a
212   // `node_hash_map<K, V>`.
213   using Base::max_size;
214 
215   // node_hash_map::size()
216   //
217   // Returns the number of elements currently within the `node_hash_map`.
218   using Base::size;
219 
220   // node_hash_map::clear()
221   //
222   // Removes all elements from the `node_hash_map`. Invalidates any references,
223   // pointers, or iterators referring to contained elements.
224   //
225   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
226   // the underlying buffer call `erase(begin(), end())`.
227   using Base::clear;
228 
229   // node_hash_map::erase()
230   //
231   // Erases elements within the `node_hash_map`. Erasing does not trigger a
232   // rehash. Overloads are listed below.
233   //
234   // void erase(const_iterator pos):
235   //
236   //   Erases the element at `position` of the `node_hash_map`, returning
237   //   `void`.
238   //
239   //   NOTE: Returning `void` in this case is different than that of STL
240   //   containers in general and `std::unordered_map` in particular (which
241   //   return an iterator to the element following the erased element). If that
242   //   iterator is needed, simply post increment the iterator:
243   //
244   //     map.erase(it++);
245   //
246   //
247   // iterator erase(const_iterator first, const_iterator last):
248   //
249   //   Erases the elements in the open interval [`first`, `last`), returning an
250   //   iterator pointing to `last`. The special case of calling
251   //   `erase(begin(), end())` resets the reserved growth such that if
252   //   `reserve(N)` has previously been called and there has been no intervening
253   //   call to `clear()`, then after calling `erase(begin(), end())`, it is safe
254   //   to assume that inserting N elements will not cause a rehash.
255   //
256   // size_type erase(const key_type& key):
257   //
258   //   Erases the element with the matching key, if it exists, returning the
259   //   number of elements erased (0 or 1).
260   using Base::erase;
261 
262   // node_hash_map::insert()
263   //
264   // Inserts an element of the specified value into the `node_hash_map`,
265   // returning an iterator pointing to the newly inserted element, provided that
266   // an element with the given key does not already exist. If rehashing occurs
267   // due to the insertion, all iterators are invalidated. Overloads are listed
268   // below.
269   //
270   // std::pair<iterator,bool> insert(const init_type& value):
271   //
272   //   Inserts a value into the `node_hash_map`. Returns a pair consisting of an
273   //   iterator to the inserted element (or to the element that prevented the
274   //   insertion) and a `bool` denoting whether the insertion took place.
275   //
276   // std::pair<iterator,bool> insert(T&& value):
277   // std::pair<iterator,bool> insert(init_type&& value):
278   //
279   //   Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
280   //   consisting of an iterator to the inserted element (or to the element that
281   //   prevented the insertion) and a `bool` denoting whether the insertion took
282   //   place.
283   //
284   // iterator insert(const_iterator hint, const init_type& value):
285   // iterator insert(const_iterator hint, T&& value):
286   // iterator insert(const_iterator hint, init_type&& value);
287   //
288   //   Inserts a value, using the position of `hint` as a non-binding suggestion
289   //   for where to begin the insertion search. Returns an iterator to the
290   //   inserted element, or to the existing element that prevented the
291   //   insertion.
292   //
293   // void insert(InputIterator first, InputIterator last):
294   //
295   //   Inserts a range of values [`first`, `last`).
296   //
297   //   NOTE: Although the STL does not specify which element may be inserted if
298   //   multiple keys compare equivalently, for `node_hash_map` we guarantee the
299   //   first match is inserted.
300   //
301   // void insert(std::initializer_list<init_type> ilist):
302   //
303   //   Inserts the elements within the initializer list `ilist`.
304   //
305   //   NOTE: Although the STL does not specify which element may be inserted if
306   //   multiple keys compare equivalently within the initializer list, for
307   //   `node_hash_map` we guarantee the first match is inserted.
308   using Base::insert;
309 
310   // node_hash_map::insert_or_assign()
311   //
312   // Inserts an element of the specified value into the `node_hash_map` provided
313   // that a value with the given key does not already exist, or replaces it with
314   // the element value if a key for that value already exists, returning an
315   // iterator pointing to the newly inserted element. If rehashing occurs due to
316   // the insertion, all iterators are invalidated. Overloads are listed
317   // below.
318   //
319   // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
320   // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
321   //
322   //   Inserts/Assigns (or moves) the element of the specified key into the
323   //   `node_hash_map`.
324   //
325   // iterator insert_or_assign(const_iterator hint,
326   //                           const init_type& k, T&& obj):
327   // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
328   //
329   //   Inserts/Assigns (or moves) the element of the specified key into the
330   //   `node_hash_map` using the position of `hint` as a non-binding suggestion
331   //   for where to begin the insertion search.
332   using Base::insert_or_assign;
333 
334   // node_hash_map::emplace()
335   //
336   // Inserts an element of the specified value by constructing it in-place
337   // within the `node_hash_map`, provided that no element with the given key
338   // already exists.
339   //
340   // The element may be constructed even if there already is an element with the
341   // key in the container, in which case the newly constructed element will be
342   // destroyed immediately. Prefer `try_emplace()` unless your key is not
343   // copyable or moveable.
344   //
345   // If rehashing occurs due to the insertion, all iterators are invalidated.
346   using Base::emplace;
347 
348   // node_hash_map::emplace_hint()
349   //
350   // Inserts an element of the specified value by constructing it in-place
351   // within the `node_hash_map`, using the position of `hint` as a non-binding
352   // suggestion for where to begin the insertion search, and only inserts
353   // provided that no element with the given key already exists.
354   //
355   // The element may be constructed even if there already is an element with the
356   // key in the container, in which case the newly constructed element will be
357   // destroyed immediately. Prefer `try_emplace()` unless your key is not
358   // copyable or moveable.
359   //
360   // If rehashing occurs due to the insertion, all iterators are invalidated.
361   using Base::emplace_hint;
362 
363   // node_hash_map::try_emplace()
364   //
365   // Inserts an element of the specified value by constructing it in-place
366   // within the `node_hash_map`, provided that no element with the given key
367   // already exists. Unlike `emplace()`, if an element with the given key
368   // already exists, we guarantee that no element is constructed.
369   //
370   // If rehashing occurs due to the insertion, all iterators are invalidated.
371   // Overloads are listed below.
372   //
373   //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
374   //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
375   //
376   // Inserts (via copy or move) the element of the specified key into the
377   // `node_hash_map`.
378   //
379   //   iterator try_emplace(const_iterator hint,
380   //                        const key_type& k, Args&&... args):
381   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
382   //
383   // Inserts (via copy or move) the element of the specified key into the
384   // `node_hash_map` using the position of `hint` as a non-binding suggestion
385   // for where to begin the insertion search.
386   //
387   // All `try_emplace()` overloads make the same guarantees regarding rvalue
388   // arguments as `std::unordered_map::try_emplace()`, namely that these
389   // functions will not move from rvalue arguments if insertions do not happen.
390   using Base::try_emplace;
391 
392   // node_hash_map::extract()
393   //
394   // Extracts the indicated element, erasing it in the process, and returns it
395   // as a C++17-compatible node handle. Overloads are listed below.
396   //
397   // node_type extract(const_iterator position):
398   //
399   //   Extracts the key,value pair of the element at the indicated position and
400   //   returns a node handle owning that extracted data.
401   //
402   // node_type extract(const key_type& x):
403   //
404   //   Extracts the key,value pair of the element with a key matching the passed
405   //   key value and returns a node handle owning that extracted data. If the
406   //   `node_hash_map` does not contain an element with a matching key, this
407   //   function returns an empty node handle.
408   //
409   // NOTE: when compiled in an earlier version of C++ than C++17,
410   // `node_type::key()` returns a const reference to the key instead of a
411   // mutable reference. We cannot safely return a mutable reference without
412   // std::launder (which is not available before C++17).
413   using Base::extract;
414 
415   // node_hash_map::merge()
416   //
417   // Extracts elements from a given `source` node hash map into this
418   // `node_hash_map`. If the destination `node_hash_map` already contains an
419   // element with an equivalent key, that element is not extracted.
420   using Base::merge;
421 
422   // node_hash_map::swap(node_hash_map& other)
423   //
424   // Exchanges the contents of this `node_hash_map` with those of the `other`
425   // node hash map.
426   //
427   // All iterators and references on the `node_hash_map` remain valid, excepting
428   // for the past-the-end iterator, which is invalidated.
429   //
430   // `swap()` requires that the node hash map's hashing and key equivalence
431   // functions be Swappable, and are exchanged using unqualified calls to
432   // non-member `swap()`. If the map's allocator has
433   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
434   // set to `true`, the allocators are also exchanged using an unqualified call
435   // to non-member `swap()`; otherwise, the allocators are not swapped.
436   using Base::swap;
437 
438   // node_hash_map::rehash(count)
439   //
440   // Rehashes the `node_hash_map`, setting the number of slots to be at least
441   // the passed value. If the new number of slots increases the load factor more
442   // than the current maximum load factor
443   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
444   // will be at least `size()` / `max_load_factor()`.
445   //
446   // To force a rehash, pass rehash(0).
447   using Base::rehash;
448 
449   // node_hash_map::reserve(count)
450   //
451   // Sets the number of slots in the `node_hash_map` to the number needed to
452   // accommodate at least `count` total elements without exceeding the current
453   // maximum load factor, and may rehash the container if needed.
454   using Base::reserve;
455 
456   // node_hash_map::at()
457   //
458   // Returns a reference to the mapped value of the element with key equivalent
459   // to the passed key.
460   using Base::at;
461 
462   // node_hash_map::contains()
463   //
464   // Determines whether an element with a key comparing equal to the given `key`
465   // exists within the `node_hash_map`, returning `true` if so or `false`
466   // otherwise.
467   using Base::contains;
468 
469   // node_hash_map::count(const Key& key) const
470   //
471   // Returns the number of elements with a key comparing equal to the given
472   // `key` within the `node_hash_map`. note that this function will return
473   // either `1` or `0` since duplicate keys are not allowed within a
474   // `node_hash_map`.
475   using Base::count;
476 
477   // node_hash_map::equal_range()
478   //
479   // Returns a closed range [first, last], defined by a `std::pair` of two
480   // iterators, containing all elements with the passed key in the
481   // `node_hash_map`.
482   using Base::equal_range;
483 
484   // node_hash_map::find()
485   //
486   // Finds an element with the passed `key` within the `node_hash_map`.
487   using Base::find;
488 
489   // node_hash_map::operator[]()
490   //
491   // Returns a reference to the value mapped to the passed key within the
492   // `node_hash_map`, performing an `insert()` if the key does not already
493   // exist. If an insertion occurs and results in a rehashing of the container,
494   // all iterators are invalidated. Otherwise iterators are not affected and
495   // references are not invalidated. Overloads are listed below.
496   //
497   // T& operator[](const Key& key):
498   //
499   //   Inserts an init_type object constructed in-place if the element with the
500   //   given key does not exist.
501   //
502   // T& operator[](Key&& key):
503   //
504   //   Inserts an init_type object constructed in-place provided that an element
505   //   with the given key does not exist.
506   using Base::operator[];
507 
508   // node_hash_map::bucket_count()
509   //
510   // Returns the number of "buckets" within the `node_hash_map`.
511   using Base::bucket_count;
512 
513   // node_hash_map::load_factor()
514   //
515   // Returns the current load factor of the `node_hash_map` (the average number
516   // of slots occupied with a value within the hash map).
517   using Base::load_factor;
518 
519   // node_hash_map::max_load_factor()
520   //
521   // Manages the maximum load factor of the `node_hash_map`. Overloads are
522   // listed below.
523   //
524   // float node_hash_map::max_load_factor()
525   //
526   //   Returns the current maximum load factor of the `node_hash_map`.
527   //
528   // void node_hash_map::max_load_factor(float ml)
529   //
530   //   Sets the maximum load factor of the `node_hash_map` to the passed value.
531   //
532   //   NOTE: This overload is provided only for API compatibility with the STL;
533   //   `node_hash_map` will ignore any set load factor and manage its rehashing
534   //   internally as an implementation detail.
535   using Base::max_load_factor;
536 
537   // node_hash_map::get_allocator()
538   //
539   // Returns the allocator function associated with this `node_hash_map`.
540   using Base::get_allocator;
541 
542   // node_hash_map::hash_function()
543   //
544   // Returns the hashing function used to hash the keys within this
545   // `node_hash_map`.
546   using Base::hash_function;
547 
548   // node_hash_map::key_eq()
549   //
550   // Returns the function used for comparing keys equality.
551   using Base::key_eq;
552 };
553 
554 // erase_if(node_hash_map<>, Pred)
555 //
556 // Erases all elements that satisfy the predicate `pred` from the container `c`.
557 // Returns the number of erased elements.
558 template <typename K, typename V, typename H, typename E, typename A,
559           typename Predicate>
erase_if(node_hash_map<K,V,H,E,A> & c,Predicate pred)560 typename node_hash_map<K, V, H, E, A>::size_type erase_if(
561     node_hash_map<K, V, H, E, A>& c, Predicate pred) {
562   return container_internal::EraseIf(pred, &c);
563 }
564 
565 // swap(node_hash_map<>, node_hash_map<>)
566 //
567 // Swaps the contents of two `node_hash_map` containers.
568 //
569 // NOTE: we need to define this function template in order for
570 // `flat_hash_set::swap` to be called instead of `std::swap`. Even though we
571 // have `swap(raw_hash_set&, raw_hash_set&)` defined, that function requires a
572 // derived-to-base conversion, whereas `std::swap` is a function template so
573 // `std::swap` will be preferred by compiler.
574 template <typename K, typename V, typename H, typename E, typename A>
swap(node_hash_map<K,V,H,E,A> & x,node_hash_map<K,V,H,E,A> & y)575 void swap(node_hash_map<K, V, H, E, A>& x,
576           node_hash_map<K, V, H, E, A>& y) noexcept(noexcept(x.swap(y))) {
577   return x.swap(y);
578 }
579 
580 namespace container_internal {
581 
582 // c_for_each_fast(node_hash_map<>, Function)
583 //
584 // Container-based version of the <algorithm> `std::for_each()` function to
585 // apply a function to a container's elements.
586 // There is no guarantees on the order of the function calls.
587 // Erasure and/or insertion of elements in the function is not allowed.
588 template <typename K, typename V, typename H, typename E, typename A,
589           typename Function>
c_for_each_fast(const node_hash_map<K,V,H,E,A> & c,Function && f)590 decay_t<Function> c_for_each_fast(const node_hash_map<K, V, H, E, A>& c,
591                                   Function&& f) {
592   container_internal::ForEach(f, &c);
593   return f;
594 }
595 template <typename K, typename V, typename H, typename E, typename A,
596           typename Function>
c_for_each_fast(node_hash_map<K,V,H,E,A> & c,Function && f)597 decay_t<Function> c_for_each_fast(node_hash_map<K, V, H, E, A>& c,
598                                   Function&& f) {
599   container_internal::ForEach(f, &c);
600   return f;
601 }
602 template <typename K, typename V, typename H, typename E, typename A,
603           typename Function>
c_for_each_fast(node_hash_map<K,V,H,E,A> && c,Function && f)604 decay_t<Function> c_for_each_fast(node_hash_map<K, V, H, E, A>&& c,
605                                   Function&& f) {
606   container_internal::ForEach(f, &c);
607   return f;
608 }
609 
610 }  // namespace container_internal
611 
612 namespace container_internal {
613 
614 template <class Key, class Value>
615 class NodeHashMapPolicy
616     : public absl::container_internal::node_slot_policy<
617           std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
618   using value_type = std::pair<const Key, Value>;
619 
620  public:
621   using key_type = Key;
622   using mapped_type = Value;
623   using init_type = std::pair</*non const*/ key_type, mapped_type>;
624 
625   template <class Allocator, class... Args>
new_element(Allocator * alloc,Args &&...args)626   static value_type* new_element(Allocator* alloc, Args&&... args) {
627     using PairAlloc = typename absl::allocator_traits<
628         Allocator>::template rebind_alloc<value_type>;
629     PairAlloc pair_alloc(*alloc);
630     value_type* res =
631         absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
632     absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
633                                                  std::forward<Args>(args)...);
634     return res;
635   }
636 
637   template <class Allocator>
delete_element(Allocator * alloc,value_type * pair)638   static void delete_element(Allocator* alloc, value_type* pair) {
639     using PairAlloc = typename absl::allocator_traits<
640         Allocator>::template rebind_alloc<value_type>;
641     PairAlloc pair_alloc(*alloc);
642     absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
643     absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
644   }
645 
646   template <class F, class... Args>
decltype(absl::container_internal::DecomposePair (std::declval<F> (),std::declval<Args> ()...))647   static decltype(absl::container_internal::DecomposePair(
648       std::declval<F>(), std::declval<Args>()...))
649   apply(F&& f, Args&&... args) {
650     return absl::container_internal::DecomposePair(std::forward<F>(f),
651                                                    std::forward<Args>(args)...);
652   }
653 
element_space_used(const value_type *)654   static size_t element_space_used(const value_type*) {
655     return sizeof(value_type);
656   }
657 
value(value_type * elem)658   static Value& value(value_type* elem) { return elem->second; }
value(const value_type * elem)659   static const Value& value(const value_type* elem) { return elem->second; }
660 
661   template <class Hash>
get_hash_slot_fn()662   static constexpr HashSlotFn get_hash_slot_fn() {
663     return memory_internal::IsLayoutCompatible<Key, Value>::value
664                ? &TypeErasedDerefAndApplyToSlotFn<Hash, Key>
665                : nullptr;
666   }
667 };
668 }  // namespace container_internal
669 
670 namespace container_algorithm_internal {
671 
672 // Specialization of trait in absl/algorithm/container.h
673 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
674 struct IsUnorderedContainer<
675     absl::node_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
676 
677 }  // namespace container_algorithm_internal
678 
679 ABSL_NAMESPACE_END
680 }  // namespace absl
681 
682 #endif  // ABSL_CONTAINER_NODE_HASH_MAP_H_
683