1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the OpenSSL open source
117 * license provided above.
118 *
119 * ECC cipher suite support in OpenSSL originally written by
120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121 *
122 */
123 /* ====================================================================
124 * Copyright 2005 Nokia. All rights reserved.
125 *
126 * The portions of the attached software ("Contribution") is developed by
127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128 * license.
129 *
130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132 * support (see RFC 4279) to OpenSSL.
133 *
134 * No patent licenses or other rights except those expressly stated in
135 * the OpenSSL open source license shall be deemed granted or received
136 * expressly, by implication, estoppel, or otherwise.
137 *
138 * No assurances are provided by Nokia that the Contribution does not
139 * infringe the patent or other intellectual property rights of any third
140 * party or that the license provides you with all the necessary rights
141 * to make use of the Contribution.
142 *
143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147 * OTHERWISE.
148 */
149
150 #include <openssl/ssl.h>
151
152 #include <assert.h>
153 #include <limits.h>
154 #include <string.h>
155
156 #include <algorithm>
157 #include <utility>
158
159 #include <openssl/aead.h>
160 #include <openssl/bn.h>
161 #include <openssl/bytestring.h>
162 #include <openssl/ec_key.h>
163 #include <openssl/ecdsa.h>
164 #include <openssl/err.h>
165 #include <openssl/evp.h>
166 #include <openssl/hpke.h>
167 #include <openssl/md5.h>
168 #include <openssl/mem.h>
169 #include <openssl/rand.h>
170 #include <openssl/sha.h>
171
172 #include "../crypto/internal.h"
173 #include "internal.h"
174
175
176 BSSL_NAMESPACE_BEGIN
177
178 enum ssl_client_hs_state_t {
179 state_start_connect = 0,
180 state_enter_early_data,
181 state_early_reverify_server_certificate,
182 state_read_server_hello,
183 state_tls13,
184 state_read_server_certificate,
185 state_read_certificate_status,
186 state_verify_server_certificate,
187 state_reverify_server_certificate,
188 state_read_server_key_exchange,
189 state_read_certificate_request,
190 state_read_server_hello_done,
191 state_send_client_certificate,
192 state_send_client_key_exchange,
193 state_send_client_certificate_verify,
194 state_send_client_finished,
195 state_finish_flight,
196 state_read_session_ticket,
197 state_process_change_cipher_spec,
198 state_read_server_finished,
199 state_finish_client_handshake,
200 state_done,
201 };
202
203 // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of
204 // disabled algorithms.
ssl_get_client_disabled(const SSL_HANDSHAKE * hs,uint32_t * out_mask_a,uint32_t * out_mask_k)205 static void ssl_get_client_disabled(const SSL_HANDSHAKE *hs,
206 uint32_t *out_mask_a,
207 uint32_t *out_mask_k) {
208 *out_mask_a = 0;
209 *out_mask_k = 0;
210
211 // PSK requires a client callback.
212 if (hs->config->psk_client_callback == NULL) {
213 *out_mask_a |= SSL_aPSK;
214 *out_mask_k |= SSL_kPSK;
215 }
216 }
217
ssl_add_tls13_cipher(CBB * cbb,uint16_t cipher_id,ssl_compliance_policy_t policy)218 static bool ssl_add_tls13_cipher(CBB *cbb, uint16_t cipher_id,
219 ssl_compliance_policy_t policy) {
220 if (ssl_tls13_cipher_meets_policy(cipher_id, policy)) {
221 return CBB_add_u16(cbb, cipher_id);
222 }
223 return true;
224 }
225
ssl_write_client_cipher_list(const SSL_HANDSHAKE * hs,CBB * out,ssl_client_hello_type_t type)226 static bool ssl_write_client_cipher_list(const SSL_HANDSHAKE *hs, CBB *out,
227 ssl_client_hello_type_t type) {
228 const SSL *const ssl = hs->ssl;
229 uint32_t mask_a, mask_k;
230 ssl_get_client_disabled(hs, &mask_a, &mask_k);
231
232 CBB child;
233 if (!CBB_add_u16_length_prefixed(out, &child)) {
234 return false;
235 }
236
237 // Add a fake cipher suite. See RFC 8701.
238 if (ssl->ctx->grease_enabled &&
239 !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) {
240 return false;
241 }
242
243 // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on
244 // hardware support.
245 if (hs->max_version >= TLS1_3_VERSION) {
246 static const uint16_t kCiphersNoAESHardware[] = {
247 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
248 TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff,
249 TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff,
250 };
251 static const uint16_t kCiphersAESHardware[] = {
252 TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff,
253 TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff,
254 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
255 };
256 static const uint16_t kCiphersCNSA[] = {
257 TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff,
258 TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff,
259 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
260 };
261
262 const bool has_aes_hw = ssl->config->aes_hw_override
263 ? ssl->config->aes_hw_override_value
264 : EVP_has_aes_hardware();
265 const bssl::Span<const uint16_t> ciphers =
266 ssl->config->tls13_cipher_policy == ssl_compliance_policy_cnsa_202407
267 ? bssl::Span<const uint16_t>(kCiphersCNSA)
268 : (has_aes_hw ? bssl::Span<const uint16_t>(kCiphersAESHardware)
269 : bssl::Span<const uint16_t>(kCiphersNoAESHardware));
270
271 for (auto cipher : ciphers) {
272 if (!ssl_add_tls13_cipher(&child, cipher,
273 ssl->config->tls13_cipher_policy)) {
274 return false;
275 }
276 }
277 }
278
279 if (hs->min_version < TLS1_3_VERSION && type != ssl_client_hello_inner) {
280 bool any_enabled = false;
281 for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) {
282 // Skip disabled ciphers
283 if ((cipher->algorithm_mkey & mask_k) ||
284 (cipher->algorithm_auth & mask_a)) {
285 continue;
286 }
287 if (SSL_CIPHER_get_min_version(cipher) > hs->max_version ||
288 SSL_CIPHER_get_max_version(cipher) < hs->min_version) {
289 continue;
290 }
291 any_enabled = true;
292 if (!CBB_add_u16(&child, SSL_CIPHER_get_protocol_id(cipher))) {
293 return false;
294 }
295 }
296
297 // If all ciphers were disabled, return the error to the caller.
298 if (!any_enabled && hs->max_version < TLS1_3_VERSION) {
299 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
300 return false;
301 }
302 }
303
304 if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
305 if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) {
306 return false;
307 }
308 }
309
310 return CBB_flush(out);
311 }
312
ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE * hs,CBB * cbb,ssl_client_hello_type_t type,bool empty_session_id)313 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
314 CBB *cbb,
315 ssl_client_hello_type_t type,
316 bool empty_session_id) {
317 const SSL *const ssl = hs->ssl;
318 CBB child;
319 if (!CBB_add_u16(cbb, hs->client_version) ||
320 !CBB_add_bytes(cbb,
321 type == ssl_client_hello_inner ? hs->inner_client_random
322 : ssl->s3->client_random,
323 SSL3_RANDOM_SIZE) ||
324 !CBB_add_u8_length_prefixed(cbb, &child)) {
325 return false;
326 }
327
328 // Do not send a session ID on renegotiation.
329 if (!ssl->s3->initial_handshake_complete && //
330 !empty_session_id && //
331 !CBB_add_bytes(&child, hs->session_id.data(), hs->session_id.size())) {
332 return false;
333 }
334
335 if (SSL_is_dtls(ssl)) {
336 if (!CBB_add_u8_length_prefixed(cbb, &child) ||
337 !CBB_add_bytes(&child, hs->dtls_cookie.data(),
338 hs->dtls_cookie.size())) {
339 return false;
340 }
341 }
342
343 if (!ssl_write_client_cipher_list(hs, cbb, type) ||
344 !CBB_add_u8(cbb, 1 /* one compression method */) ||
345 !CBB_add_u8(cbb, 0 /* null compression */)) {
346 return false;
347 }
348 return true;
349 }
350
ssl_add_client_hello(SSL_HANDSHAKE * hs)351 bool ssl_add_client_hello(SSL_HANDSHAKE *hs) {
352 SSL *const ssl = hs->ssl;
353 ScopedCBB cbb;
354 CBB body;
355 ssl_client_hello_type_t type = hs->selected_ech_config
356 ? ssl_client_hello_outer
357 : ssl_client_hello_unencrypted;
358 bool needs_psk_binder;
359 Array<uint8_t> msg;
360 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO) ||
361 !ssl_write_client_hello_without_extensions(hs, &body, type,
362 /*empty_session_id=*/false) ||
363 !ssl_add_clienthello_tlsext(hs, &body, /*out_encoded=*/nullptr,
364 &needs_psk_binder, type, CBB_len(&body)) ||
365 !ssl->method->finish_message(ssl, cbb.get(), &msg)) {
366 return false;
367 }
368
369 // Now that the length prefixes have been computed, fill in the placeholder
370 // PSK binder.
371 if (needs_psk_binder) {
372 // ClientHelloOuter cannot have a PSK binder. Otherwise the
373 // ClientHellOuterAAD computation would break.
374 assert(type != ssl_client_hello_outer);
375 if (!tls13_write_psk_binder(hs, hs->transcript, MakeSpan(msg),
376 /*out_binder_len=*/0)) {
377 return false;
378 }
379 }
380
381 return ssl->method->add_message(ssl, std::move(msg));
382 }
383
parse_server_version(const SSL_HANDSHAKE * hs,uint16_t * out_version,uint8_t * out_alert,const ParsedServerHello & server_hello)384 static bool parse_server_version(const SSL_HANDSHAKE *hs, uint16_t *out_version,
385 uint8_t *out_alert,
386 const ParsedServerHello &server_hello) {
387 uint16_t legacy_version = TLS1_2_VERSION;
388 if (SSL_is_dtls(hs->ssl)) {
389 legacy_version = DTLS1_2_VERSION;
390 }
391 // If the outer version is not TLS 1.2, use it.
392 // TODO(davidben): This function doesn't quite match the RFC8446 formulation.
393 if (server_hello.legacy_version != legacy_version) {
394 *out_version = server_hello.legacy_version;
395 return true;
396 }
397
398 SSLExtension supported_versions(TLSEXT_TYPE_supported_versions);
399 CBS extensions = server_hello.extensions;
400 if (!ssl_parse_extensions(&extensions, out_alert, {&supported_versions},
401 /*ignore_unknown=*/true)) {
402 return false;
403 }
404
405 if (!supported_versions.present) {
406 *out_version = server_hello.legacy_version;
407 return true;
408 }
409
410 if (!CBS_get_u16(&supported_versions.data, out_version) || //
411 CBS_len(&supported_versions.data) != 0) {
412 *out_alert = SSL_AD_DECODE_ERROR;
413 return false;
414 }
415
416 return true;
417 }
418
419 // should_offer_early_data returns |ssl_early_data_accepted| if |hs| should
420 // offer early data, and some other reason code otherwise.
should_offer_early_data(const SSL_HANDSHAKE * hs)421 static ssl_early_data_reason_t should_offer_early_data(
422 const SSL_HANDSHAKE *hs) {
423 const SSL *const ssl = hs->ssl;
424 assert(!ssl->server);
425 if (!ssl->enable_early_data) {
426 return ssl_early_data_disabled;
427 }
428
429 if (hs->max_version < TLS1_3_VERSION || SSL_is_dtls(ssl)) {
430 // We discard inapplicable sessions, so this is redundant with the session
431 // checks below, but reporting that TLS 1.3 was disabled is more useful.
432 //
433 // TODO(crbug.com/42290594): Support early data in DTLS 1.3.
434 return ssl_early_data_protocol_version;
435 }
436
437 if (ssl->session == nullptr) {
438 return ssl_early_data_no_session_offered;
439 }
440
441 if (ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION ||
442 ssl->session->ticket_max_early_data == 0) {
443 return ssl_early_data_unsupported_for_session;
444 }
445
446 if (!ssl->session->early_alpn.empty()) {
447 if (!ssl_is_alpn_protocol_allowed(hs, ssl->session->early_alpn)) {
448 // Avoid reporting a confusing value in |SSL_get0_alpn_selected|.
449 return ssl_early_data_alpn_mismatch;
450 }
451
452 // If the previous connection negotiated ALPS, only offer 0-RTT when the
453 // local are settings are consistent with what we'd offer for this
454 // connection.
455 if (ssl->session->has_application_settings) {
456 Span<const uint8_t> settings;
457 if (!ssl_get_local_application_settings(hs, &settings,
458 ssl->session->early_alpn) ||
459 settings != ssl->session->local_application_settings) {
460 return ssl_early_data_alps_mismatch;
461 }
462 }
463 }
464
465 // Early data has not yet been accepted, but we use it as a success code.
466 return ssl_early_data_accepted;
467 }
468
ssl_done_writing_client_hello(SSL_HANDSHAKE * hs)469 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs) {
470 hs->ech_client_outer.Reset();
471 hs->cookie.Reset();
472 hs->key_share_bytes.Reset();
473 }
474
do_start_connect(SSL_HANDSHAKE * hs)475 static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) {
476 SSL *const ssl = hs->ssl;
477
478 ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1);
479 // |session_reused| must be reset in case this is a renegotiation.
480 ssl->s3->session_reused = false;
481
482 // Freeze the version range.
483 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
484 return ssl_hs_error;
485 }
486
487 uint8_t ech_enc[EVP_HPKE_MAX_ENC_LENGTH];
488 size_t ech_enc_len;
489 if (!ssl_select_ech_config(hs, ech_enc, &ech_enc_len)) {
490 return ssl_hs_error;
491 }
492
493 // Always advertise the ClientHello version from the original maximum version,
494 // even on renegotiation. The static RSA key exchange uses this field, and
495 // some servers fail when it changes across handshakes.
496 if (SSL_is_dtls(hs->ssl)) {
497 hs->client_version =
498 hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION;
499 } else {
500 hs->client_version =
501 hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version;
502 }
503
504 // If the configured session has expired or is not usable, drop it. We also do
505 // not offer sessions on renegotiation.
506 SSLSessionType session_type = SSLSessionType::kNotResumable;
507 if (ssl->session != nullptr) {
508 session_type = ssl_session_get_type(ssl->session.get());
509 if (ssl->session->is_server ||
510 !ssl_supports_version(hs, ssl->session->ssl_version) ||
511 // Do not offer TLS 1.2 sessions with ECH. ClientHelloInner does not
512 // offer TLS 1.2, and the cleartext session ID may leak the server
513 // identity.
514 (hs->selected_ech_config &&
515 ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) ||
516 session_type == SSLSessionType::kNotResumable ||
517 // Don't offer TLS 1.2 tickets if disabled.
518 (session_type == SSLSessionType::kTicket &&
519 (SSL_get_options(ssl) & SSL_OP_NO_TICKET)) ||
520 !ssl_session_is_time_valid(ssl, ssl->session.get()) ||
521 (ssl->quic_method != nullptr) != ssl->session->is_quic ||
522 ssl->s3->initial_handshake_complete) {
523 ssl_set_session(ssl, nullptr);
524 session_type = SSLSessionType::kNotResumable;
525 }
526 }
527
528 if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) {
529 return ssl_hs_error;
530 }
531 if (hs->selected_ech_config &&
532 !RAND_bytes(hs->inner_client_random, sizeof(hs->inner_client_random))) {
533 return ssl_hs_error;
534 }
535
536 // Compatibility mode sends a random session ID. Compatibility mode is
537 // enabled for TLS 1.3, but not when it's run over QUIC or DTLS.
538 const bool enable_compatibility_mode = hs->max_version >= TLS1_3_VERSION &&
539 ssl->quic_method == nullptr &&
540 !SSL_is_dtls(hs->ssl);
541 if (session_type == SSLSessionType::kID) {
542 hs->session_id = ssl->session->session_id;
543 } else if (session_type == SSLSessionType::kTicket ||
544 enable_compatibility_mode) {
545 // TLS 1.2 session tickets require a placeholder value to signal resumption.
546 hs->session_id.ResizeForOverwrite(SSL_MAX_SSL_SESSION_ID_LENGTH);
547 if (!RAND_bytes(hs->session_id.data(), hs->session_id.size())) {
548 return ssl_hs_error;
549 }
550 }
551
552 ssl_early_data_reason_t reason = should_offer_early_data(hs);
553 if (reason != ssl_early_data_accepted) {
554 ssl->s3->early_data_reason = reason;
555 } else {
556 hs->early_data_offered = true;
557 }
558
559 if (!ssl_setup_key_shares(hs, /*override_group_id=*/0) ||
560 !ssl_setup_extension_permutation(hs) ||
561 !ssl_encrypt_client_hello(hs, MakeConstSpan(ech_enc, ech_enc_len)) ||
562 !ssl_add_client_hello(hs)) {
563 return ssl_hs_error;
564 }
565
566 hs->state = state_enter_early_data;
567 return ssl_hs_flush;
568 }
569
do_enter_early_data(SSL_HANDSHAKE * hs)570 static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) {
571 SSL *const ssl = hs->ssl;
572 if (!hs->early_data_offered) {
573 hs->state = state_read_server_hello;
574 return ssl_hs_ok;
575 }
576
577 // Stash the early data session and activate the early version. This must
578 // happen before |do_early_reverify_server_certificate|, so early connection
579 // properties are available to the callback. Note the early version may be
580 // overwritten later by the final version.
581 hs->early_session = UpRef(ssl->session);
582 ssl->s3->version = hs->early_session->ssl_version;
583 hs->is_early_version = true;
584 hs->state = state_early_reverify_server_certificate;
585 return ssl_hs_ok;
586 }
587
do_early_reverify_server_certificate(SSL_HANDSHAKE * hs)588 static enum ssl_hs_wait_t do_early_reverify_server_certificate(
589 SSL_HANDSHAKE *hs) {
590 SSL *const ssl = hs->ssl;
591 if (ssl->ctx->reverify_on_resume) {
592 // Don't send an alert on error. The alert would be in the clear, which the
593 // server is not expecting anyway. Alerts in between ClientHello and
594 // ServerHello cannot usefully be delivered in TLS 1.3.
595 //
596 // TODO(davidben): The client behavior should be to verify the certificate
597 // before deciding whether to offer the session and, if invalid, decline to
598 // send the session.
599 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/false)) {
600 case ssl_verify_ok:
601 break;
602 case ssl_verify_invalid:
603 return ssl_hs_error;
604 case ssl_verify_retry:
605 hs->state = state_early_reverify_server_certificate;
606 return ssl_hs_certificate_verify;
607 }
608 }
609
610 if (!ssl->method->add_change_cipher_spec(ssl)) {
611 return ssl_hs_error;
612 }
613
614 // Defer releasing the 0-RTT key to after certificate reverification, so the
615 // QUIC implementation does not accidentally write data too early.
616 if (!tls13_init_early_key_schedule(hs, hs->early_session.get()) ||
617 !tls13_derive_early_secret(hs) ||
618 !tls13_set_traffic_key(hs->ssl, ssl_encryption_early_data, evp_aead_seal,
619 hs->early_session.get(),
620 hs->early_traffic_secret)) {
621 return ssl_hs_error;
622 }
623
624 hs->in_early_data = true;
625 hs->can_early_write = true;
626 hs->state = state_read_server_hello;
627 return ssl_hs_early_return;
628 }
629
handle_hello_verify_request(SSL_HANDSHAKE * hs,const SSLMessage & msg)630 static bool handle_hello_verify_request(SSL_HANDSHAKE *hs,
631 const SSLMessage &msg) {
632 SSL *const ssl = hs->ssl;
633 assert(SSL_is_dtls(ssl));
634 assert(msg.type == DTLS1_MT_HELLO_VERIFY_REQUEST);
635 assert(!hs->received_hello_verify_request);
636
637 CBS hello_verify_request = msg.body, cookie;
638 uint16_t server_version;
639 if (!CBS_get_u16(&hello_verify_request, &server_version) ||
640 !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) ||
641 CBS_len(&hello_verify_request) != 0) {
642 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
643 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
644 return false;
645 }
646
647 if (!hs->dtls_cookie.CopyFrom(cookie)) {
648 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
649 return false;
650 }
651 hs->received_hello_verify_request = true;
652
653 ssl->method->next_message(ssl);
654
655 // DTLS resets the handshake buffer after HelloVerifyRequest.
656 if (!hs->transcript.Init()) {
657 return false;
658 }
659
660 return ssl_add_client_hello(hs);
661 }
662
ssl_parse_server_hello(ParsedServerHello * out,uint8_t * out_alert,const SSLMessage & msg)663 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
664 const SSLMessage &msg) {
665 if (msg.type != SSL3_MT_SERVER_HELLO) {
666 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
667 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
668 return false;
669 }
670 out->raw = msg.raw;
671 CBS body = msg.body;
672 if (!CBS_get_u16(&body, &out->legacy_version) ||
673 !CBS_get_bytes(&body, &out->random, SSL3_RANDOM_SIZE) ||
674 !CBS_get_u8_length_prefixed(&body, &out->session_id) ||
675 CBS_len(&out->session_id) > SSL3_SESSION_ID_SIZE ||
676 !CBS_get_u16(&body, &out->cipher_suite) ||
677 !CBS_get_u8(&body, &out->compression_method)) {
678 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
679 *out_alert = SSL_AD_DECODE_ERROR;
680 return false;
681 }
682 // In TLS 1.2 and below, empty extensions blocks may be omitted. In TLS 1.3,
683 // ServerHellos always have extensions, so this can be applied generically.
684 CBS_init(&out->extensions, nullptr, 0);
685 if ((CBS_len(&body) != 0 &&
686 !CBS_get_u16_length_prefixed(&body, &out->extensions)) ||
687 CBS_len(&body) != 0) {
688 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
689 *out_alert = SSL_AD_DECODE_ERROR;
690 return false;
691 }
692 return true;
693 }
694
do_read_server_hello(SSL_HANDSHAKE * hs)695 static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) {
696 SSL *const ssl = hs->ssl;
697 SSLMessage msg;
698 if (!ssl->method->get_message(ssl, &msg)) {
699 return ssl_hs_read_server_hello;
700 }
701
702 if (SSL_is_dtls(ssl) && !hs->received_hello_verify_request &&
703 msg.type == DTLS1_MT_HELLO_VERIFY_REQUEST) {
704 if (!handle_hello_verify_request(hs, msg)) {
705 return ssl_hs_error;
706 }
707 hs->received_hello_verify_request = true;
708 hs->state = state_read_server_hello;
709 return ssl_hs_flush;
710 }
711
712 ParsedServerHello server_hello;
713 uint16_t server_version;
714 uint8_t alert = SSL_AD_DECODE_ERROR;
715 if (!ssl_parse_server_hello(&server_hello, &alert, msg) ||
716 !parse_server_version(hs, &server_version, &alert, server_hello)) {
717 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
718 return ssl_hs_error;
719 }
720
721 if (!ssl_supports_version(hs, server_version)) {
722 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
723 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
724 return ssl_hs_error;
725 }
726
727 if (!ssl->s3->initial_handshake_complete) {
728 // |ssl->s3->version| may be set due to 0-RTT. If it was to a different
729 // value, the check below will fire.
730 assert(ssl->s3->version == 0 ||
731 (hs->is_early_version &&
732 ssl->s3->version == hs->early_session->ssl_version));
733 ssl->s3->version = server_version;
734 hs->is_early_version = false;
735 } else if (server_version != ssl->s3->version) {
736 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
737 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
738 return ssl_hs_error;
739 }
740
741 // If the version did not match, stop sending 0-RTT data.
742 if (hs->early_data_offered &&
743 ssl->s3->version != hs->early_session->ssl_version) {
744 // This is currently only possible by reading a TLS 1.2 (or earlier)
745 // ServerHello in response to TLS 1.3. If there is ever a TLS 1.4, or
746 // another variant of TLS 1.3, the fatal error below will need to be a clean
747 // 0-RTT reject.
748 assert(ssl_protocol_version(ssl) < TLS1_3_VERSION);
749 assert(ssl_session_protocol_version(hs->early_session.get()) >=
750 TLS1_3_VERSION);
751
752 // A TLS 1.2 server would not know to skip the early data we offered, so
753 // there is no point in continuing the handshake. Report an error code as
754 // soon as we detect this. The caller may use this error code to implement
755 // the fallback described in RFC 8446 appendix D.3.
756 //
757 // Disconnect early writes. This ensures subsequent |SSL_write| calls query
758 // the handshake which, in turn, will replay the error code rather than fail
759 // at the |write_shutdown| check. See https://crbug.com/1078515.
760 // TODO(davidben): Should all handshake errors do this? What about record
761 // decryption failures?
762 //
763 // TODO(crbug.com/42290594): Although missing from the spec, a DTLS 1.2
764 // server will already naturally skip 0-RTT data. If we implement DTLS 1.3
765 // 0-RTT, we may want a clean reject.
766 assert(!SSL_is_dtls(ssl));
767 hs->can_early_write = false;
768 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA);
769 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
770 return ssl_hs_error;
771 }
772
773 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
774 if (hs->received_hello_verify_request) {
775 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_MESSAGE);
776 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
777 return ssl_hs_error;
778 }
779
780 hs->state = state_tls13;
781 return ssl_hs_ok;
782 }
783
784 // Clear some TLS 1.3 state that no longer needs to be retained.
785 hs->key_shares[0].reset();
786 hs->key_shares[1].reset();
787 ssl_done_writing_client_hello(hs);
788
789 // TLS 1.2 handshakes cannot accept ECH.
790 if (hs->selected_ech_config) {
791 ssl->s3->ech_status = ssl_ech_rejected;
792 }
793
794 // Copy over the server random.
795 OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_hello.random),
796 SSL3_RANDOM_SIZE);
797
798 // Enforce the TLS 1.3 anti-downgrade feature.
799 if (!ssl->s3->initial_handshake_complete &&
800 ssl_supports_version(hs, TLS1_3_VERSION)) {
801 static_assert(
802 sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
803 "downgrade signals have different size");
804 static_assert(
805 sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
806 "downgrade signals have different size");
807 auto suffix =
808 MakeConstSpan(ssl->s3->server_random, sizeof(ssl->s3->server_random))
809 .subspan(SSL3_RANDOM_SIZE - sizeof(kTLS13DowngradeRandom));
810 if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom ||
811 suffix == kJDK11DowngradeRandom) {
812 OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE);
813 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
814 return ssl_hs_error;
815 }
816 }
817
818 // The cipher must be allowed in the selected version and enabled.
819 const SSL_CIPHER *cipher = SSL_get_cipher_by_value(server_hello.cipher_suite);
820 uint32_t mask_a, mask_k;
821 ssl_get_client_disabled(hs, &mask_a, &mask_k);
822 if (cipher == nullptr || //
823 (cipher->algorithm_mkey & mask_k) || //
824 (cipher->algorithm_auth & mask_a) || //
825 SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) || //
826 SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) || //
827 !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), nullptr, cipher)) {
828 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
829 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
830 return ssl_hs_error;
831 }
832
833 hs->new_cipher = cipher;
834
835 if (!hs->session_id.empty() &&
836 Span<const uint8_t>(server_hello.session_id) == hs->session_id) {
837 // Echoing the ClientHello session ID in TLS 1.2, whether from the session
838 // or a synthetic one, indicates resumption. If there was no session (or if
839 // the session was only offered in ECH ClientHelloInner), this was the
840 // TLS 1.3 compatibility mode session ID. As we know this is not a session
841 // the server knows about, any server resuming it is in error. Reject the
842 // first connection deterministicly, rather than installing an invalid
843 // session into the session cache. https://crbug.com/796910
844 if (ssl->session == nullptr || ssl->s3->ech_status == ssl_ech_rejected) {
845 OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID);
846 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
847 return ssl_hs_error;
848 }
849 if (ssl->session->ssl_version != ssl->s3->version) {
850 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
851 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
852 return ssl_hs_error;
853 }
854 if (ssl->session->cipher != hs->new_cipher) {
855 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
856 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
857 return ssl_hs_error;
858 }
859 if (!ssl_session_is_context_valid(hs, ssl->session.get())) {
860 // This is actually a client application bug.
861 OPENSSL_PUT_ERROR(SSL,
862 SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
863 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
864 return ssl_hs_error;
865 }
866 // We never offer sessions on renegotiation.
867 assert(!ssl->s3->initial_handshake_complete);
868 ssl->s3->session_reused = true;
869 } else {
870 // The session wasn't resumed. Create a fresh SSL_SESSION to fill out.
871 ssl_set_session(ssl, NULL);
872 if (!ssl_get_new_session(hs)) {
873 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
874 return ssl_hs_error;
875 }
876
877 // Save the session ID from the server. This may be empty if the session
878 // isn't resumable, or if we'll receive a session ticket later. The
879 // ServerHello parser ensures |server_hello.session_id| is within bounds.
880 hs->new_session->session_id.CopyFrom(server_hello.session_id);
881 hs->new_session->cipher = hs->new_cipher;
882 }
883
884 // Now that the cipher is known, initialize the handshake hash and hash the
885 // ServerHello.
886 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
887 !ssl_hash_message(hs, msg)) {
888 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
889 return ssl_hs_error;
890 }
891
892 // If doing a full handshake, the server may request a client certificate
893 // which requires hashing the handshake transcript. Otherwise, the handshake
894 // buffer may be released.
895 if (ssl->session != NULL ||
896 !ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
897 hs->transcript.FreeBuffer();
898 }
899
900 // Only the NULL compression algorithm is supported.
901 if (server_hello.compression_method != 0) {
902 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
903 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
904 return ssl_hs_error;
905 }
906
907 if (!ssl_parse_serverhello_tlsext(hs, &server_hello.extensions)) {
908 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
909 return ssl_hs_error;
910 }
911
912 if (ssl->session != NULL &&
913 hs->extended_master_secret != ssl->session->extended_master_secret) {
914 if (ssl->session->extended_master_secret) {
915 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
916 } else {
917 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
918 }
919 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
920 return ssl_hs_error;
921 }
922
923 ssl->method->next_message(ssl);
924
925 if (ssl->session != NULL) {
926 if (ssl->ctx->reverify_on_resume &&
927 ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
928 hs->state = state_reverify_server_certificate;
929 } else {
930 hs->state = state_read_session_ticket;
931 }
932 return ssl_hs_ok;
933 }
934
935 hs->state = state_read_server_certificate;
936 return ssl_hs_ok;
937 }
938
do_tls13(SSL_HANDSHAKE * hs)939 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
940 enum ssl_hs_wait_t wait = tls13_client_handshake(hs);
941 if (wait == ssl_hs_ok) {
942 hs->state = state_finish_client_handshake;
943 return ssl_hs_ok;
944 }
945
946 return wait;
947 }
948
do_read_server_certificate(SSL_HANDSHAKE * hs)949 static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) {
950 SSL *const ssl = hs->ssl;
951
952 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
953 hs->state = state_read_certificate_status;
954 return ssl_hs_ok;
955 }
956
957 SSLMessage msg;
958 if (!ssl->method->get_message(ssl, &msg)) {
959 return ssl_hs_read_message;
960 }
961
962 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) ||
963 !ssl_hash_message(hs, msg)) {
964 return ssl_hs_error;
965 }
966
967 CBS body = msg.body;
968 uint8_t alert = SSL_AD_DECODE_ERROR;
969 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
970 NULL, &body, ssl->ctx->pool)) {
971 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
972 return ssl_hs_error;
973 }
974
975 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 ||
976 CBS_len(&body) != 0 ||
977 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
978 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
979 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
980 return ssl_hs_error;
981 }
982
983 if (!ssl_check_leaf_certificate(
984 hs, hs->peer_pubkey.get(),
985 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) {
986 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
987 return ssl_hs_error;
988 }
989
990 ssl->method->next_message(ssl);
991
992 hs->state = state_read_certificate_status;
993 return ssl_hs_ok;
994 }
995
do_read_certificate_status(SSL_HANDSHAKE * hs)996 static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) {
997 SSL *const ssl = hs->ssl;
998
999 if (!hs->certificate_status_expected) {
1000 hs->state = state_verify_server_certificate;
1001 return ssl_hs_ok;
1002 }
1003
1004 SSLMessage msg;
1005 if (!ssl->method->get_message(ssl, &msg)) {
1006 return ssl_hs_read_message;
1007 }
1008
1009 if (msg.type != SSL3_MT_CERTIFICATE_STATUS) {
1010 // A server may send status_request in ServerHello and then change its mind
1011 // about sending CertificateStatus.
1012 hs->state = state_verify_server_certificate;
1013 return ssl_hs_ok;
1014 }
1015
1016 if (!ssl_hash_message(hs, msg)) {
1017 return ssl_hs_error;
1018 }
1019
1020 CBS certificate_status = msg.body, ocsp_response;
1021 uint8_t status_type;
1022 if (!CBS_get_u8(&certificate_status, &status_type) || //
1023 status_type != TLSEXT_STATUSTYPE_ocsp || //
1024 !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) || //
1025 CBS_len(&ocsp_response) == 0 || //
1026 CBS_len(&certificate_status) != 0) {
1027 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1028 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1029 return ssl_hs_error;
1030 }
1031
1032 hs->new_session->ocsp_response.reset(
1033 CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool));
1034 if (hs->new_session->ocsp_response == nullptr) {
1035 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1036 return ssl_hs_error;
1037 }
1038
1039 ssl->method->next_message(ssl);
1040
1041 hs->state = state_verify_server_certificate;
1042 return ssl_hs_ok;
1043 }
1044
do_verify_server_certificate(SSL_HANDSHAKE * hs)1045 static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) {
1046 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1047 hs->state = state_read_server_key_exchange;
1048 return ssl_hs_ok;
1049 }
1050
1051 switch (ssl_verify_peer_cert(hs)) {
1052 case ssl_verify_ok:
1053 break;
1054 case ssl_verify_invalid:
1055 return ssl_hs_error;
1056 case ssl_verify_retry:
1057 hs->state = state_verify_server_certificate;
1058 return ssl_hs_certificate_verify;
1059 }
1060
1061 hs->state = state_read_server_key_exchange;
1062 return ssl_hs_ok;
1063 }
1064
do_reverify_server_certificate(SSL_HANDSHAKE * hs)1065 static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) {
1066 assert(hs->ssl->ctx->reverify_on_resume);
1067
1068 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/true)) {
1069 case ssl_verify_ok:
1070 break;
1071 case ssl_verify_invalid:
1072 return ssl_hs_error;
1073 case ssl_verify_retry:
1074 hs->state = state_reverify_server_certificate;
1075 return ssl_hs_certificate_verify;
1076 }
1077
1078 hs->state = state_read_session_ticket;
1079 return ssl_hs_ok;
1080 }
1081
do_read_server_key_exchange(SSL_HANDSHAKE * hs)1082 static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) {
1083 SSL *const ssl = hs->ssl;
1084 SSLMessage msg;
1085 if (!ssl->method->get_message(ssl, &msg)) {
1086 return ssl_hs_read_message;
1087 }
1088
1089 if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) {
1090 // Some ciphers (pure PSK) have an optional ServerKeyExchange message.
1091 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) {
1092 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1093 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1094 return ssl_hs_error;
1095 }
1096
1097 hs->state = state_read_certificate_request;
1098 return ssl_hs_ok;
1099 }
1100
1101 if (!ssl_hash_message(hs, msg)) {
1102 return ssl_hs_error;
1103 }
1104
1105 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1106 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1107 CBS server_key_exchange = msg.body;
1108 if (alg_a & SSL_aPSK) {
1109 CBS psk_identity_hint;
1110
1111 // Each of the PSK key exchanges begins with a psk_identity_hint.
1112 if (!CBS_get_u16_length_prefixed(&server_key_exchange,
1113 &psk_identity_hint)) {
1114 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1115 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1116 return ssl_hs_error;
1117 }
1118
1119 // Store the PSK identity hint for the ClientKeyExchange. Assume that the
1120 // maximum length of a PSK identity hint can be as long as the maximum
1121 // length of a PSK identity. Also do not allow NULL characters; identities
1122 // are saved as C strings.
1123 //
1124 // TODO(davidben): Should invalid hints be ignored? It's a hint rather than
1125 // a specific identity.
1126 if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
1127 CBS_contains_zero_byte(&psk_identity_hint)) {
1128 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1129 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1130 return ssl_hs_error;
1131 }
1132
1133 // Save non-empty identity hints as a C string. Empty identity hints we
1134 // treat as missing. Plain PSK makes it possible to send either no hint
1135 // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell
1136 // empty hint. Having different capabilities is odd, so we interpret empty
1137 // and missing as identical.
1138 char *raw = nullptr;
1139 if (CBS_len(&psk_identity_hint) != 0 &&
1140 !CBS_strdup(&psk_identity_hint, &raw)) {
1141 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1142 return ssl_hs_error;
1143 }
1144 hs->peer_psk_identity_hint.reset(raw);
1145 }
1146
1147 if (alg_k & SSL_kECDHE) {
1148 // Parse the server parameters.
1149 uint8_t group_type;
1150 uint16_t group_id;
1151 CBS point;
1152 if (!CBS_get_u8(&server_key_exchange, &group_type) ||
1153 group_type != NAMED_CURVE_TYPE ||
1154 !CBS_get_u16(&server_key_exchange, &group_id) ||
1155 !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
1156 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1157 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1158 return ssl_hs_error;
1159 }
1160
1161 // Ensure the group is consistent with preferences.
1162 if (!tls1_check_group_id(hs, group_id)) {
1163 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
1164 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1165 return ssl_hs_error;
1166 }
1167
1168 // Save the group and peer public key for later.
1169 hs->new_session->group_id = group_id;
1170 if (!hs->peer_key.CopyFrom(point)) {
1171 return ssl_hs_error;
1172 }
1173 } else if (!(alg_k & SSL_kPSK)) {
1174 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1175 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1176 return ssl_hs_error;
1177 }
1178
1179 // At this point, |server_key_exchange| contains the signature, if any, while
1180 // |msg.body| contains the entire message. From that, derive a CBS containing
1181 // just the parameter.
1182 CBS parameter;
1183 CBS_init(¶meter, CBS_data(&msg.body),
1184 CBS_len(&msg.body) - CBS_len(&server_key_exchange));
1185
1186 // ServerKeyExchange should be signed by the server's public key.
1187 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1188 uint16_t signature_algorithm = 0;
1189 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1190 if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) {
1191 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1192 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1193 return ssl_hs_error;
1194 }
1195 uint8_t alert = SSL_AD_DECODE_ERROR;
1196 if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm,
1197 hs->peer_pubkey.get())) {
1198 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1199 return ssl_hs_error;
1200 }
1201 hs->new_session->peer_signature_algorithm = signature_algorithm;
1202 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1203 hs->peer_pubkey.get())) {
1204 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1205 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1206 return ssl_hs_error;
1207 }
1208
1209 // The last field in |server_key_exchange| is the signature.
1210 CBS signature;
1211 if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
1212 CBS_len(&server_key_exchange) != 0) {
1213 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1214 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1215 return ssl_hs_error;
1216 }
1217
1218 ScopedCBB transcript;
1219 Array<uint8_t> transcript_data;
1220 if (!CBB_init(transcript.get(),
1221 2 * SSL3_RANDOM_SIZE + CBS_len(¶meter)) ||
1222 !CBB_add_bytes(transcript.get(), ssl->s3->client_random,
1223 SSL3_RANDOM_SIZE) ||
1224 !CBB_add_bytes(transcript.get(), ssl->s3->server_random,
1225 SSL3_RANDOM_SIZE) ||
1226 !CBB_add_bytes(transcript.get(), CBS_data(¶meter),
1227 CBS_len(¶meter)) ||
1228 !CBBFinishArray(transcript.get(), &transcript_data)) {
1229 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1230 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1231 return ssl_hs_error;
1232 }
1233
1234 if (!ssl_public_key_verify(ssl, signature, signature_algorithm,
1235 hs->peer_pubkey.get(), transcript_data)) {
1236 // bad signature
1237 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1238 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1239 return ssl_hs_error;
1240 }
1241 } else {
1242 // PSK ciphers are the only supported certificate-less ciphers.
1243 assert(alg_a == SSL_aPSK);
1244
1245 if (CBS_len(&server_key_exchange) > 0) {
1246 OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
1247 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1248 return ssl_hs_error;
1249 }
1250 }
1251
1252 ssl->method->next_message(ssl);
1253 hs->state = state_read_certificate_request;
1254 return ssl_hs_ok;
1255 }
1256
do_read_certificate_request(SSL_HANDSHAKE * hs)1257 static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) {
1258 SSL *const ssl = hs->ssl;
1259
1260 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1261 hs->state = state_read_server_hello_done;
1262 return ssl_hs_ok;
1263 }
1264
1265 SSLMessage msg;
1266 if (!ssl->method->get_message(ssl, &msg)) {
1267 return ssl_hs_read_message;
1268 }
1269
1270 if (msg.type == SSL3_MT_SERVER_HELLO_DONE) {
1271 // If we get here we don't need the handshake buffer as we won't be doing
1272 // client auth.
1273 hs->transcript.FreeBuffer();
1274 hs->state = state_read_server_hello_done;
1275 return ssl_hs_ok;
1276 }
1277
1278 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) ||
1279 !ssl_hash_message(hs, msg)) {
1280 return ssl_hs_error;
1281 }
1282
1283 // Get the certificate types.
1284 CBS body = msg.body, certificate_types;
1285 if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) {
1286 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1287 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1288 return ssl_hs_error;
1289 }
1290
1291 if (!hs->certificate_types.CopyFrom(certificate_types)) {
1292 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1293 return ssl_hs_error;
1294 }
1295
1296 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1297 CBS supported_signature_algorithms;
1298 if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) ||
1299 !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
1300 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1301 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1302 return ssl_hs_error;
1303 }
1304 }
1305
1306 uint8_t alert = SSL_AD_DECODE_ERROR;
1307 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names =
1308 SSL_parse_CA_list(ssl, &alert, &body);
1309 if (!ca_names) {
1310 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1311 return ssl_hs_error;
1312 }
1313
1314 if (CBS_len(&body) != 0) {
1315 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1316 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1317 return ssl_hs_error;
1318 }
1319
1320 hs->cert_request = true;
1321 hs->ca_names = std::move(ca_names);
1322 ssl->ctx->x509_method->hs_flush_cached_ca_names(hs);
1323
1324 ssl->method->next_message(ssl);
1325 hs->state = state_read_server_hello_done;
1326 return ssl_hs_ok;
1327 }
1328
do_read_server_hello_done(SSL_HANDSHAKE * hs)1329 static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) {
1330 SSL *const ssl = hs->ssl;
1331 SSLMessage msg;
1332 if (!ssl->method->get_message(ssl, &msg)) {
1333 return ssl_hs_read_message;
1334 }
1335
1336 if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) ||
1337 !ssl_hash_message(hs, msg)) {
1338 return ssl_hs_error;
1339 }
1340
1341 // ServerHelloDone is empty.
1342 if (CBS_len(&msg.body) != 0) {
1343 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1344 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1345 return ssl_hs_error;
1346 }
1347
1348 // ServerHelloDone should be the end of the flight.
1349 if (ssl->method->has_unprocessed_handshake_data(ssl)) {
1350 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1351 OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
1352 return ssl_hs_error;
1353 }
1354
1355 ssl->method->next_message(ssl);
1356 hs->state = state_send_client_certificate;
1357 return ssl_hs_ok;
1358 }
1359
check_credential(SSL_HANDSHAKE * hs,const SSL_CREDENTIAL * cred,uint16_t * out_sigalg)1360 static bool check_credential(SSL_HANDSHAKE *hs, const SSL_CREDENTIAL *cred,
1361 uint16_t *out_sigalg) {
1362 if (cred->type != SSLCredentialType::kX509) {
1363 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1364 return false;
1365 }
1366
1367 if (hs->config->check_client_certificate_type) {
1368 // Check the certificate types advertised by the peer.
1369 uint8_t cert_type;
1370 switch (EVP_PKEY_id(cred->pubkey.get())) {
1371 case EVP_PKEY_RSA:
1372 cert_type = SSL3_CT_RSA_SIGN;
1373 break;
1374 case EVP_PKEY_EC:
1375 case EVP_PKEY_ED25519:
1376 cert_type = TLS_CT_ECDSA_SIGN;
1377 break;
1378 default:
1379 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1380 return false;
1381 }
1382 if (std::find(hs->certificate_types.begin(), hs->certificate_types.end(),
1383 cert_type) == hs->certificate_types.end()) {
1384 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1385 return false;
1386 }
1387 }
1388
1389 // All currently supported credentials require a signature. Note this does not
1390 // check the ECDSA curve. Prior to TLS 1.3, there is no way to determine which
1391 // ECDSA curves are supported by the peer, so we must assume all curves are
1392 // supported.
1393 return tls1_choose_signature_algorithm(hs, cred, out_sigalg);
1394 }
1395
do_send_client_certificate(SSL_HANDSHAKE * hs)1396 static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) {
1397 SSL *const ssl = hs->ssl;
1398
1399 // The peer didn't request a certificate.
1400 if (!hs->cert_request) {
1401 hs->state = state_send_client_key_exchange;
1402 return ssl_hs_ok;
1403 }
1404
1405 if (ssl->s3->ech_status == ssl_ech_rejected) {
1406 // Do not send client certificates on ECH reject. We have not authenticated
1407 // the server for the name that can learn the certificate.
1408 SSL_certs_clear(ssl);
1409 } else if (hs->config->cert->cert_cb != nullptr) {
1410 // Call cert_cb to update the certificate.
1411 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
1412 if (rv == 0) {
1413 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1414 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
1415 return ssl_hs_error;
1416 }
1417 if (rv < 0) {
1418 hs->state = state_send_client_certificate;
1419 return ssl_hs_x509_lookup;
1420 }
1421 }
1422
1423 Array<SSL_CREDENTIAL *> creds;
1424 if (!ssl_get_credential_list(hs, &creds)) {
1425 return ssl_hs_error;
1426 }
1427
1428 if (creds.empty()) {
1429 // If there were no credentials, proceed without a client certificate. In
1430 // this case, the handshake buffer may be released early.
1431 hs->transcript.FreeBuffer();
1432 } else {
1433 // Select the credential to use.
1434 for (SSL_CREDENTIAL *cred : creds) {
1435 ERR_clear_error();
1436 uint16_t sigalg;
1437 if (check_credential(hs, cred, &sigalg)) {
1438 hs->credential = UpRef(cred);
1439 hs->signature_algorithm = sigalg;
1440 break;
1441 }
1442 }
1443 if (hs->credential == nullptr) {
1444 // The error from the last attempt is in the error queue.
1445 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1446 return ssl_hs_error;
1447 }
1448 }
1449
1450 if (!ssl_send_tls12_certificate(hs)) {
1451 return ssl_hs_error;
1452 }
1453
1454 hs->state = state_send_client_key_exchange;
1455 return ssl_hs_ok;
1456 }
1457
1458 static_assert(sizeof(size_t) >= sizeof(unsigned),
1459 "size_t is smaller than unsigned");
1460
do_send_client_key_exchange(SSL_HANDSHAKE * hs)1461 static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) {
1462 SSL *const ssl = hs->ssl;
1463 ScopedCBB cbb;
1464 CBB body;
1465 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1466 SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1467 return ssl_hs_error;
1468 }
1469
1470 Array<uint8_t> pms;
1471 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1472 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1473 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1474 const CRYPTO_BUFFER *leaf =
1475 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0);
1476 CBS leaf_cbs;
1477 CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs);
1478
1479 // Check the key usage matches the cipher suite. We do this unconditionally
1480 // for non-RSA certificates. In particular, it's needed to distinguish ECDH
1481 // certificates, which we do not support, from ECDSA certificates.
1482 // Historically, we have not checked RSA key usages, so it is controlled by
1483 // a flag for now. See https://crbug.com/795089.
1484 ssl_key_usage_t intended_use = (alg_k & SSL_kRSA)
1485 ? key_usage_encipherment
1486 : key_usage_digital_signature;
1487 if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) {
1488 if (hs->config->enforce_rsa_key_usage ||
1489 EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) {
1490 return ssl_hs_error;
1491 }
1492 ERR_clear_error();
1493 ssl->s3->was_key_usage_invalid = true;
1494 }
1495 }
1496
1497 // If using a PSK key exchange, prepare the pre-shared key.
1498 unsigned psk_len = 0;
1499 uint8_t psk[PSK_MAX_PSK_LEN];
1500 if (alg_a & SSL_aPSK) {
1501 if (hs->config->psk_client_callback == NULL) {
1502 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
1503 return ssl_hs_error;
1504 }
1505
1506 char identity[PSK_MAX_IDENTITY_LEN + 1];
1507 OPENSSL_memset(identity, 0, sizeof(identity));
1508 psk_len = hs->config->psk_client_callback(
1509 ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk,
1510 sizeof(psk));
1511 if (psk_len == 0) {
1512 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1513 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1514 return ssl_hs_error;
1515 }
1516 assert(psk_len <= PSK_MAX_PSK_LEN);
1517
1518 hs->new_session->psk_identity.reset(OPENSSL_strdup(identity));
1519 if (hs->new_session->psk_identity == nullptr) {
1520 return ssl_hs_error;
1521 }
1522
1523 // Write out psk_identity.
1524 CBB child;
1525 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1526 !CBB_add_bytes(&child, (const uint8_t *)identity,
1527 OPENSSL_strnlen(identity, sizeof(identity))) ||
1528 !CBB_flush(&body)) {
1529 return ssl_hs_error;
1530 }
1531 }
1532
1533 // Depending on the key exchange method, compute |pms|.
1534 if (alg_k & SSL_kRSA) {
1535 RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get());
1536 if (rsa == NULL) {
1537 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1538 return ssl_hs_error;
1539 }
1540
1541 if (!pms.InitForOverwrite(SSL_MAX_MASTER_KEY_LENGTH)) {
1542 return ssl_hs_error;
1543 }
1544 pms[0] = hs->client_version >> 8;
1545 pms[1] = hs->client_version & 0xff;
1546 if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
1547 return ssl_hs_error;
1548 }
1549
1550 CBB enc_pms;
1551 uint8_t *ptr;
1552 size_t enc_pms_len;
1553 if (!CBB_add_u16_length_prefixed(&body, &enc_pms) || //
1554 !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) || //
1555 !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(),
1556 pms.size(), RSA_PKCS1_PADDING) || //
1557 !CBB_did_write(&enc_pms, enc_pms_len) || //
1558 !CBB_flush(&body)) {
1559 return ssl_hs_error;
1560 }
1561 } else if (alg_k & SSL_kECDHE) {
1562 CBB child;
1563 if (!CBB_add_u8_length_prefixed(&body, &child)) {
1564 return ssl_hs_error;
1565 }
1566
1567 // Generate a premaster secret and encapsulate it.
1568 bssl::UniquePtr<SSLKeyShare> kem =
1569 SSLKeyShare::Create(hs->new_session->group_id);
1570 uint8_t alert = SSL_AD_DECODE_ERROR;
1571 if (!kem || !kem->Encap(&child, &pms, &alert, hs->peer_key)) {
1572 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1573 return ssl_hs_error;
1574 }
1575 if (!CBB_flush(&body)) {
1576 return ssl_hs_error;
1577 }
1578
1579 // The peer key can now be discarded.
1580 hs->peer_key.Reset();
1581 } else if (alg_k & SSL_kPSK) {
1582 // For plain PSK, other_secret is a block of 0s with the same length as
1583 // the pre-shared key.
1584 if (!pms.Init(psk_len)) {
1585 return ssl_hs_error;
1586 }
1587 } else {
1588 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1589 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1590 return ssl_hs_error;
1591 }
1592
1593 // For a PSK cipher suite, other_secret is combined with the pre-shared
1594 // key.
1595 if (alg_a & SSL_aPSK) {
1596 ScopedCBB pms_cbb;
1597 CBB child;
1598 if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) ||
1599 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1600 !CBB_add_bytes(&child, pms.data(), pms.size()) ||
1601 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1602 !CBB_add_bytes(&child, psk, psk_len) ||
1603 !CBBFinishArray(pms_cbb.get(), &pms)) {
1604 return ssl_hs_error;
1605 }
1606 }
1607
1608 // The message must be added to the finished hash before calculating the
1609 // master secret.
1610 if (!ssl_add_message_cbb(ssl, cbb.get())) {
1611 return ssl_hs_error;
1612 }
1613
1614 hs->new_session->secret.ResizeForOverwrite(SSL3_MASTER_SECRET_SIZE);
1615 if (!tls1_generate_master_secret(hs, MakeSpan(hs->new_session->secret),
1616 pms)) {
1617 return ssl_hs_error;
1618 }
1619
1620 hs->new_session->extended_master_secret = hs->extended_master_secret;
1621 hs->state = state_send_client_certificate_verify;
1622 return ssl_hs_ok;
1623 }
1624
do_send_client_certificate_verify(SSL_HANDSHAKE * hs)1625 static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) {
1626 SSL *const ssl = hs->ssl;
1627
1628 if (!hs->cert_request || hs->credential == nullptr) {
1629 hs->state = state_send_client_finished;
1630 return ssl_hs_ok;
1631 }
1632
1633 ScopedCBB cbb;
1634 CBB body, child;
1635 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1636 SSL3_MT_CERTIFICATE_VERIFY)) {
1637 return ssl_hs_error;
1638 }
1639
1640 assert(hs->signature_algorithm != 0);
1641 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1642 // Write out the digest type in TLS 1.2.
1643 if (!CBB_add_u16(&body, hs->signature_algorithm)) {
1644 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1645 return ssl_hs_error;
1646 }
1647 }
1648
1649 // Set aside space for the signature.
1650 const size_t max_sig_len = EVP_PKEY_size(hs->credential->pubkey.get());
1651 uint8_t *ptr;
1652 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1653 !CBB_reserve(&child, &ptr, max_sig_len)) {
1654 return ssl_hs_error;
1655 }
1656
1657 size_t sig_len = max_sig_len;
1658 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1659 hs->signature_algorithm,
1660 hs->transcript.buffer())) {
1661 case ssl_private_key_success:
1662 break;
1663 case ssl_private_key_failure:
1664 return ssl_hs_error;
1665 case ssl_private_key_retry:
1666 hs->state = state_send_client_certificate_verify;
1667 return ssl_hs_private_key_operation;
1668 }
1669
1670 if (!CBB_did_write(&child, sig_len) || //
1671 !ssl_add_message_cbb(ssl, cbb.get())) {
1672 return ssl_hs_error;
1673 }
1674
1675 // The handshake buffer is no longer necessary.
1676 hs->transcript.FreeBuffer();
1677
1678 hs->state = state_send_client_finished;
1679 return ssl_hs_ok;
1680 }
1681
do_send_client_finished(SSL_HANDSHAKE * hs)1682 static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) {
1683 SSL *const ssl = hs->ssl;
1684 hs->can_release_private_key = true;
1685 if (!ssl->method->add_change_cipher_spec(ssl) ||
1686 !tls1_change_cipher_state(hs, evp_aead_seal)) {
1687 return ssl_hs_error;
1688 }
1689
1690 if (hs->next_proto_neg_seen) {
1691 static const uint8_t kZero[32] = {0};
1692 size_t padding_len =
1693 32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32);
1694
1695 ScopedCBB cbb;
1696 CBB body, child;
1697 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) ||
1698 !CBB_add_u8_length_prefixed(&body, &child) ||
1699 !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(),
1700 ssl->s3->next_proto_negotiated.size()) ||
1701 !CBB_add_u8_length_prefixed(&body, &child) ||
1702 !CBB_add_bytes(&child, kZero, padding_len) ||
1703 !ssl_add_message_cbb(ssl, cbb.get())) {
1704 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1705 return ssl_hs_error;
1706 }
1707 }
1708
1709 if (hs->channel_id_negotiated) {
1710 ScopedCBB cbb;
1711 CBB body;
1712 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) ||
1713 !tls1_write_channel_id(hs, &body) ||
1714 !ssl_add_message_cbb(ssl, cbb.get())) {
1715 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1716 return ssl_hs_error;
1717 }
1718 }
1719
1720 if (!ssl_send_finished(hs)) {
1721 return ssl_hs_error;
1722 }
1723
1724 hs->state = state_finish_flight;
1725 return ssl_hs_flush;
1726 }
1727
can_false_start(const SSL_HANDSHAKE * hs)1728 static bool can_false_start(const SSL_HANDSHAKE *hs) {
1729 const SSL *const ssl = hs->ssl;
1730
1731 // False Start bypasses the Finished check's downgrade protection. This can
1732 // enable attacks where we send data under weaker settings than supported
1733 // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD
1734 // cipher, our strongest settings before TLS 1.3.
1735 //
1736 // Now that TLS 1.3 exists, we would like to avoid similar attacks between
1737 // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to
1738 // sacrifice False Start on them. Instead, we rely on the ServerHello.random
1739 // downgrade signal, which we unconditionally enforce.
1740 if (SSL_is_dtls(ssl) || //
1741 SSL_version(ssl) != TLS1_2_VERSION || //
1742 hs->new_cipher->algorithm_mkey != SSL_kECDHE || //
1743 hs->new_cipher->algorithm_mac != SSL_AEAD) {
1744 return false;
1745 }
1746
1747 // If ECH was rejected, disable False Start. We run the handshake to
1748 // completion, including the Finished downgrade check, to authenticate the
1749 // recovery flow.
1750 if (ssl->s3->ech_status == ssl_ech_rejected) {
1751 return false;
1752 }
1753
1754 // Additionally require ALPN or NPN by default.
1755 //
1756 // TODO(davidben): Can this constraint be relaxed globally now that cipher
1757 // suite requirements have been tightened?
1758 if (!ssl->ctx->false_start_allowed_without_alpn &&
1759 ssl->s3->alpn_selected.empty() &&
1760 ssl->s3->next_proto_negotiated.empty()) {
1761 return false;
1762 }
1763
1764 return true;
1765 }
1766
do_finish_flight(SSL_HANDSHAKE * hs)1767 static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) {
1768 SSL *const ssl = hs->ssl;
1769 if (ssl->session != NULL) {
1770 hs->state = state_finish_client_handshake;
1771 return ssl_hs_ok;
1772 }
1773
1774 // This is a full handshake. If it involves ChannelID, then record the
1775 // handshake hashes at this point in the session so that any resumption of
1776 // this session with ChannelID can sign those hashes.
1777 if (!tls1_record_handshake_hashes_for_channel_id(hs)) {
1778 return ssl_hs_error;
1779 }
1780
1781 hs->state = state_read_session_ticket;
1782
1783 if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) &&
1784 can_false_start(hs) &&
1785 // No False Start on renegotiation (would complicate the state machine).
1786 !ssl->s3->initial_handshake_complete) {
1787 hs->in_false_start = true;
1788 hs->can_early_write = true;
1789 return ssl_hs_early_return;
1790 }
1791
1792 return ssl_hs_ok;
1793 }
1794
do_read_session_ticket(SSL_HANDSHAKE * hs)1795 static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) {
1796 SSL *const ssl = hs->ssl;
1797
1798 if (!hs->ticket_expected) {
1799 hs->state = state_process_change_cipher_spec;
1800 return ssl_hs_read_change_cipher_spec;
1801 }
1802
1803 SSLMessage msg;
1804 if (!ssl->method->get_message(ssl, &msg)) {
1805 return ssl_hs_read_message;
1806 }
1807
1808 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) ||
1809 !ssl_hash_message(hs, msg)) {
1810 return ssl_hs_error;
1811 }
1812
1813 CBS new_session_ticket = msg.body, ticket;
1814 uint32_t ticket_lifetime_hint;
1815 if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) ||
1816 !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
1817 CBS_len(&new_session_ticket) != 0) {
1818 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1819 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1820 return ssl_hs_error;
1821 }
1822
1823 if (CBS_len(&ticket) == 0) {
1824 // RFC 5077 allows a server to change its mind and send no ticket after
1825 // negotiating the extension. The value of |ticket_expected| is checked in
1826 // |ssl_update_cache| so is cleared here to avoid an unnecessary update.
1827 hs->ticket_expected = false;
1828 ssl->method->next_message(ssl);
1829 hs->state = state_process_change_cipher_spec;
1830 return ssl_hs_read_change_cipher_spec;
1831 }
1832
1833 if (ssl->session != nullptr) {
1834 // The server is sending a new ticket for an existing session. Sessions are
1835 // immutable once established, so duplicate all but the ticket of the
1836 // existing session.
1837 assert(!hs->new_session);
1838 hs->new_session =
1839 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1840 if (!hs->new_session) {
1841 return ssl_hs_error;
1842 }
1843 }
1844
1845 // |ticket_lifetime_hint| is measured from when the ticket was issued.
1846 ssl_session_rebase_time(ssl, hs->new_session.get());
1847
1848 if (!hs->new_session->ticket.CopyFrom(ticket)) {
1849 return ssl_hs_error;
1850 }
1851 hs->new_session->ticket_lifetime_hint = ticket_lifetime_hint;
1852
1853 // Historically, OpenSSL filled in fake session IDs for ticket-based sessions.
1854 // TODO(davidben): Are external callers relying on this? Try removing this.
1855 hs->new_session->session_id.ResizeForOverwrite(SHA256_DIGEST_LENGTH);
1856 SHA256(CBS_data(&ticket), CBS_len(&ticket),
1857 hs->new_session->session_id.data());
1858
1859 ssl->method->next_message(ssl);
1860 hs->state = state_process_change_cipher_spec;
1861 return ssl_hs_read_change_cipher_spec;
1862 }
1863
do_process_change_cipher_spec(SSL_HANDSHAKE * hs)1864 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1865 if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1866 return ssl_hs_error;
1867 }
1868
1869 hs->state = state_read_server_finished;
1870 return ssl_hs_ok;
1871 }
1872
do_read_server_finished(SSL_HANDSHAKE * hs)1873 static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) {
1874 SSL *const ssl = hs->ssl;
1875 enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1876 if (wait != ssl_hs_ok) {
1877 return wait;
1878 }
1879
1880 if (ssl->session != NULL) {
1881 hs->state = state_send_client_finished;
1882 return ssl_hs_ok;
1883 }
1884
1885 hs->state = state_finish_client_handshake;
1886 return ssl_hs_ok;
1887 }
1888
do_finish_client_handshake(SSL_HANDSHAKE * hs)1889 static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) {
1890 SSL *const ssl = hs->ssl;
1891 if (ssl->s3->ech_status == ssl_ech_rejected) {
1892 // Release the retry configs.
1893 hs->ech_authenticated_reject = true;
1894 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ECH_REQUIRED);
1895 OPENSSL_PUT_ERROR(SSL, SSL_R_ECH_REJECTED);
1896 return ssl_hs_error;
1897 }
1898
1899 ssl->method->on_handshake_complete(ssl);
1900
1901 // Note TLS 1.2 resumptions with ticket renewal have both |ssl->session| (the
1902 // resumed session) and |hs->new_session| (the session with the new ticket).
1903 bool has_new_session = hs->new_session != nullptr;
1904 if (has_new_session) {
1905 // When False Start is enabled, the handshake reports completion early. The
1906 // caller may then have passed the (then unresuable) |hs->new_session| to
1907 // another thread via |SSL_get0_session| for resumption. To avoid potential
1908 // race conditions in such callers, we duplicate the session before
1909 // clearing |not_resumable|.
1910 ssl->s3->established_session =
1911 SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL);
1912 if (!ssl->s3->established_session) {
1913 return ssl_hs_error;
1914 }
1915 // Renegotiations do not participate in session resumption.
1916 if (!ssl->s3->initial_handshake_complete) {
1917 ssl->s3->established_session->not_resumable = false;
1918 }
1919
1920 hs->new_session.reset();
1921 } else {
1922 assert(ssl->session != nullptr);
1923 ssl->s3->established_session = UpRef(ssl->session);
1924 }
1925
1926 hs->handshake_finalized = true;
1927 ssl->s3->initial_handshake_complete = true;
1928 if (has_new_session) {
1929 ssl_update_cache(ssl);
1930 }
1931
1932 hs->state = state_done;
1933 return ssl_hs_ok;
1934 }
1935
ssl_client_handshake(SSL_HANDSHAKE * hs)1936 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) {
1937 while (hs->state != state_done) {
1938 enum ssl_hs_wait_t ret = ssl_hs_error;
1939 enum ssl_client_hs_state_t state =
1940 static_cast<enum ssl_client_hs_state_t>(hs->state);
1941 switch (state) {
1942 case state_start_connect:
1943 ret = do_start_connect(hs);
1944 break;
1945 case state_enter_early_data:
1946 ret = do_enter_early_data(hs);
1947 break;
1948 case state_early_reverify_server_certificate:
1949 ret = do_early_reverify_server_certificate(hs);
1950 break;
1951 case state_read_server_hello:
1952 ret = do_read_server_hello(hs);
1953 break;
1954 case state_tls13:
1955 ret = do_tls13(hs);
1956 break;
1957 case state_read_server_certificate:
1958 ret = do_read_server_certificate(hs);
1959 break;
1960 case state_read_certificate_status:
1961 ret = do_read_certificate_status(hs);
1962 break;
1963 case state_verify_server_certificate:
1964 ret = do_verify_server_certificate(hs);
1965 break;
1966 case state_reverify_server_certificate:
1967 ret = do_reverify_server_certificate(hs);
1968 break;
1969 case state_read_server_key_exchange:
1970 ret = do_read_server_key_exchange(hs);
1971 break;
1972 case state_read_certificate_request:
1973 ret = do_read_certificate_request(hs);
1974 break;
1975 case state_read_server_hello_done:
1976 ret = do_read_server_hello_done(hs);
1977 break;
1978 case state_send_client_certificate:
1979 ret = do_send_client_certificate(hs);
1980 break;
1981 case state_send_client_key_exchange:
1982 ret = do_send_client_key_exchange(hs);
1983 break;
1984 case state_send_client_certificate_verify:
1985 ret = do_send_client_certificate_verify(hs);
1986 break;
1987 case state_send_client_finished:
1988 ret = do_send_client_finished(hs);
1989 break;
1990 case state_finish_flight:
1991 ret = do_finish_flight(hs);
1992 break;
1993 case state_read_session_ticket:
1994 ret = do_read_session_ticket(hs);
1995 break;
1996 case state_process_change_cipher_spec:
1997 ret = do_process_change_cipher_spec(hs);
1998 break;
1999 case state_read_server_finished:
2000 ret = do_read_server_finished(hs);
2001 break;
2002 case state_finish_client_handshake:
2003 ret = do_finish_client_handshake(hs);
2004 break;
2005 case state_done:
2006 ret = ssl_hs_ok;
2007 break;
2008 }
2009
2010 if (hs->state != state) {
2011 ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1);
2012 }
2013
2014 if (ret != ssl_hs_ok) {
2015 return ret;
2016 }
2017 }
2018
2019 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
2020 return ssl_hs_ok;
2021 }
2022
ssl_client_handshake_state(SSL_HANDSHAKE * hs)2023 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) {
2024 enum ssl_client_hs_state_t state =
2025 static_cast<enum ssl_client_hs_state_t>(hs->state);
2026 switch (state) {
2027 case state_start_connect:
2028 return "TLS client start_connect";
2029 case state_enter_early_data:
2030 return "TLS client enter_early_data";
2031 case state_early_reverify_server_certificate:
2032 return "TLS client early_reverify_server_certificate";
2033 case state_read_server_hello:
2034 return "TLS client read_server_hello";
2035 case state_tls13:
2036 return tls13_client_handshake_state(hs);
2037 case state_read_server_certificate:
2038 return "TLS client read_server_certificate";
2039 case state_read_certificate_status:
2040 return "TLS client read_certificate_status";
2041 case state_verify_server_certificate:
2042 return "TLS client verify_server_certificate";
2043 case state_reverify_server_certificate:
2044 return "TLS client reverify_server_certificate";
2045 case state_read_server_key_exchange:
2046 return "TLS client read_server_key_exchange";
2047 case state_read_certificate_request:
2048 return "TLS client read_certificate_request";
2049 case state_read_server_hello_done:
2050 return "TLS client read_server_hello_done";
2051 case state_send_client_certificate:
2052 return "TLS client send_client_certificate";
2053 case state_send_client_key_exchange:
2054 return "TLS client send_client_key_exchange";
2055 case state_send_client_certificate_verify:
2056 return "TLS client send_client_certificate_verify";
2057 case state_send_client_finished:
2058 return "TLS client send_client_finished";
2059 case state_finish_flight:
2060 return "TLS client finish_flight";
2061 case state_read_session_ticket:
2062 return "TLS client read_session_ticket";
2063 case state_process_change_cipher_spec:
2064 return "TLS client process_change_cipher_spec";
2065 case state_read_server_finished:
2066 return "TLS client read_server_finished";
2067 case state_finish_client_handshake:
2068 return "TLS client finish_client_handshake";
2069 case state_done:
2070 return "TLS client done";
2071 }
2072
2073 return "TLS client unknown";
2074 }
2075
2076 BSSL_NAMESPACE_END
2077