• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The MATCHER* family of macros can be used in a namespace scope to
33 // define custom matchers easily.
34 //
35 // Basic Usage
36 // ===========
37 //
38 // The syntax
39 //
40 //   MATCHER(name, description_string) { statements; }
41 //
42 // defines a matcher with the given name that executes the statements,
43 // which must return a bool to indicate if the match succeeds.  Inside
44 // the statements, you can refer to the value being matched by 'arg',
45 // and refer to its type by 'arg_type'.
46 //
47 // The description string documents what the matcher does, and is used
48 // to generate the failure message when the match fails.  Since a
49 // MATCHER() is usually defined in a header file shared by multiple
50 // C++ source files, we require the description to be a C-string
51 // literal to avoid possible side effects.  It can be empty, in which
52 // case we'll use the sequence of words in the matcher name as the
53 // description.
54 //
55 // For example:
56 //
57 //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
58 //
59 // allows you to write
60 //
61 //   // Expects mock_foo.Bar(n) to be called where n is even.
62 //   EXPECT_CALL(mock_foo, Bar(IsEven()));
63 //
64 // or,
65 //
66 //   // Verifies that the value of some_expression is even.
67 //   EXPECT_THAT(some_expression, IsEven());
68 //
69 // If the above assertion fails, it will print something like:
70 //
71 //   Value of: some_expression
72 //   Expected: is even
73 //     Actual: 7
74 //
75 // where the description "is even" is automatically calculated from the
76 // matcher name IsEven.
77 //
78 // Argument Type
79 // =============
80 //
81 // Note that the type of the value being matched (arg_type) is
82 // determined by the context in which you use the matcher and is
83 // supplied to you by the compiler, so you don't need to worry about
84 // declaring it (nor can you).  This allows the matcher to be
85 // polymorphic.  For example, IsEven() can be used to match any type
86 // where the value of "(arg % 2) == 0" can be implicitly converted to
87 // a bool.  In the "Bar(IsEven())" example above, if method Bar()
88 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
89 // 'arg_type' will be unsigned long; and so on.
90 //
91 // Parameterizing Matchers
92 // =======================
93 //
94 // Sometimes you'll want to parameterize the matcher.  For that you
95 // can use another macro:
96 //
97 //   MATCHER_P(name, param_name, description_string) { statements; }
98 //
99 // For example:
100 //
101 //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102 //
103 // will allow you to write:
104 //
105 //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106 //
107 // which may lead to this message (assuming n is 10):
108 //
109 //   Value of: Blah("a")
110 //   Expected: has absolute value 10
111 //     Actual: -9
112 //
113 // Note that both the matcher description and its parameter are
114 // printed, making the message human-friendly.
115 //
116 // In the matcher definition body, you can write 'foo_type' to
117 // reference the type of a parameter named 'foo'.  For example, in the
118 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119 // 'value_type' to refer to the type of 'value'.
120 //
121 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122 // support multi-parameter matchers.
123 //
124 // Describing Parameterized Matchers
125 // =================================
126 //
127 // The last argument to MATCHER*() is a string-typed expression.  The
128 // expression can reference all of the matcher's parameters and a
129 // special bool-typed variable named 'negation'.  When 'negation' is
130 // false, the expression should evaluate to the matcher's description;
131 // otherwise it should evaluate to the description of the negation of
132 // the matcher.  For example,
133 //
134 //   using testing::PrintToString;
135 //
136 //   MATCHER_P2(InClosedRange, low, hi,
137 //       std::string(negation ? "is not" : "is") + " in range [" +
138 //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
139 //     return low <= arg && arg <= hi;
140 //   }
141 //   ...
142 //   EXPECT_THAT(3, InClosedRange(4, 6));
143 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144 //
145 // would generate two failures that contain the text:
146 //
147 //   Expected: is in range [4, 6]
148 //   ...
149 //   Expected: is not in range [2, 4]
150 //
151 // If you specify "" as the description, the failure message will
152 // contain the sequence of words in the matcher name followed by the
153 // parameter values printed as a tuple.  For example,
154 //
155 //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
156 //   ...
157 //   EXPECT_THAT(3, InClosedRange(4, 6));
158 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159 //
160 // would generate two failures that contain the text:
161 //
162 //   Expected: in closed range (4, 6)
163 //   ...
164 //   Expected: not (in closed range (2, 4))
165 //
166 // Types of Matcher Parameters
167 // ===========================
168 //
169 // For the purpose of typing, you can view
170 //
171 //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172 //
173 // as shorthand for
174 //
175 //   template <typename p1_type, ..., typename pk_type>
176 //   FooMatcherPk<p1_type, ..., pk_type>
177 //   Foo(p1_type p1, ..., pk_type pk) { ... }
178 //
179 // When you write Foo(v1, ..., vk), the compiler infers the types of
180 // the parameters v1, ..., and vk for you.  If you are not happy with
181 // the result of the type inference, you can specify the types by
182 // explicitly instantiating the template, as in Foo<long, bool>(5,
183 // false).  As said earlier, you don't get to (or need to) specify
184 // 'arg_type' as that's determined by the context in which the matcher
185 // is used.  You can assign the result of expression Foo(p1, ..., pk)
186 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
187 // can be useful when composing matchers.
188 //
189 // While you can instantiate a matcher template with reference types,
190 // passing the parameters by pointer usually makes your code more
191 // readable.  If, however, you still want to pass a parameter by
192 // reference, be aware that in the failure message generated by the
193 // matcher you will see the value of the referenced object but not its
194 // address.
195 //
196 // Explaining Match Results
197 // ========================
198 //
199 // Sometimes the matcher description alone isn't enough to explain why
200 // the match has failed or succeeded.  For example, when expecting a
201 // long string, it can be very helpful to also print the diff between
202 // the expected string and the actual one.  To achieve that, you can
203 // optionally stream additional information to a special variable
204 // named result_listener, whose type is a pointer to class
205 // MatchResultListener:
206 //
207 //   MATCHER_P(EqualsLongString, str, "") {
208 //     if (arg == str) return true;
209 //
210 //     *result_listener << "the difference: "
211 ///                     << DiffStrings(str, arg);
212 //     return false;
213 //   }
214 //
215 // Overloading Matchers
216 // ====================
217 //
218 // You can overload matchers with different numbers of parameters:
219 //
220 //   MATCHER_P(Blah, a, description_string1) { ... }
221 //   MATCHER_P2(Blah, a, b, description_string2) { ... }
222 //
223 // Caveats
224 // =======
225 //
226 // When defining a new matcher, you should also consider implementing
227 // MatcherInterface or using MakePolymorphicMatcher().  These
228 // approaches require more work than the MATCHER* macros, but also
229 // give you more control on the types of the value being matched and
230 // the matcher parameters, which may leads to better compiler error
231 // messages when the matcher is used wrong.  They also allow
232 // overloading matchers based on parameter types (as opposed to just
233 // based on the number of parameters).
234 //
235 // MATCHER*() can only be used in a namespace scope as templates cannot be
236 // declared inside of a local class.
237 //
238 // More Information
239 // ================
240 //
241 // To learn more about using these macros, please search for 'MATCHER'
242 // on
243 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244 //
245 // This file also implements some commonly used argument matchers.  More
246 // matchers can be defined by the user implementing the
247 // MatcherInterface<T> interface if necessary.
248 //
249 // See googletest/include/gtest/gtest-matchers.h for the definition of class
250 // Matcher, class MatcherInterface, and others.
251 
252 // IWYU pragma: private, include "gmock/gmock.h"
253 // IWYU pragma: friend gmock/.*
254 
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257 
258 #include <algorithm>
259 #include <cmath>
260 #include <exception>
261 #include <functional>
262 #include <initializer_list>
263 #include <ios>
264 #include <iterator>
265 #include <limits>
266 #include <memory>
267 #include <ostream>  // NOLINT
268 #include <sstream>
269 #include <string>
270 #include <type_traits>
271 #include <utility>
272 #include <vector>
273 
274 #include "gmock/internal/gmock-internal-utils.h"
275 #include "gmock/internal/gmock-port.h"
276 #include "gmock/internal/gmock-pp.h"
277 #include "gtest/gtest.h"
278 
279 // MSVC warning C5046 is new as of VS2017 version 15.8.
280 #if defined(_MSC_VER) && _MSC_VER >= 1915
281 #define GMOCK_MAYBE_5046_ 5046
282 #else
283 #define GMOCK_MAYBE_5046_
284 #endif
285 
286 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
287     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
288                               clients of class B */
289     /* Symbol involving type with internal linkage not defined */)
290 
291 namespace testing {
292 
293 // To implement a matcher Foo for type T, define:
294 //   1. a class FooMatcherImpl that implements the
295 //      MatcherInterface<T> interface, and
296 //   2. a factory function that creates a Matcher<T> object from a
297 //      FooMatcherImpl*.
298 //
299 // The two-level delegation design makes it possible to allow a user
300 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
301 // is impossible if we pass matchers by pointers.  It also eases
302 // ownership management as Matcher objects can now be copied like
303 // plain values.
304 
305 // A match result listener that stores the explanation in a string.
306 class StringMatchResultListener : public MatchResultListener {
307  public:
StringMatchResultListener()308   StringMatchResultListener() : MatchResultListener(&ss_) {}
309 
310   // Returns the explanation accumulated so far.
str()311   std::string str() const { return ss_.str(); }
312 
313   // Clears the explanation accumulated so far.
Clear()314   void Clear() { ss_.str(""); }
315 
316  private:
317   ::std::stringstream ss_;
318 
319   StringMatchResultListener(const StringMatchResultListener&) = delete;
320   StringMatchResultListener& operator=(const StringMatchResultListener&) =
321       delete;
322 };
323 
324 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
325 // and MUST NOT BE USED IN USER CODE!!!
326 namespace internal {
327 
328 // The MatcherCastImpl class template is a helper for implementing
329 // MatcherCast().  We need this helper in order to partially
330 // specialize the implementation of MatcherCast() (C++ allows
331 // class/struct templates to be partially specialized, but not
332 // function templates.).
333 
334 // This general version is used when MatcherCast()'s argument is a
335 // polymorphic matcher (i.e. something that can be converted to a
336 // Matcher but is not one yet; for example, Eq(value)) or a value (for
337 // example, "hello").
338 template <typename T, typename M>
339 class MatcherCastImpl {
340  public:
Cast(const M & polymorphic_matcher_or_value)341   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
342     // M can be a polymorphic matcher, in which case we want to use
343     // its conversion operator to create Matcher<T>.  Or it can be a value
344     // that should be passed to the Matcher<T>'s constructor.
345     //
346     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
347     // polymorphic matcher because it'll be ambiguous if T has an implicit
348     // constructor from M (this usually happens when T has an implicit
349     // constructor from any type).
350     //
351     // It won't work to unconditionally implicit_cast
352     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
353     // a user-defined conversion from M to T if one exists (assuming M is
354     // a value).
355     return CastImpl(polymorphic_matcher_or_value,
356                     std::is_convertible<M, Matcher<T>>{},
357                     std::is_convertible<M, T>{});
358   }
359 
360  private:
361   template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)362   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
363                              std::true_type /* convertible_to_matcher */,
364                              std::integral_constant<bool, Ignore>) {
365     // M is implicitly convertible to Matcher<T>, which means that either
366     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
367     // from M.  In both cases using the implicit conversion will produce a
368     // matcher.
369     //
370     // Even if T has an implicit constructor from M, it won't be called because
371     // creating Matcher<T> would require a chain of two user-defined conversions
372     // (first to create T from M and then to create Matcher<T> from T).
373     return polymorphic_matcher_or_value;
374   }
375 
376   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
377   // matcher. It's a value of a type implicitly convertible to T. Use direct
378   // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)379   static Matcher<T> CastImpl(const M& value,
380                              std::false_type /* convertible_to_matcher */,
381                              std::true_type /* convertible_to_T */) {
382     return Matcher<T>(ImplicitCast_<T>(value));
383   }
384 
385   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
386   // polymorphic matcher Eq(value) in this case.
387   //
388   // Note that we first attempt to perform an implicit cast on the value and
389   // only fall back to the polymorphic Eq() matcher afterwards because the
390   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
391   // which might be undefined even when Rhs is implicitly convertible to Lhs
392   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
393   //
394   // We don't define this method inline as we need the declaration of Eq().
395   static Matcher<T> CastImpl(const M& value,
396                              std::false_type /* convertible_to_matcher */,
397                              std::false_type /* convertible_to_T */);
398 };
399 
400 // This more specialized version is used when MatcherCast()'s argument
401 // is already a Matcher.  This only compiles when type T can be
402 // statically converted to type U.
403 template <typename T, typename U>
404 class MatcherCastImpl<T, Matcher<U>> {
405  public:
Cast(const Matcher<U> & source_matcher)406   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
407     return Matcher<T>(new Impl(source_matcher));
408   }
409 
410  private:
411   class Impl : public MatcherInterface<T> {
412    public:
Impl(const Matcher<U> & source_matcher)413     explicit Impl(const Matcher<U>& source_matcher)
414         : source_matcher_(source_matcher) {}
415 
416     // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)417     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
418       using FromType = typename std::remove_cv<typename std::remove_pointer<
419           typename std::remove_reference<T>::type>::type>::type;
420       using ToType = typename std::remove_cv<typename std::remove_pointer<
421           typename std::remove_reference<U>::type>::type>::type;
422       // Do not allow implicitly converting base*/& to derived*/&.
423       static_assert(
424           // Do not trigger if only one of them is a pointer. That implies a
425           // regular conversion and not a down_cast.
426           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
427            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
428               std::is_same<FromType, ToType>::value ||
429               !std::is_base_of<FromType, ToType>::value,
430           "Can't implicitly convert from <base> to <derived>");
431 
432       // Do the cast to `U` explicitly if necessary.
433       // Otherwise, let implicit conversions do the trick.
434       using CastType =
435           typename std::conditional<std::is_convertible<T&, const U&>::value,
436                                     T&, U>::type;
437 
438       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
439                                              listener);
440     }
441 
DescribeTo(::std::ostream * os)442     void DescribeTo(::std::ostream* os) const override {
443       source_matcher_.DescribeTo(os);
444     }
445 
DescribeNegationTo(::std::ostream * os)446     void DescribeNegationTo(::std::ostream* os) const override {
447       source_matcher_.DescribeNegationTo(os);
448     }
449 
450    private:
451     const Matcher<U> source_matcher_;
452   };
453 };
454 
455 // This even more specialized version is used for efficiently casting
456 // a matcher to its own type.
457 template <typename T>
458 class MatcherCastImpl<T, Matcher<T>> {
459  public:
Cast(const Matcher<T> & matcher)460   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
461 };
462 
463 // Template specialization for parameterless Matcher.
464 template <typename Derived>
465 class MatcherBaseImpl {
466  public:
467   MatcherBaseImpl() = default;
468 
469   template <typename T>
470   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
471     return ::testing::Matcher<T>(new
472                                  typename Derived::template gmock_Impl<T>());
473   }
474 };
475 
476 // Template specialization for Matcher with parameters.
477 template <template <typename...> class Derived, typename... Ts>
478 class MatcherBaseImpl<Derived<Ts...>> {
479  public:
480   // Mark the constructor explicit for single argument T to avoid implicit
481   // conversions.
482   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
483             typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)484   explicit MatcherBaseImpl(Ts... params)
485       : params_(std::forward<Ts>(params)...) {}
486   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
487             typename = typename E::type>
MatcherBaseImpl(Ts...params)488   MatcherBaseImpl(Ts... params)  // NOLINT
489       : params_(std::forward<Ts>(params)...) {}
490 
491   template <typename F>
492   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
493     return Apply<F>(std::make_index_sequence<sizeof...(Ts)>{});
494   }
495 
496  private:
497   template <typename F, std::size_t... tuple_ids>
Apply(std::index_sequence<tuple_ids...>)498   ::testing::Matcher<F> Apply(std::index_sequence<tuple_ids...>) const {
499     return ::testing::Matcher<F>(
500         new typename Derived<Ts...>::template gmock_Impl<F>(
501             std::get<tuple_ids>(params_)...));
502   }
503 
504   const std::tuple<Ts...> params_;
505 };
506 
507 }  // namespace internal
508 
509 // In order to be safe and clear, casting between different matcher
510 // types is done explicitly via MatcherCast<T>(m), which takes a
511 // matcher m and returns a Matcher<T>.  It compiles only when T can be
512 // statically converted to the argument type of m.
513 template <typename T, typename M>
MatcherCast(const M & matcher)514 inline Matcher<T> MatcherCast(const M& matcher) {
515   return internal::MatcherCastImpl<T, M>::Cast(matcher);
516 }
517 
518 // This overload handles polymorphic matchers and values only since
519 // monomorphic matchers are handled by the next one.
520 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)521 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
522   return MatcherCast<T>(polymorphic_matcher_or_value);
523 }
524 
525 // This overload handles monomorphic matchers.
526 //
527 // In general, if type T can be implicitly converted to type U, we can
528 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
529 // contravariant): just keep a copy of the original Matcher<U>, convert the
530 // argument from type T to U, and then pass it to the underlying Matcher<U>.
531 // The only exception is when U is a reference and T is not, as the
532 // underlying Matcher<U> may be interested in the argument's address, which
533 // is not preserved in the conversion from T to U.
534 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)535 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
536   // Enforce that T can be implicitly converted to U.
537   static_assert(std::is_convertible<const T&, const U&>::value,
538                 "T must be implicitly convertible to U");
539   // Enforce that we are not converting a non-reference type T to a reference
540   // type U.
541   static_assert(std::is_reference<T>::value || !std::is_reference<U>::value,
542                 "cannot convert non reference arg to reference");
543   // In case both T and U are arithmetic types, enforce that the
544   // conversion is not lossy.
545   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
546   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
547   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
548   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
549   static_assert(
550       kTIsOther || kUIsOther ||
551           (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
552       "conversion of arithmetic types must be lossless");
553   return MatcherCast<T>(matcher);
554 }
555 
556 // A<T>() returns a matcher that matches any value of type T.
557 template <typename T>
558 Matcher<T> A();
559 
560 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
561 // and MUST NOT BE USED IN USER CODE!!!
562 namespace internal {
563 
564 // Used per go/ranked-overloads for dispatching.
565 struct Rank0 {};
566 struct Rank1 : Rank0 {};
567 using HighestRank = Rank1;
568 
569 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)570 inline void PrintIfNotEmpty(const std::string& explanation,
571                             ::std::ostream* os) {
572   if (!explanation.empty() && os != nullptr) {
573     *os << ", " << explanation;
574   }
575 }
576 
577 // Returns true if the given type name is easy to read by a human.
578 // This is used to decide whether printing the type of a value might
579 // be helpful.
IsReadableTypeName(const std::string & type_name)580 inline bool IsReadableTypeName(const std::string& type_name) {
581   // We consider a type name readable if it's short or doesn't contain
582   // a template or function type.
583   return (type_name.length() <= 20 ||
584           type_name.find_first_of("<(") == std::string::npos);
585 }
586 
587 // Matches the value against the given matcher, prints the value and explains
588 // the match result to the listener. Returns the match result.
589 // 'listener' must not be NULL.
590 // Value cannot be passed by const reference, because some matchers take a
591 // non-const argument.
592 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)593 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
594                           MatchResultListener* listener) {
595   if (!listener->IsInterested()) {
596     // If the listener is not interested, we do not need to construct the
597     // inner explanation.
598     return matcher.Matches(value);
599   }
600 
601   StringMatchResultListener inner_listener;
602   const bool match = matcher.MatchAndExplain(value, &inner_listener);
603 
604   UniversalPrint(value, listener->stream());
605 #if GTEST_HAS_RTTI
606   const std::string& type_name = GetTypeName<Value>();
607   if (IsReadableTypeName(type_name))
608     *listener->stream() << " (of type " << type_name << ")";
609 #endif
610   PrintIfNotEmpty(inner_listener.str(), listener->stream());
611 
612   return match;
613 }
614 
615 // An internal helper class for doing compile-time loop on a tuple's
616 // fields.
617 template <size_t N>
618 class TuplePrefix {
619  public:
620   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
621   // if and only if the first N fields of matcher_tuple matches
622   // the first N fields of value_tuple, respectively.
623   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)624   static bool Matches(const MatcherTuple& matcher_tuple,
625                       const ValueTuple& value_tuple) {
626     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
627            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
628   }
629 
630   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
631   // describes failures in matching the first N fields of matchers
632   // against the first N fields of values.  If there is no failure,
633   // nothing will be streamed to os.
634   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)635   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
636                                      const ValueTuple& values,
637                                      ::std::ostream* os) {
638     // First, describes failures in the first N - 1 fields.
639     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
640 
641     // Then describes the failure (if any) in the (N - 1)-th (0-based)
642     // field.
643     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
644         std::get<N - 1>(matchers);
645     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
646     const Value& value = std::get<N - 1>(values);
647     StringMatchResultListener listener;
648     if (!matcher.MatchAndExplain(value, &listener)) {
649       *os << "  Expected arg #" << N - 1 << ": ";
650       std::get<N - 1>(matchers).DescribeTo(os);
651       *os << "\n           Actual: ";
652       // We remove the reference in type Value to prevent the
653       // universal printer from printing the address of value, which
654       // isn't interesting to the user most of the time.  The
655       // matcher's MatchAndExplain() method handles the case when
656       // the address is interesting.
657       internal::UniversalPrint(value, os);
658       PrintIfNotEmpty(listener.str(), os);
659       *os << "\n";
660     }
661   }
662 };
663 
664 // The base case.
665 template <>
666 class TuplePrefix<0> {
667  public:
668   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)669   static bool Matches(const MatcherTuple& /* matcher_tuple */,
670                       const ValueTuple& /* value_tuple */) {
671     return true;
672   }
673 
674   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)675   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
676                                      const ValueTuple& /* values */,
677                                      ::std::ostream* /* os */) {}
678 };
679 
680 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
681 // all matchers in matcher_tuple match the corresponding fields in
682 // value_tuple.  It is a compiler error if matcher_tuple and
683 // value_tuple have different number of fields or incompatible field
684 // types.
685 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)686 bool TupleMatches(const MatcherTuple& matcher_tuple,
687                   const ValueTuple& value_tuple) {
688   // Makes sure that matcher_tuple and value_tuple have the same
689   // number of fields.
690   static_assert(std::tuple_size<MatcherTuple>::value ==
691                     std::tuple_size<ValueTuple>::value,
692                 "matcher and value have different numbers of fields");
693   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
694                                                                   value_tuple);
695 }
696 
697 // Describes failures in matching matchers against values.  If there
698 // is no failure, nothing will be streamed to os.
699 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)700 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
701                                 const ValueTuple& values, ::std::ostream* os) {
702   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
703       matchers, values, os);
704 }
705 
706 // TransformTupleValues and its helper.
707 //
708 // TransformTupleValuesHelper hides the internal machinery that
709 // TransformTupleValues uses to implement a tuple traversal.
710 template <typename Tuple, typename Func, typename OutIter>
711 class TransformTupleValuesHelper {
712  private:
713   typedef ::std::tuple_size<Tuple> TupleSize;
714 
715  public:
716   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
717   // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)718   static OutIter Run(Func f, const Tuple& t, OutIter out) {
719     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
720   }
721 
722  private:
723   template <typename Tup, size_t kRemainingSize>
724   struct IterateOverTuple {
operatorIterateOverTuple725     OutIter operator()(Func f, const Tup& t, OutIter out) const {
726       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
727       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
728     }
729   };
730   template <typename Tup>
731   struct IterateOverTuple<Tup, 0> {
732     OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
733       return out;
734     }
735   };
736 };
737 
738 // Successively invokes 'f(element)' on each element of the tuple 't',
739 // appending each result to the 'out' iterator. Returns the final value
740 // of 'out'.
741 template <typename Tuple, typename Func, typename OutIter>
742 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
743   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
744 }
745 
746 // Implements _, a matcher that matches any value of any
747 // type.  This is a polymorphic matcher, so we need a template type
748 // conversion operator to make it appearing as a Matcher<T> for any
749 // type T.
750 class AnythingMatcher {
751  public:
752   using is_gtest_matcher = void;
753 
754   template <typename T>
755   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
756     return true;
757   }
758   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
759   void DescribeNegationTo(::std::ostream* os) const {
760     // This is mostly for completeness' sake, as it's not very useful
761     // to write Not(A<bool>()).  However we cannot completely rule out
762     // such a possibility, and it doesn't hurt to be prepared.
763     *os << "never matches";
764   }
765 };
766 
767 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
768 // pointer that is NULL.
769 class IsNullMatcher {
770  public:
771   template <typename Pointer>
772   bool MatchAndExplain(const Pointer& p,
773                        MatchResultListener* /* listener */) const {
774     return p == nullptr;
775   }
776 
777   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
778   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
779 };
780 
781 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
782 // pointer that is not NULL.
783 class NotNullMatcher {
784  public:
785   template <typename Pointer>
786   bool MatchAndExplain(const Pointer& p,
787                        MatchResultListener* /* listener */) const {
788     return p != nullptr;
789   }
790 
791   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
792   void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
793 };
794 
795 // Ref(variable) matches any argument that is a reference to
796 // 'variable'.  This matcher is polymorphic as it can match any
797 // super type of the type of 'variable'.
798 //
799 // The RefMatcher template class implements Ref(variable).  It can
800 // only be instantiated with a reference type.  This prevents a user
801 // from mistakenly using Ref(x) to match a non-reference function
802 // argument.  For example, the following will righteously cause a
803 // compiler error:
804 //
805 //   int n;
806 //   Matcher<int> m1 = Ref(n);   // This won't compile.
807 //   Matcher<int&> m2 = Ref(n);  // This will compile.
808 template <typename T>
809 class RefMatcher;
810 
811 template <typename T>
812 class RefMatcher<T&> {
813   // Google Mock is a generic framework and thus needs to support
814   // mocking any function types, including those that take non-const
815   // reference arguments.  Therefore the template parameter T (and
816   // Super below) can be instantiated to either a const type or a
817   // non-const type.
818  public:
819   // RefMatcher() takes a T& instead of const T&, as we want the
820   // compiler to catch using Ref(const_value) as a matcher for a
821   // non-const reference.
822   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
823 
824   template <typename Super>
825   operator Matcher<Super&>() const {
826     // By passing object_ (type T&) to Impl(), which expects a Super&,
827     // we make sure that Super is a super type of T.  In particular,
828     // this catches using Ref(const_value) as a matcher for a
829     // non-const reference, as you cannot implicitly convert a const
830     // reference to a non-const reference.
831     return MakeMatcher(new Impl<Super>(object_));
832   }
833 
834  private:
835   template <typename Super>
836   class Impl : public MatcherInterface<Super&> {
837    public:
838     explicit Impl(Super& x) : object_(x) {}  // NOLINT
839 
840     // MatchAndExplain() takes a Super& (as opposed to const Super&)
841     // in order to match the interface MatcherInterface<Super&>.
842     bool MatchAndExplain(Super& x,
843                          MatchResultListener* listener) const override {
844       *listener << "which is located @" << static_cast<const void*>(&x);
845       return &x == &object_;
846     }
847 
848     void DescribeTo(::std::ostream* os) const override {
849       *os << "references the variable ";
850       UniversalPrinter<Super&>::Print(object_, os);
851     }
852 
853     void DescribeNegationTo(::std::ostream* os) const override {
854       *os << "does not reference the variable ";
855       UniversalPrinter<Super&>::Print(object_, os);
856     }
857 
858    private:
859     const Super& object_;
860   };
861 
862   T& object_;
863 };
864 
865 // Polymorphic helper functions for narrow and wide string matchers.
866 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
867   return String::CaseInsensitiveCStringEquals(lhs, rhs);
868 }
869 
870 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
871                                          const wchar_t* rhs) {
872   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
873 }
874 
875 // String comparison for narrow or wide strings that can have embedded NUL
876 // characters.
877 template <typename StringType>
878 bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
879   // Are the heads equal?
880   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
881     return false;
882   }
883 
884   // Skip the equal heads.
885   const typename StringType::value_type nul = 0;
886   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
887 
888   // Are we at the end of either s1 or s2?
889   if (i1 == StringType::npos || i2 == StringType::npos) {
890     return i1 == i2;
891   }
892 
893   // Are the tails equal?
894   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
895 }
896 
897 // String matchers.
898 
899 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
900 template <typename StringType>
901 class StrEqualityMatcher {
902  public:
903   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
904       : string_(std::move(str)),
905         expect_eq_(expect_eq),
906         case_sensitive_(case_sensitive) {}
907 
908 #if GTEST_INTERNAL_HAS_STRING_VIEW
909   bool MatchAndExplain(const internal::StringView& s,
910                        MatchResultListener* listener) const {
911     // This should fail to compile if StringView is used with wide
912     // strings.
913     const StringType& str = std::string(s);
914     return MatchAndExplain(str, listener);
915   }
916 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
917 
918   // Accepts pointer types, particularly:
919   //   const char*
920   //   char*
921   //   const wchar_t*
922   //   wchar_t*
923   template <typename CharType>
924   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
925     if (s == nullptr) {
926       return !expect_eq_;
927     }
928     return MatchAndExplain(StringType(s), listener);
929   }
930 
931   // Matches anything that can convert to StringType.
932   //
933   // This is a template, not just a plain function with const StringType&,
934   // because StringView has some interfering non-explicit constructors.
935   template <typename MatcheeStringType>
936   bool MatchAndExplain(const MatcheeStringType& s,
937                        MatchResultListener* /* listener */) const {
938     const StringType s2(s);
939     const bool eq = case_sensitive_ ? s2 == string_
940                                     : CaseInsensitiveStringEquals(s2, string_);
941     return expect_eq_ == eq;
942   }
943 
944   void DescribeTo(::std::ostream* os) const {
945     DescribeToHelper(expect_eq_, os);
946   }
947 
948   void DescribeNegationTo(::std::ostream* os) const {
949     DescribeToHelper(!expect_eq_, os);
950   }
951 
952  private:
953   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
954     *os << (expect_eq ? "is " : "isn't ");
955     *os << "equal to ";
956     if (!case_sensitive_) {
957       *os << "(ignoring case) ";
958     }
959     UniversalPrint(string_, os);
960   }
961 
962   const StringType string_;
963   const bool expect_eq_;
964   const bool case_sensitive_;
965 };
966 
967 // Implements the polymorphic HasSubstr(substring) matcher, which
968 // can be used as a Matcher<T> as long as T can be converted to a
969 // string.
970 template <typename StringType>
971 class HasSubstrMatcher {
972  public:
973   explicit HasSubstrMatcher(const StringType& substring)
974       : substring_(substring) {}
975 
976 #if GTEST_INTERNAL_HAS_STRING_VIEW
977   bool MatchAndExplain(const internal::StringView& s,
978                        MatchResultListener* listener) const {
979     // This should fail to compile if StringView is used with wide
980     // strings.
981     const StringType& str = std::string(s);
982     return MatchAndExplain(str, listener);
983   }
984 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
985 
986   // Accepts pointer types, particularly:
987   //   const char*
988   //   char*
989   //   const wchar_t*
990   //   wchar_t*
991   template <typename CharType>
992   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
993     return s != nullptr && MatchAndExplain(StringType(s), listener);
994   }
995 
996   // Matches anything that can convert to StringType.
997   //
998   // This is a template, not just a plain function with const StringType&,
999   // because StringView has some interfering non-explicit constructors.
1000   template <typename MatcheeStringType>
1001   bool MatchAndExplain(const MatcheeStringType& s,
1002                        MatchResultListener* /* listener */) const {
1003     return StringType(s).find(substring_) != StringType::npos;
1004   }
1005 
1006   // Describes what this matcher matches.
1007   void DescribeTo(::std::ostream* os) const {
1008     *os << "has substring ";
1009     UniversalPrint(substring_, os);
1010   }
1011 
1012   void DescribeNegationTo(::std::ostream* os) const {
1013     *os << "has no substring ";
1014     UniversalPrint(substring_, os);
1015   }
1016 
1017  private:
1018   const StringType substring_;
1019 };
1020 
1021 // Implements the polymorphic StartsWith(substring) matcher, which
1022 // can be used as a Matcher<T> as long as T can be converted to a
1023 // string.
1024 template <typename StringType>
1025 class StartsWithMatcher {
1026  public:
1027   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1028 
1029 #if GTEST_INTERNAL_HAS_STRING_VIEW
1030   bool MatchAndExplain(const internal::StringView& s,
1031                        MatchResultListener* listener) const {
1032     // This should fail to compile if StringView is used with wide
1033     // strings.
1034     const StringType& str = std::string(s);
1035     return MatchAndExplain(str, listener);
1036   }
1037 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1038 
1039   // Accepts pointer types, particularly:
1040   //   const char*
1041   //   char*
1042   //   const wchar_t*
1043   //   wchar_t*
1044   template <typename CharType>
1045   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1046     return s != nullptr && MatchAndExplain(StringType(s), listener);
1047   }
1048 
1049   // Matches anything that can convert to StringType.
1050   //
1051   // This is a template, not just a plain function with const StringType&,
1052   // because StringView has some interfering non-explicit constructors.
1053   template <typename MatcheeStringType>
1054   bool MatchAndExplain(const MatcheeStringType& s,
1055                        MatchResultListener* /* listener */) const {
1056     const StringType s2(s);
1057     return s2.length() >= prefix_.length() &&
1058            s2.substr(0, prefix_.length()) == prefix_;
1059   }
1060 
1061   void DescribeTo(::std::ostream* os) const {
1062     *os << "starts with ";
1063     UniversalPrint(prefix_, os);
1064   }
1065 
1066   void DescribeNegationTo(::std::ostream* os) const {
1067     *os << "doesn't start with ";
1068     UniversalPrint(prefix_, os);
1069   }
1070 
1071  private:
1072   const StringType prefix_;
1073 };
1074 
1075 // Implements the polymorphic EndsWith(substring) matcher, which
1076 // can be used as a Matcher<T> as long as T can be converted to a
1077 // string.
1078 template <typename StringType>
1079 class EndsWithMatcher {
1080  public:
1081   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1082 
1083 #if GTEST_INTERNAL_HAS_STRING_VIEW
1084   bool MatchAndExplain(const internal::StringView& s,
1085                        MatchResultListener* listener) const {
1086     // This should fail to compile if StringView is used with wide
1087     // strings.
1088     const StringType& str = std::string(s);
1089     return MatchAndExplain(str, listener);
1090   }
1091 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1092 
1093   // Accepts pointer types, particularly:
1094   //   const char*
1095   //   char*
1096   //   const wchar_t*
1097   //   wchar_t*
1098   template <typename CharType>
1099   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1100     return s != nullptr && MatchAndExplain(StringType(s), listener);
1101   }
1102 
1103   // Matches anything that can convert to StringType.
1104   //
1105   // This is a template, not just a plain function with const StringType&,
1106   // because StringView has some interfering non-explicit constructors.
1107   template <typename MatcheeStringType>
1108   bool MatchAndExplain(const MatcheeStringType& s,
1109                        MatchResultListener* /* listener */) const {
1110     const StringType s2(s);
1111     return s2.length() >= suffix_.length() &&
1112            s2.substr(s2.length() - suffix_.length()) == suffix_;
1113   }
1114 
1115   void DescribeTo(::std::ostream* os) const {
1116     *os << "ends with ";
1117     UniversalPrint(suffix_, os);
1118   }
1119 
1120   void DescribeNegationTo(::std::ostream* os) const {
1121     *os << "doesn't end with ";
1122     UniversalPrint(suffix_, os);
1123   }
1124 
1125  private:
1126   const StringType suffix_;
1127 };
1128 
1129 // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1130 // used as a Matcher<T> as long as T can be converted to a string.
1131 class WhenBase64UnescapedMatcher {
1132  public:
1133   using is_gtest_matcher = void;
1134 
1135   explicit WhenBase64UnescapedMatcher(
1136       const Matcher<const std::string&>& internal_matcher)
1137       : internal_matcher_(internal_matcher) {}
1138 
1139   // Matches anything that can convert to std::string.
1140   template <typename MatcheeStringType>
1141   bool MatchAndExplain(const MatcheeStringType& s,
1142                        MatchResultListener* listener) const {
1143     const std::string s2(s);  // NOLINT (needed for working with string_view).
1144     std::string unescaped;
1145     if (!internal::Base64Unescape(s2, &unescaped)) {
1146       if (listener != nullptr) {
1147         *listener << "is not a valid base64 escaped string";
1148       }
1149       return false;
1150     }
1151     return MatchPrintAndExplain(unescaped, internal_matcher_, listener);
1152   }
1153 
1154   void DescribeTo(::std::ostream* os) const {
1155     *os << "matches after Base64Unescape ";
1156     internal_matcher_.DescribeTo(os);
1157   }
1158 
1159   void DescribeNegationTo(::std::ostream* os) const {
1160     *os << "does not match after Base64Unescape ";
1161     internal_matcher_.DescribeTo(os);
1162   }
1163 
1164  private:
1165   const Matcher<const std::string&> internal_matcher_;
1166 };
1167 
1168 // Implements a matcher that compares the two fields of a 2-tuple
1169 // using one of the ==, <=, <, etc, operators.  The two fields being
1170 // compared don't have to have the same type.
1171 //
1172 // The matcher defined here is polymorphic (for example, Eq() can be
1173 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1174 // etc).  Therefore we use a template type conversion operator in the
1175 // implementation.
1176 template <typename D, typename Op>
1177 class PairMatchBase {
1178  public:
1179   template <typename T1, typename T2>
1180   operator Matcher<::std::tuple<T1, T2>>() const {
1181     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1182   }
1183   template <typename T1, typename T2>
1184   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1185     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1186   }
1187 
1188  private:
1189   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1190     return os << D::Desc();
1191   }
1192 
1193   template <typename Tuple>
1194   class Impl : public MatcherInterface<Tuple> {
1195    public:
1196     bool MatchAndExplain(Tuple args,
1197                          MatchResultListener* /* listener */) const override {
1198       return Op()(::std::get<0>(args), ::std::get<1>(args));
1199     }
1200     void DescribeTo(::std::ostream* os) const override {
1201       *os << "are " << GetDesc;
1202     }
1203     void DescribeNegationTo(::std::ostream* os) const override {
1204       *os << "aren't " << GetDesc;
1205     }
1206   };
1207 };
1208 
1209 class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> {
1210  public:
1211   static const char* Desc() { return "an equal pair"; }
1212 };
1213 class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> {
1214  public:
1215   static const char* Desc() { return "an unequal pair"; }
1216 };
1217 class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> {
1218  public:
1219   static const char* Desc() { return "a pair where the first < the second"; }
1220 };
1221 class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> {
1222  public:
1223   static const char* Desc() { return "a pair where the first > the second"; }
1224 };
1225 class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> {
1226  public:
1227   static const char* Desc() { return "a pair where the first <= the second"; }
1228 };
1229 class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> {
1230  public:
1231   static const char* Desc() { return "a pair where the first >= the second"; }
1232 };
1233 
1234 // Implements the Not(...) matcher for a particular argument type T.
1235 // We do not nest it inside the NotMatcher class template, as that
1236 // will prevent different instantiations of NotMatcher from sharing
1237 // the same NotMatcherImpl<T> class.
1238 template <typename T>
1239 class NotMatcherImpl : public MatcherInterface<const T&> {
1240  public:
1241   explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1242 
1243   bool MatchAndExplain(const T& x,
1244                        MatchResultListener* listener) const override {
1245     return !matcher_.MatchAndExplain(x, listener);
1246   }
1247 
1248   void DescribeTo(::std::ostream* os) const override {
1249     matcher_.DescribeNegationTo(os);
1250   }
1251 
1252   void DescribeNegationTo(::std::ostream* os) const override {
1253     matcher_.DescribeTo(os);
1254   }
1255 
1256  private:
1257   const Matcher<T> matcher_;
1258 };
1259 
1260 // Implements the Not(m) matcher, which matches a value that doesn't
1261 // match matcher m.
1262 template <typename InnerMatcher>
1263 class NotMatcher {
1264  public:
1265   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1266 
1267   // This template type conversion operator allows Not(m) to be used
1268   // to match any type m can match.
1269   template <typename T>
1270   operator Matcher<T>() const {
1271     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1272   }
1273 
1274  private:
1275   InnerMatcher matcher_;
1276 };
1277 
1278 // Implements the AllOf(m1, m2) matcher for a particular argument type
1279 // T. We do not nest it inside the BothOfMatcher class template, as
1280 // that will prevent different instantiations of BothOfMatcher from
1281 // sharing the same BothOfMatcherImpl<T> class.
1282 template <typename T>
1283 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1284  public:
1285   explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1286       : matchers_(std::move(matchers)) {}
1287 
1288   void DescribeTo(::std::ostream* os) const override {
1289     *os << "(";
1290     for (size_t i = 0; i < matchers_.size(); ++i) {
1291       if (i != 0) *os << ") and (";
1292       matchers_[i].DescribeTo(os);
1293     }
1294     *os << ")";
1295   }
1296 
1297   void DescribeNegationTo(::std::ostream* os) const override {
1298     *os << "(";
1299     for (size_t i = 0; i < matchers_.size(); ++i) {
1300       if (i != 0) *os << ") or (";
1301       matchers_[i].DescribeNegationTo(os);
1302     }
1303     *os << ")";
1304   }
1305 
1306   bool MatchAndExplain(const T& x,
1307                        MatchResultListener* listener) const override {
1308     // This method uses matcher's explanation when explaining the result.
1309     // However, if matcher doesn't provide one, this method uses matcher's
1310     // description.
1311     std::string all_match_result;
1312     for (const Matcher<T>& matcher : matchers_) {
1313       StringMatchResultListener slistener;
1314       // Return explanation for first failed matcher.
1315       if (!matcher.MatchAndExplain(x, &slistener)) {
1316         const std::string explanation = slistener.str();
1317         if (!explanation.empty()) {
1318           *listener << explanation;
1319         } else {
1320           *listener << "which doesn't match (" << Describe(matcher) << ")";
1321         }
1322         return false;
1323       }
1324       // Keep track of explanations in case all matchers succeed.
1325       std::string explanation = slistener.str();
1326       if (explanation.empty()) {
1327         explanation = Describe(matcher);
1328       }
1329       if (all_match_result.empty()) {
1330         all_match_result = explanation;
1331       } else {
1332         if (!explanation.empty()) {
1333           all_match_result += ", and ";
1334           all_match_result += explanation;
1335         }
1336       }
1337     }
1338 
1339     *listener << all_match_result;
1340     return true;
1341   }
1342 
1343  private:
1344   // Returns matcher description as a string.
1345   std::string Describe(const Matcher<T>& matcher) const {
1346     StringMatchResultListener listener;
1347     matcher.DescribeTo(listener.stream());
1348     return listener.str();
1349   }
1350   const std::vector<Matcher<T>> matchers_;
1351 };
1352 
1353 // VariadicMatcher is used for the variadic implementation of
1354 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1355 // CombiningMatcher<T> is used to recursively combine the provided matchers
1356 // (of type Args...).
1357 template <template <typename T> class CombiningMatcher, typename... Args>
1358 class VariadicMatcher {
1359  public:
1360   VariadicMatcher(const Args&... matchers)  // NOLINT
1361       : matchers_(matchers...) {
1362     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1363   }
1364 
1365   VariadicMatcher(const VariadicMatcher&) = default;
1366   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1367 
1368   // This template type conversion operator allows an
1369   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1370   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1371   template <typename T>
1372   operator Matcher<T>() const {
1373     std::vector<Matcher<T>> values;
1374     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1375     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1376   }
1377 
1378  private:
1379   template <typename T, size_t I>
1380   void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1381                              std::integral_constant<size_t, I>) const {
1382     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1383     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1384   }
1385 
1386   template <typename T>
1387   void CreateVariadicMatcher(
1388       std::vector<Matcher<T>>*,
1389       std::integral_constant<size_t, sizeof...(Args)>) const {}
1390 
1391   std::tuple<Args...> matchers_;
1392 };
1393 
1394 template <typename... Args>
1395 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1396 
1397 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1398 // T.  We do not nest it inside the AnyOfMatcher class template, as
1399 // that will prevent different instantiations of AnyOfMatcher from
1400 // sharing the same EitherOfMatcherImpl<T> class.
1401 template <typename T>
1402 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1403  public:
1404   explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1405       : matchers_(std::move(matchers)) {}
1406 
1407   void DescribeTo(::std::ostream* os) const override {
1408     *os << "(";
1409     for (size_t i = 0; i < matchers_.size(); ++i) {
1410       if (i != 0) *os << ") or (";
1411       matchers_[i].DescribeTo(os);
1412     }
1413     *os << ")";
1414   }
1415 
1416   void DescribeNegationTo(::std::ostream* os) const override {
1417     *os << "(";
1418     for (size_t i = 0; i < matchers_.size(); ++i) {
1419       if (i != 0) *os << ") and (";
1420       matchers_[i].DescribeNegationTo(os);
1421     }
1422     *os << ")";
1423   }
1424 
1425   bool MatchAndExplain(const T& x,
1426                        MatchResultListener* listener) const override {
1427     // This method uses matcher's explanation when explaining the result.
1428     // However, if matcher doesn't provide one, this method uses matcher's
1429     // description.
1430     std::string no_match_result;
1431     for (const Matcher<T>& matcher : matchers_) {
1432       StringMatchResultListener slistener;
1433       // Return explanation for first match.
1434       if (matcher.MatchAndExplain(x, &slistener)) {
1435         const std::string explanation = slistener.str();
1436         if (!explanation.empty()) {
1437           *listener << explanation;
1438         } else {
1439           *listener << "which matches (" << Describe(matcher) << ")";
1440         }
1441         return true;
1442       }
1443       // Keep track of explanations in case there is no match.
1444       std::string explanation = slistener.str();
1445       if (explanation.empty()) {
1446         explanation = DescribeNegation(matcher);
1447       }
1448       if (no_match_result.empty()) {
1449         no_match_result = explanation;
1450       } else {
1451         if (!explanation.empty()) {
1452           no_match_result += ", and ";
1453           no_match_result += explanation;
1454         }
1455       }
1456     }
1457 
1458     *listener << no_match_result;
1459     return false;
1460   }
1461 
1462  private:
1463   // Returns matcher description as a string.
1464   std::string Describe(const Matcher<T>& matcher) const {
1465     StringMatchResultListener listener;
1466     matcher.DescribeTo(listener.stream());
1467     return listener.str();
1468   }
1469 
1470   std::string DescribeNegation(const Matcher<T>& matcher) const {
1471     StringMatchResultListener listener;
1472     matcher.DescribeNegationTo(listener.stream());
1473     return listener.str();
1474   }
1475 
1476   const std::vector<Matcher<T>> matchers_;
1477 };
1478 
1479 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1480 template <typename... Args>
1481 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1482 
1483 // ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1484 template <typename MatcherTrue, typename MatcherFalse>
1485 class ConditionalMatcher {
1486  public:
1487   ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1488                      MatcherFalse matcher_false)
1489       : condition_(condition),
1490         matcher_true_(std::move(matcher_true)),
1491         matcher_false_(std::move(matcher_false)) {}
1492 
1493   template <typename T>
1494   operator Matcher<T>() const {  // NOLINT(runtime/explicit)
1495     return condition_ ? SafeMatcherCast<T>(matcher_true_)
1496                       : SafeMatcherCast<T>(matcher_false_);
1497   }
1498 
1499  private:
1500   bool condition_;
1501   MatcherTrue matcher_true_;
1502   MatcherFalse matcher_false_;
1503 };
1504 
1505 // Wrapper for implementation of Any/AllOfArray().
1506 template <template <class> class MatcherImpl, typename T>
1507 class SomeOfArrayMatcher {
1508  public:
1509   // Constructs the matcher from a sequence of element values or
1510   // element matchers.
1511   template <typename Iter>
1512   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1513 
1514   template <typename U>
1515   operator Matcher<U>() const {  // NOLINT
1516     using RawU = typename std::decay<U>::type;
1517     std::vector<Matcher<RawU>> matchers;
1518     matchers.reserve(matchers_.size());
1519     for (const auto& matcher : matchers_) {
1520       matchers.push_back(MatcherCast<RawU>(matcher));
1521     }
1522     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1523   }
1524 
1525  private:
1526   const std::vector<std::remove_const_t<T>> matchers_;
1527 };
1528 
1529 template <typename T>
1530 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1531 
1532 template <typename T>
1533 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1534 
1535 // Used for implementing Truly(pred), which turns a predicate into a
1536 // matcher.
1537 template <typename Predicate>
1538 class TrulyMatcher {
1539  public:
1540   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1541 
1542   // This method template allows Truly(pred) to be used as a matcher
1543   // for type T where T is the argument type of predicate 'pred'.  The
1544   // argument is passed by reference as the predicate may be
1545   // interested in the address of the argument.
1546   template <typename T>
1547   bool MatchAndExplain(T& x,  // NOLINT
1548                        MatchResultListener* listener) const {
1549     // Without the if-statement, MSVC sometimes warns about converting
1550     // a value to bool (warning 4800).
1551     //
1552     // We cannot write 'return !!predicate_(x);' as that doesn't work
1553     // when predicate_(x) returns a class convertible to bool but
1554     // having no operator!().
1555     if (predicate_(x)) return true;
1556     *listener << "didn't satisfy the given predicate";
1557     return false;
1558   }
1559 
1560   void DescribeTo(::std::ostream* os) const {
1561     *os << "satisfies the given predicate";
1562   }
1563 
1564   void DescribeNegationTo(::std::ostream* os) const {
1565     *os << "doesn't satisfy the given predicate";
1566   }
1567 
1568  private:
1569   Predicate predicate_;
1570 };
1571 
1572 // Used for implementing Matches(matcher), which turns a matcher into
1573 // a predicate.
1574 template <typename M>
1575 class MatcherAsPredicate {
1576  public:
1577   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1578 
1579   // This template operator() allows Matches(m) to be used as a
1580   // predicate on type T where m is a matcher on type T.
1581   //
1582   // The argument x is passed by reference instead of by value, as
1583   // some matcher may be interested in its address (e.g. as in
1584   // Matches(Ref(n))(x)).
1585   template <typename T>
1586   bool operator()(const T& x) const {
1587     // We let matcher_ commit to a particular type here instead of
1588     // when the MatcherAsPredicate object was constructed.  This
1589     // allows us to write Matches(m) where m is a polymorphic matcher
1590     // (e.g. Eq(5)).
1591     //
1592     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1593     // compile when matcher_ has type Matcher<const T&>; if we write
1594     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1595     // when matcher_ has type Matcher<T>; if we just write
1596     // matcher_.Matches(x), it won't compile when matcher_ is
1597     // polymorphic, e.g. Eq(5).
1598     //
1599     // MatcherCast<const T&>() is necessary for making the code work
1600     // in all of the above situations.
1601     return MatcherCast<const T&>(matcher_).Matches(x);
1602   }
1603 
1604  private:
1605   M matcher_;
1606 };
1607 
1608 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1609 // argument M must be a type that can be converted to a matcher.
1610 template <typename M>
1611 class PredicateFormatterFromMatcher {
1612  public:
1613   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1614 
1615   // This template () operator allows a PredicateFormatterFromMatcher
1616   // object to act as a predicate-formatter suitable for using with
1617   // Google Test's EXPECT_PRED_FORMAT1() macro.
1618   template <typename T>
1619   AssertionResult operator()(const char* value_text, const T& x) const {
1620     // We convert matcher_ to a Matcher<const T&> *now* instead of
1621     // when the PredicateFormatterFromMatcher object was constructed,
1622     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1623     // know which type to instantiate it to until we actually see the
1624     // type of x here.
1625     //
1626     // We write SafeMatcherCast<const T&>(matcher_) instead of
1627     // Matcher<const T&>(matcher_), as the latter won't compile when
1628     // matcher_ has type Matcher<T> (e.g. An<int>()).
1629     // We don't write MatcherCast<const T&> either, as that allows
1630     // potentially unsafe downcasting of the matcher argument.
1631     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1632 
1633     // The expected path here is that the matcher should match (i.e. that most
1634     // tests pass) so optimize for this case.
1635     if (matcher.Matches(x)) {
1636       return AssertionSuccess();
1637     }
1638 
1639     ::std::stringstream ss;
1640     ss << "Value of: " << value_text << "\n"
1641        << "Expected: ";
1642     matcher.DescribeTo(&ss);
1643 
1644     // Rerun the matcher to "PrintAndExplain" the failure.
1645     StringMatchResultListener listener;
1646     if (MatchPrintAndExplain(x, matcher, &listener)) {
1647       ss << "\n  The matcher failed on the initial attempt; but passed when "
1648             "rerun to generate the explanation.";
1649     }
1650     ss << "\n  Actual: " << listener.str();
1651     return AssertionFailure() << ss.str();
1652   }
1653 
1654  private:
1655   const M matcher_;
1656 };
1657 
1658 // A helper function for converting a matcher to a predicate-formatter
1659 // without the user needing to explicitly write the type.  This is
1660 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1661 // Implementation detail: 'matcher' is received by-value to force decaying.
1662 template <typename M>
1663 inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1664     M matcher) {
1665   return PredicateFormatterFromMatcher<M>(std::move(matcher));
1666 }
1667 
1668 // Implements the polymorphic IsNan() matcher, which matches any floating type
1669 // value that is Nan.
1670 class IsNanMatcher {
1671  public:
1672   template <typename FloatType>
1673   bool MatchAndExplain(const FloatType& f,
1674                        MatchResultListener* /* listener */) const {
1675     return (::std::isnan)(f);
1676   }
1677 
1678   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1679   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1680 };
1681 
1682 // Implements the polymorphic floating point equality matcher, which matches
1683 // two float values using ULP-based approximation or, optionally, a
1684 // user-specified epsilon.  The template is meant to be instantiated with
1685 // FloatType being either float or double.
1686 template <typename FloatType>
1687 class FloatingEqMatcher {
1688  public:
1689   // Constructor for FloatingEqMatcher.
1690   // The matcher's input will be compared with expected.  The matcher treats two
1691   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1692   // equality comparisons between NANs will always return false.  We specify a
1693   // negative max_abs_error_ term to indicate that ULP-based approximation will
1694   // be used for comparison.
1695   FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1696       : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1697 
1698   // Constructor that supports a user-specified max_abs_error that will be used
1699   // for comparison instead of ULP-based approximation.  The max absolute
1700   // should be non-negative.
1701   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1702                     FloatType max_abs_error)
1703       : expected_(expected),
1704         nan_eq_nan_(nan_eq_nan),
1705         max_abs_error_(max_abs_error) {
1706     GTEST_CHECK_(max_abs_error >= 0)
1707         << ", where max_abs_error is" << max_abs_error;
1708   }
1709 
1710   // Implements floating point equality matcher as a Matcher<T>.
1711   template <typename T>
1712   class Impl : public MatcherInterface<T> {
1713    public:
1714     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1715         : expected_(expected),
1716           nan_eq_nan_(nan_eq_nan),
1717           max_abs_error_(max_abs_error) {}
1718 
1719     bool MatchAndExplain(T value,
1720                          MatchResultListener* listener) const override {
1721       const FloatingPoint<FloatType> actual(value), expected(expected_);
1722 
1723       // Compares NaNs first, if nan_eq_nan_ is true.
1724       if (actual.is_nan() || expected.is_nan()) {
1725         if (actual.is_nan() && expected.is_nan()) {
1726           return nan_eq_nan_;
1727         }
1728         // One is nan; the other is not nan.
1729         return false;
1730       }
1731       if (HasMaxAbsError()) {
1732         // We perform an equality check so that inf will match inf, regardless
1733         // of error bounds.  If the result of value - expected_ would result in
1734         // overflow or if either value is inf, the default result is infinity,
1735         // which should only match if max_abs_error_ is also infinity.
1736         if (value == expected_) {
1737           return true;
1738         }
1739 
1740         const FloatType diff = value - expected_;
1741         if (::std::fabs(diff) <= max_abs_error_) {
1742           return true;
1743         }
1744 
1745         if (listener->IsInterested()) {
1746           *listener << "which is " << diff << " from " << expected_;
1747         }
1748         return false;
1749       } else {
1750         return actual.AlmostEquals(expected);
1751       }
1752     }
1753 
1754     void DescribeTo(::std::ostream* os) const override {
1755       // os->precision() returns the previously set precision, which we
1756       // store to restore the ostream to its original configuration
1757       // after outputting.
1758       const ::std::streamsize old_precision =
1759           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1760       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1761         if (nan_eq_nan_) {
1762           *os << "is NaN";
1763         } else {
1764           *os << "never matches";
1765         }
1766       } else {
1767         *os << "is approximately " << expected_;
1768         if (HasMaxAbsError()) {
1769           *os << " (absolute error <= " << max_abs_error_ << ")";
1770         }
1771       }
1772       os->precision(old_precision);
1773     }
1774 
1775     void DescribeNegationTo(::std::ostream* os) const override {
1776       // As before, get original precision.
1777       const ::std::streamsize old_precision =
1778           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1779       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1780         if (nan_eq_nan_) {
1781           *os << "isn't NaN";
1782         } else {
1783           *os << "is anything";
1784         }
1785       } else {
1786         *os << "isn't approximately " << expected_;
1787         if (HasMaxAbsError()) {
1788           *os << " (absolute error > " << max_abs_error_ << ")";
1789         }
1790       }
1791       // Restore original precision.
1792       os->precision(old_precision);
1793     }
1794 
1795    private:
1796     bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1797 
1798     const FloatType expected_;
1799     const bool nan_eq_nan_;
1800     // max_abs_error will be used for value comparison when >= 0.
1801     const FloatType max_abs_error_;
1802   };
1803 
1804   // The following 3 type conversion operators allow FloatEq(expected) and
1805   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1806   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1807   operator Matcher<FloatType>() const {
1808     return MakeMatcher(
1809         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1810   }
1811 
1812   operator Matcher<const FloatType&>() const {
1813     return MakeMatcher(
1814         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1815   }
1816 
1817   operator Matcher<FloatType&>() const {
1818     return MakeMatcher(
1819         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1820   }
1821 
1822  private:
1823   const FloatType expected_;
1824   const bool nan_eq_nan_;
1825   // max_abs_error will be used for value comparison when >= 0.
1826   const FloatType max_abs_error_;
1827 };
1828 
1829 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1830 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1831 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1832 // against y. The former implements "Eq", the latter "Near". At present, there
1833 // is no version that compares NaNs as equal.
1834 template <typename FloatType>
1835 class FloatingEq2Matcher {
1836  public:
1837   FloatingEq2Matcher() { Init(-1, false); }
1838 
1839   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1840 
1841   explicit FloatingEq2Matcher(FloatType max_abs_error) {
1842     Init(max_abs_error, false);
1843   }
1844 
1845   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1846     Init(max_abs_error, nan_eq_nan);
1847   }
1848 
1849   template <typename T1, typename T2>
1850   operator Matcher<::std::tuple<T1, T2>>() const {
1851     return MakeMatcher(
1852         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1853   }
1854   template <typename T1, typename T2>
1855   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1856     return MakeMatcher(
1857         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1858   }
1859 
1860  private:
1861   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1862     return os << "an almost-equal pair";
1863   }
1864 
1865   template <typename Tuple>
1866   class Impl : public MatcherInterface<Tuple> {
1867    public:
1868     Impl(FloatType max_abs_error, bool nan_eq_nan)
1869         : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1870 
1871     bool MatchAndExplain(Tuple args,
1872                          MatchResultListener* listener) const override {
1873       if (max_abs_error_ == -1) {
1874         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1875         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1876             ::std::get<1>(args), listener);
1877       } else {
1878         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1879                                         max_abs_error_);
1880         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1881             ::std::get<1>(args), listener);
1882       }
1883     }
1884     void DescribeTo(::std::ostream* os) const override {
1885       *os << "are " << GetDesc;
1886     }
1887     void DescribeNegationTo(::std::ostream* os) const override {
1888       *os << "aren't " << GetDesc;
1889     }
1890 
1891    private:
1892     FloatType max_abs_error_;
1893     const bool nan_eq_nan_;
1894   };
1895 
1896   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1897     max_abs_error_ = max_abs_error_val;
1898     nan_eq_nan_ = nan_eq_nan_val;
1899   }
1900   FloatType max_abs_error_;
1901   bool nan_eq_nan_;
1902 };
1903 
1904 // Implements the Pointee(m) matcher for matching a pointer whose
1905 // pointee matches matcher m.  The pointer can be either raw or smart.
1906 template <typename InnerMatcher>
1907 class PointeeMatcher {
1908  public:
1909   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1910 
1911   // This type conversion operator template allows Pointee(m) to be
1912   // used as a matcher for any pointer type whose pointee type is
1913   // compatible with the inner matcher, where type Pointer can be
1914   // either a raw pointer or a smart pointer.
1915   //
1916   // The reason we do this instead of relying on
1917   // MakePolymorphicMatcher() is that the latter is not flexible
1918   // enough for implementing the DescribeTo() method of Pointee().
1919   template <typename Pointer>
1920   operator Matcher<Pointer>() const {
1921     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1922   }
1923 
1924  private:
1925   // The monomorphic implementation that works for a particular pointer type.
1926   template <typename Pointer>
1927   class Impl : public MatcherInterface<Pointer> {
1928    public:
1929     using Pointee =
1930         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1931             Pointer)>::element_type;
1932 
1933     explicit Impl(const InnerMatcher& matcher)
1934         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1935 
1936     void DescribeTo(::std::ostream* os) const override {
1937       *os << "points to a value that ";
1938       matcher_.DescribeTo(os);
1939     }
1940 
1941     void DescribeNegationTo(::std::ostream* os) const override {
1942       *os << "does not point to a value that ";
1943       matcher_.DescribeTo(os);
1944     }
1945 
1946     bool MatchAndExplain(Pointer pointer,
1947                          MatchResultListener* listener) const override {
1948       if (GetRawPointer(pointer) == nullptr) return false;
1949 
1950       *listener << "which points to ";
1951       return MatchPrintAndExplain(*pointer, matcher_, listener);
1952     }
1953 
1954    private:
1955     const Matcher<const Pointee&> matcher_;
1956   };
1957 
1958   const InnerMatcher matcher_;
1959 };
1960 
1961 // Implements the Pointer(m) matcher
1962 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1963 // m.  The pointer can be either raw or smart, and will match `m` against the
1964 // raw pointer.
1965 template <typename InnerMatcher>
1966 class PointerMatcher {
1967  public:
1968   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1969 
1970   // This type conversion operator template allows Pointer(m) to be
1971   // used as a matcher for any pointer type whose pointer type is
1972   // compatible with the inner matcher, where type PointerType can be
1973   // either a raw pointer or a smart pointer.
1974   //
1975   // The reason we do this instead of relying on
1976   // MakePolymorphicMatcher() is that the latter is not flexible
1977   // enough for implementing the DescribeTo() method of Pointer().
1978   template <typename PointerType>
1979   operator Matcher<PointerType>() const {  // NOLINT
1980     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1981   }
1982 
1983  private:
1984   // The monomorphic implementation that works for a particular pointer type.
1985   template <typename PointerType>
1986   class Impl : public MatcherInterface<PointerType> {
1987    public:
1988     using Pointer =
1989         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1990             PointerType)>::element_type*;
1991 
1992     explicit Impl(const InnerMatcher& matcher)
1993         : matcher_(MatcherCast<Pointer>(matcher)) {}
1994 
1995     void DescribeTo(::std::ostream* os) const override {
1996       *os << "is a pointer that ";
1997       matcher_.DescribeTo(os);
1998     }
1999 
2000     void DescribeNegationTo(::std::ostream* os) const override {
2001       *os << "is not a pointer that ";
2002       matcher_.DescribeTo(os);
2003     }
2004 
2005     bool MatchAndExplain(PointerType pointer,
2006                          MatchResultListener* listener) const override {
2007       *listener << "which is a pointer that ";
2008       Pointer p = GetRawPointer(pointer);
2009       return MatchPrintAndExplain(p, matcher_, listener);
2010     }
2011 
2012    private:
2013     Matcher<Pointer> matcher_;
2014   };
2015 
2016   const InnerMatcher matcher_;
2017 };
2018 
2019 #if GTEST_HAS_RTTI
2020 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
2021 // reference that matches inner_matcher when dynamic_cast<T> is applied.
2022 // The result of dynamic_cast<To> is forwarded to the inner matcher.
2023 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
2024 // If To is a reference and the cast fails, this matcher returns false
2025 // immediately.
2026 template <typename To>
2027 class WhenDynamicCastToMatcherBase {
2028  public:
2029   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
2030       : matcher_(matcher) {}
2031 
2032   void DescribeTo(::std::ostream* os) const {
2033     GetCastTypeDescription(os);
2034     matcher_.DescribeTo(os);
2035   }
2036 
2037   void DescribeNegationTo(::std::ostream* os) const {
2038     GetCastTypeDescription(os);
2039     matcher_.DescribeNegationTo(os);
2040   }
2041 
2042  protected:
2043   const Matcher<To> matcher_;
2044 
2045   static std::string GetToName() { return GetTypeName<To>(); }
2046 
2047  private:
2048   static void GetCastTypeDescription(::std::ostream* os) {
2049     *os << "when dynamic_cast to " << GetToName() << ", ";
2050   }
2051 };
2052 
2053 // Primary template.
2054 // To is a pointer. Cast and forward the result.
2055 template <typename To>
2056 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2057  public:
2058   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2059       : WhenDynamicCastToMatcherBase<To>(matcher) {}
2060 
2061   template <typename From>
2062   bool MatchAndExplain(From from, MatchResultListener* listener) const {
2063     To to = dynamic_cast<To>(from);
2064     return MatchPrintAndExplain(to, this->matcher_, listener);
2065   }
2066 };
2067 
2068 // Specialize for references.
2069 // In this case we return false if the dynamic_cast fails.
2070 template <typename To>
2071 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2072  public:
2073   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2074       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2075 
2076   template <typename From>
2077   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2078     // We don't want an std::bad_cast here, so do the cast with pointers.
2079     To* to = dynamic_cast<To*>(&from);
2080     if (to == nullptr) {
2081       *listener << "which cannot be dynamic_cast to " << this->GetToName();
2082       return false;
2083     }
2084     return MatchPrintAndExplain(*to, this->matcher_, listener);
2085   }
2086 };
2087 #endif  // GTEST_HAS_RTTI
2088 
2089 // Implements the Field() matcher for matching a field (i.e. member
2090 // variable) of an object.
2091 template <typename Class, typename FieldType>
2092 class FieldMatcher {
2093  public:
2094   FieldMatcher(FieldType Class::*field,
2095                const Matcher<const FieldType&>& matcher)
2096       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2097 
2098   FieldMatcher(const std::string& field_name, FieldType Class::*field,
2099                const Matcher<const FieldType&>& matcher)
2100       : field_(field),
2101         matcher_(matcher),
2102         whose_field_("whose field `" + field_name + "` ") {}
2103 
2104   void DescribeTo(::std::ostream* os) const {
2105     *os << "is an object " << whose_field_;
2106     matcher_.DescribeTo(os);
2107   }
2108 
2109   void DescribeNegationTo(::std::ostream* os) const {
2110     *os << "is an object " << whose_field_;
2111     matcher_.DescribeNegationTo(os);
2112   }
2113 
2114   template <typename T>
2115   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2116     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2117     // a compiler bug, and can now be removed.
2118     return MatchAndExplainImpl(
2119         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2120         value, listener);
2121   }
2122 
2123  private:
2124   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2125                            const Class& obj,
2126                            MatchResultListener* listener) const {
2127     *listener << whose_field_ << "is ";
2128     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2129   }
2130 
2131   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2132                            MatchResultListener* listener) const {
2133     if (p == nullptr) return false;
2134 
2135     *listener << "which points to an object ";
2136     // Since *p has a field, it must be a class/struct/union type and
2137     // thus cannot be a pointer.  Therefore we pass false_type() as
2138     // the first argument.
2139     return MatchAndExplainImpl(std::false_type(), *p, listener);
2140   }
2141 
2142   const FieldType Class::*field_;
2143   const Matcher<const FieldType&> matcher_;
2144 
2145   // Contains either "whose given field " if the name of the field is unknown
2146   // or "whose field `name_of_field` " if the name is known.
2147   const std::string whose_field_;
2148 };
2149 
2150 // Implements the Property() matcher for matching a property
2151 // (i.e. return value of a getter method) of an object.
2152 //
2153 // Property is a const-qualified member function of Class returning
2154 // PropertyType.
2155 template <typename Class, typename PropertyType, typename Property>
2156 class PropertyMatcher {
2157  public:
2158   typedef const PropertyType& RefToConstProperty;
2159 
2160   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2161       : property_(property),
2162         matcher_(matcher),
2163         whose_property_("whose given property ") {}
2164 
2165   PropertyMatcher(const std::string& property_name, Property property,
2166                   const Matcher<RefToConstProperty>& matcher)
2167       : property_(property),
2168         matcher_(matcher),
2169         whose_property_("whose property `" + property_name + "` ") {}
2170 
2171   void DescribeTo(::std::ostream* os) const {
2172     *os << "is an object " << whose_property_;
2173     matcher_.DescribeTo(os);
2174   }
2175 
2176   void DescribeNegationTo(::std::ostream* os) const {
2177     *os << "is an object " << whose_property_;
2178     matcher_.DescribeNegationTo(os);
2179   }
2180 
2181   template <typename T>
2182   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2183     return MatchAndExplainImpl(
2184         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2185         value, listener);
2186   }
2187 
2188  private:
2189   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2190                            const Class& obj,
2191                            MatchResultListener* listener) const {
2192     *listener << whose_property_ << "is ";
2193     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2194     // which takes a non-const reference as argument.
2195     RefToConstProperty result = (obj.*property_)();
2196     return MatchPrintAndExplain(result, matcher_, listener);
2197   }
2198 
2199   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2200                            MatchResultListener* listener) const {
2201     if (p == nullptr) return false;
2202 
2203     *listener << "which points to an object ";
2204     // Since *p has a property method, it must be a class/struct/union
2205     // type and thus cannot be a pointer.  Therefore we pass
2206     // false_type() as the first argument.
2207     return MatchAndExplainImpl(std::false_type(), *p, listener);
2208   }
2209 
2210   Property property_;
2211   const Matcher<RefToConstProperty> matcher_;
2212 
2213   // Contains either "whose given property " if the name of the property is
2214   // unknown or "whose property `name_of_property` " if the name is known.
2215   const std::string whose_property_;
2216 };
2217 
2218 // Type traits specifying various features of different functors for ResultOf.
2219 // The default template specifies features for functor objects.
2220 template <typename Functor>
2221 struct CallableTraits {
2222   typedef Functor StorageType;
2223 
2224   static void CheckIsValid(Functor /* functor */) {}
2225 
2226   template <typename T>
2227   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2228     return f(arg);
2229   }
2230 };
2231 
2232 // Specialization for function pointers.
2233 template <typename ArgType, typename ResType>
2234 struct CallableTraits<ResType (*)(ArgType)> {
2235   typedef ResType ResultType;
2236   typedef ResType (*StorageType)(ArgType);
2237 
2238   static void CheckIsValid(ResType (*f)(ArgType)) {
2239     GTEST_CHECK_(f != nullptr)
2240         << "NULL function pointer is passed into ResultOf().";
2241   }
2242   template <typename T>
2243   static ResType Invoke(ResType (*f)(ArgType), T arg) {
2244     return (*f)(arg);
2245   }
2246 };
2247 
2248 // Implements the ResultOf() matcher for matching a return value of a
2249 // unary function of an object.
2250 template <typename Callable, typename InnerMatcher>
2251 class ResultOfMatcher {
2252  public:
2253   ResultOfMatcher(Callable callable, InnerMatcher matcher)
2254       : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2255                         std::move(matcher)) {}
2256 
2257   ResultOfMatcher(const std::string& result_description, Callable callable,
2258                   InnerMatcher matcher)
2259       : result_description_(result_description),
2260         callable_(std::move(callable)),
2261         matcher_(std::move(matcher)) {
2262     CallableTraits<Callable>::CheckIsValid(callable_);
2263   }
2264 
2265   template <typename T>
2266   operator Matcher<T>() const {
2267     return Matcher<T>(
2268         new Impl<const T&>(result_description_, callable_, matcher_));
2269   }
2270 
2271  private:
2272   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2273 
2274   template <typename T>
2275   class Impl : public MatcherInterface<T> {
2276     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2277         std::declval<CallableStorageType>(), std::declval<T>()));
2278 
2279    public:
2280     template <typename M>
2281     Impl(const std::string& result_description,
2282          const CallableStorageType& callable, const M& matcher)
2283         : result_description_(result_description),
2284           callable_(callable),
2285           matcher_(MatcherCast<ResultType>(matcher)) {}
2286 
2287     void DescribeTo(::std::ostream* os) const override {
2288       if (result_description_.empty()) {
2289         *os << "is mapped by the given callable to a value that ";
2290       } else {
2291         *os << "whose " << result_description_ << " ";
2292       }
2293       matcher_.DescribeTo(os);
2294     }
2295 
2296     void DescribeNegationTo(::std::ostream* os) const override {
2297       if (result_description_.empty()) {
2298         *os << "is mapped by the given callable to a value that ";
2299       } else {
2300         *os << "whose " << result_description_ << " ";
2301       }
2302       matcher_.DescribeNegationTo(os);
2303     }
2304 
2305     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2306       if (result_description_.empty()) {
2307         *listener << "which is mapped by the given callable to ";
2308       } else {
2309         *listener << "whose " << result_description_ << " is ";
2310       }
2311       // Cannot pass the return value directly to MatchPrintAndExplain, which
2312       // takes a non-const reference as argument.
2313       // Also, specifying template argument explicitly is needed because T could
2314       // be a non-const reference (e.g. Matcher<Uncopyable&>).
2315       ResultType result =
2316           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2317       return MatchPrintAndExplain(result, matcher_, listener);
2318     }
2319 
2320    private:
2321     const std::string result_description_;
2322     // Functors often define operator() as non-const method even though
2323     // they are actually stateless. But we need to use them even when
2324     // 'this' is a const pointer. It's the user's responsibility not to
2325     // use stateful callables with ResultOf(), which doesn't guarantee
2326     // how many times the callable will be invoked.
2327     mutable CallableStorageType callable_;
2328     const Matcher<ResultType> matcher_;
2329   };  // class Impl
2330 
2331   const std::string result_description_;
2332   const CallableStorageType callable_;
2333   const InnerMatcher matcher_;
2334 };
2335 
2336 // Implements a matcher that checks the size of an STL-style container.
2337 template <typename SizeMatcher>
2338 class SizeIsMatcher {
2339  public:
2340   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2341       : size_matcher_(size_matcher) {}
2342 
2343   template <typename Container>
2344   operator Matcher<Container>() const {
2345     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2346   }
2347 
2348   template <typename Container>
2349   class Impl : public MatcherInterface<Container> {
2350    public:
2351     using SizeType = decltype(std::declval<Container>().size());
2352     explicit Impl(const SizeMatcher& size_matcher)
2353         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2354 
2355     void DescribeTo(::std::ostream* os) const override {
2356       *os << "has a size that ";
2357       size_matcher_.DescribeTo(os);
2358     }
2359     void DescribeNegationTo(::std::ostream* os) const override {
2360       *os << "has a size that ";
2361       size_matcher_.DescribeNegationTo(os);
2362     }
2363 
2364     bool MatchAndExplain(Container container,
2365                          MatchResultListener* listener) const override {
2366       SizeType size = container.size();
2367       StringMatchResultListener size_listener;
2368       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2369       *listener << "whose size " << size
2370                 << (result ? " matches" : " doesn't match");
2371       PrintIfNotEmpty(size_listener.str(), listener->stream());
2372       return result;
2373     }
2374 
2375    private:
2376     const Matcher<SizeType> size_matcher_;
2377   };
2378 
2379  private:
2380   const SizeMatcher size_matcher_;
2381 };
2382 
2383 // Implements a matcher that checks the begin()..end() distance of an STL-style
2384 // container.
2385 template <typename DistanceMatcher>
2386 class BeginEndDistanceIsMatcher {
2387  public:
2388   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2389       : distance_matcher_(distance_matcher) {}
2390 
2391   template <typename Container>
2392   operator Matcher<Container>() const {
2393     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2394   }
2395 
2396   template <typename Container>
2397   class Impl : public MatcherInterface<Container> {
2398    public:
2399     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2400         Container)>
2401         ContainerView;
2402     typedef typename std::iterator_traits<
2403         typename ContainerView::type::const_iterator>::difference_type
2404         DistanceType;
2405     explicit Impl(const DistanceMatcher& distance_matcher)
2406         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2407 
2408     void DescribeTo(::std::ostream* os) const override {
2409       *os << "distance between begin() and end() ";
2410       distance_matcher_.DescribeTo(os);
2411     }
2412     void DescribeNegationTo(::std::ostream* os) const override {
2413       *os << "distance between begin() and end() ";
2414       distance_matcher_.DescribeNegationTo(os);
2415     }
2416 
2417     bool MatchAndExplain(Container container,
2418                          MatchResultListener* listener) const override {
2419       using std::begin;
2420       using std::end;
2421       DistanceType distance = std::distance(begin(container), end(container));
2422       StringMatchResultListener distance_listener;
2423       const bool result =
2424           distance_matcher_.MatchAndExplain(distance, &distance_listener);
2425       *listener << "whose distance between begin() and end() " << distance
2426                 << (result ? " matches" : " doesn't match");
2427       PrintIfNotEmpty(distance_listener.str(), listener->stream());
2428       return result;
2429     }
2430 
2431    private:
2432     const Matcher<DistanceType> distance_matcher_;
2433   };
2434 
2435  private:
2436   const DistanceMatcher distance_matcher_;
2437 };
2438 
2439 // Implements an equality matcher for any STL-style container whose elements
2440 // support ==. This matcher is like Eq(), but its failure explanations provide
2441 // more detailed information that is useful when the container is used as a set.
2442 // The failure message reports elements that are in one of the operands but not
2443 // the other. The failure messages do not report duplicate or out-of-order
2444 // elements in the containers (which don't properly matter to sets, but can
2445 // occur if the containers are vectors or lists, for example).
2446 //
2447 // Uses the container's const_iterator, value_type, operator ==,
2448 // begin(), and end().
2449 template <typename Container>
2450 class ContainerEqMatcher {
2451  public:
2452   typedef internal::StlContainerView<Container> View;
2453   typedef typename View::type StlContainer;
2454   typedef typename View::const_reference StlContainerReference;
2455 
2456   static_assert(!std::is_const<Container>::value,
2457                 "Container type must not be const");
2458   static_assert(!std::is_reference<Container>::value,
2459                 "Container type must not be a reference");
2460 
2461   // We make a copy of expected in case the elements in it are modified
2462   // after this matcher is created.
2463   explicit ContainerEqMatcher(const Container& expected)
2464       : expected_(View::Copy(expected)) {}
2465 
2466   void DescribeTo(::std::ostream* os) const {
2467     *os << "equals ";
2468     UniversalPrint(expected_, os);
2469   }
2470   void DescribeNegationTo(::std::ostream* os) const {
2471     *os << "does not equal ";
2472     UniversalPrint(expected_, os);
2473   }
2474 
2475   template <typename LhsContainer>
2476   bool MatchAndExplain(const LhsContainer& lhs,
2477                        MatchResultListener* listener) const {
2478     typedef internal::StlContainerView<
2479         typename std::remove_const<LhsContainer>::type>
2480         LhsView;
2481     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2482     if (lhs_stl_container == expected_) return true;
2483 
2484     ::std::ostream* const os = listener->stream();
2485     if (os != nullptr) {
2486       // Something is different. Check for extra values first.
2487       bool printed_header = false;
2488       for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2489            ++it) {
2490         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2491             expected_.end()) {
2492           if (printed_header) {
2493             *os << ", ";
2494           } else {
2495             *os << "which has these unexpected elements: ";
2496             printed_header = true;
2497           }
2498           UniversalPrint(*it, os);
2499         }
2500       }
2501 
2502       // Now check for missing values.
2503       bool printed_header2 = false;
2504       for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2505         if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2506                                      lhs_stl_container.end(),
2507                                      *it) == lhs_stl_container.end()) {
2508           if (printed_header2) {
2509             *os << ", ";
2510           } else {
2511             *os << (printed_header ? ",\nand" : "which")
2512                 << " doesn't have these expected elements: ";
2513             printed_header2 = true;
2514           }
2515           UniversalPrint(*it, os);
2516         }
2517       }
2518     }
2519 
2520     return false;
2521   }
2522 
2523  private:
2524   const StlContainer expected_;
2525 };
2526 
2527 // A comparator functor that uses the < operator to compare two values.
2528 struct LessComparator {
2529   template <typename T, typename U>
2530   bool operator()(const T& lhs, const U& rhs) const {
2531     return lhs < rhs;
2532   }
2533 };
2534 
2535 // Implements WhenSortedBy(comparator, container_matcher).
2536 template <typename Comparator, typename ContainerMatcher>
2537 class WhenSortedByMatcher {
2538  public:
2539   WhenSortedByMatcher(const Comparator& comparator,
2540                       const ContainerMatcher& matcher)
2541       : comparator_(comparator), matcher_(matcher) {}
2542 
2543   template <typename LhsContainer>
2544   operator Matcher<LhsContainer>() const {
2545     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2546   }
2547 
2548   template <typename LhsContainer>
2549   class Impl : public MatcherInterface<LhsContainer> {
2550    public:
2551     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2552         LhsContainer)>
2553         LhsView;
2554     typedef typename LhsView::type LhsStlContainer;
2555     typedef typename LhsView::const_reference LhsStlContainerReference;
2556     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2557     // so that we can match associative containers.
2558     typedef
2559         typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2560             LhsValue;
2561 
2562     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2563         : comparator_(comparator), matcher_(matcher) {}
2564 
2565     void DescribeTo(::std::ostream* os) const override {
2566       *os << "(when sorted) ";
2567       matcher_.DescribeTo(os);
2568     }
2569 
2570     void DescribeNegationTo(::std::ostream* os) const override {
2571       *os << "(when sorted) ";
2572       matcher_.DescribeNegationTo(os);
2573     }
2574 
2575     bool MatchAndExplain(LhsContainer lhs,
2576                          MatchResultListener* listener) const override {
2577       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2578       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2579                                                lhs_stl_container.end());
2580       ::std::sort(sorted_container.begin(), sorted_container.end(),
2581                   comparator_);
2582 
2583       if (!listener->IsInterested()) {
2584         // If the listener is not interested, we do not need to
2585         // construct the inner explanation.
2586         return matcher_.Matches(sorted_container);
2587       }
2588 
2589       *listener << "which is ";
2590       UniversalPrint(sorted_container, listener->stream());
2591       *listener << " when sorted";
2592 
2593       StringMatchResultListener inner_listener;
2594       const bool match =
2595           matcher_.MatchAndExplain(sorted_container, &inner_listener);
2596       PrintIfNotEmpty(inner_listener.str(), listener->stream());
2597       return match;
2598     }
2599 
2600    private:
2601     const Comparator comparator_;
2602     const Matcher<const ::std::vector<LhsValue>&> matcher_;
2603 
2604     Impl(const Impl&) = delete;
2605     Impl& operator=(const Impl&) = delete;
2606   };
2607 
2608  private:
2609   const Comparator comparator_;
2610   const ContainerMatcher matcher_;
2611 };
2612 
2613 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2614 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2615 // T2&> >, where T1 and T2 are the types of elements in the LHS
2616 // container and the RHS container respectively.
2617 template <typename TupleMatcher, typename RhsContainer>
2618 class PointwiseMatcher {
2619   static_assert(
2620       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2621       "use UnorderedPointwise with hash tables");
2622 
2623  public:
2624   typedef internal::StlContainerView<RhsContainer> RhsView;
2625   typedef typename RhsView::type RhsStlContainer;
2626   typedef typename RhsStlContainer::value_type RhsValue;
2627 
2628   static_assert(!std::is_const<RhsContainer>::value,
2629                 "RhsContainer type must not be const");
2630   static_assert(!std::is_reference<RhsContainer>::value,
2631                 "RhsContainer type must not be a reference");
2632 
2633   // Like ContainerEq, we make a copy of rhs in case the elements in
2634   // it are modified after this matcher is created.
2635   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2636       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2637 
2638   template <typename LhsContainer>
2639   operator Matcher<LhsContainer>() const {
2640     static_assert(
2641         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2642         "use UnorderedPointwise with hash tables");
2643 
2644     return Matcher<LhsContainer>(
2645         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2646   }
2647 
2648   template <typename LhsContainer>
2649   class Impl : public MatcherInterface<LhsContainer> {
2650    public:
2651     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2652         LhsContainer)>
2653         LhsView;
2654     typedef typename LhsView::type LhsStlContainer;
2655     typedef typename LhsView::const_reference LhsStlContainerReference;
2656     typedef typename LhsStlContainer::value_type LhsValue;
2657     // We pass the LHS value and the RHS value to the inner matcher by
2658     // reference, as they may be expensive to copy.  We must use tuple
2659     // instead of pair here, as a pair cannot hold references (C++ 98,
2660     // 20.2.2 [lib.pairs]).
2661     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2662 
2663     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2664         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2665         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2666           rhs_(rhs) {}
2667 
2668     void DescribeTo(::std::ostream* os) const override {
2669       *os << "contains " << rhs_.size()
2670           << " values, where each value and its corresponding value in ";
2671       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2672       *os << " ";
2673       mono_tuple_matcher_.DescribeTo(os);
2674     }
2675     void DescribeNegationTo(::std::ostream* os) const override {
2676       *os << "doesn't contain exactly " << rhs_.size()
2677           << " values, or contains a value x at some index i"
2678           << " where x and the i-th value of ";
2679       UniversalPrint(rhs_, os);
2680       *os << " ";
2681       mono_tuple_matcher_.DescribeNegationTo(os);
2682     }
2683 
2684     bool MatchAndExplain(LhsContainer lhs,
2685                          MatchResultListener* listener) const override {
2686       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2687       const size_t actual_size = lhs_stl_container.size();
2688       if (actual_size != rhs_.size()) {
2689         *listener << "which contains " << actual_size << " values";
2690         return false;
2691       }
2692 
2693       auto left = lhs_stl_container.begin();
2694       auto right = rhs_.begin();
2695       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2696         if (listener->IsInterested()) {
2697           StringMatchResultListener inner_listener;
2698           // Create InnerMatcherArg as a temporarily object to avoid it outlives
2699           // *left and *right. Dereference or the conversion to `const T&` may
2700           // return temp objects, e.g. for vector<bool>.
2701           if (!mono_tuple_matcher_.MatchAndExplain(
2702                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2703                                   ImplicitCast_<const RhsValue&>(*right)),
2704                   &inner_listener)) {
2705             *listener << "where the value pair (";
2706             UniversalPrint(*left, listener->stream());
2707             *listener << ", ";
2708             UniversalPrint(*right, listener->stream());
2709             *listener << ") at index #" << i << " don't match";
2710             PrintIfNotEmpty(inner_listener.str(), listener->stream());
2711             return false;
2712           }
2713         } else {
2714           if (!mono_tuple_matcher_.Matches(
2715                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2716                                   ImplicitCast_<const RhsValue&>(*right))))
2717             return false;
2718         }
2719       }
2720 
2721       return true;
2722     }
2723 
2724    private:
2725     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2726     const RhsStlContainer rhs_;
2727   };
2728 
2729  private:
2730   const TupleMatcher tuple_matcher_;
2731   const RhsStlContainer rhs_;
2732 };
2733 
2734 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2735 template <typename Container>
2736 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2737  public:
2738   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2739   typedef StlContainerView<RawContainer> View;
2740   typedef typename View::type StlContainer;
2741   typedef typename View::const_reference StlContainerReference;
2742   typedef typename StlContainer::value_type Element;
2743 
2744   template <typename InnerMatcher>
2745   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2746       : inner_matcher_(
2747             testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2748 
2749   // Checks whether:
2750   // * All elements in the container match, if all_elements_should_match.
2751   // * Any element in the container matches, if !all_elements_should_match.
2752   bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2753                            MatchResultListener* listener) const {
2754     StlContainerReference stl_container = View::ConstReference(container);
2755     size_t i = 0;
2756     for (auto it = stl_container.begin(); it != stl_container.end();
2757          ++it, ++i) {
2758       StringMatchResultListener inner_listener;
2759       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2760 
2761       if (matches != all_elements_should_match) {
2762         *listener << "whose element #" << i
2763                   << (matches ? " matches" : " doesn't match");
2764         PrintIfNotEmpty(inner_listener.str(), listener->stream());
2765         return !all_elements_should_match;
2766       }
2767     }
2768     return all_elements_should_match;
2769   }
2770 
2771   bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2772                            Container container,
2773                            MatchResultListener* listener) const {
2774     StlContainerReference stl_container = View::ConstReference(container);
2775     size_t i = 0;
2776     std::vector<size_t> match_elements;
2777     for (auto it = stl_container.begin(); it != stl_container.end();
2778          ++it, ++i) {
2779       StringMatchResultListener inner_listener;
2780       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2781       if (matches) {
2782         match_elements.push_back(i);
2783       }
2784     }
2785     if (listener->IsInterested()) {
2786       if (match_elements.empty()) {
2787         *listener << "has no element that matches";
2788       } else if (match_elements.size() == 1) {
2789         *listener << "whose element #" << match_elements[0] << " matches";
2790       } else {
2791         *listener << "whose elements (";
2792         std::string sep = "";
2793         for (size_t e : match_elements) {
2794           *listener << sep << e;
2795           sep = ", ";
2796         }
2797         *listener << ") match";
2798       }
2799     }
2800     StringMatchResultListener count_listener;
2801     if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) {
2802       *listener << " and whose match quantity of " << match_elements.size()
2803                 << " matches";
2804       PrintIfNotEmpty(count_listener.str(), listener->stream());
2805       return true;
2806     } else {
2807       if (match_elements.empty()) {
2808         *listener << " and";
2809       } else {
2810         *listener << " but";
2811       }
2812       *listener << " whose match quantity of " << match_elements.size()
2813                 << " does not match";
2814       PrintIfNotEmpty(count_listener.str(), listener->stream());
2815       return false;
2816     }
2817   }
2818 
2819  protected:
2820   const Matcher<const Element&> inner_matcher_;
2821 };
2822 
2823 // Implements Contains(element_matcher) for the given argument type Container.
2824 // Symmetric to EachMatcherImpl.
2825 template <typename Container>
2826 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2827  public:
2828   template <typename InnerMatcher>
2829   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2830       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2831 
2832   // Describes what this matcher does.
2833   void DescribeTo(::std::ostream* os) const override {
2834     *os << "contains at least one element that ";
2835     this->inner_matcher_.DescribeTo(os);
2836   }
2837 
2838   void DescribeNegationTo(::std::ostream* os) const override {
2839     *os << "doesn't contain any element that ";
2840     this->inner_matcher_.DescribeTo(os);
2841   }
2842 
2843   bool MatchAndExplain(Container container,
2844                        MatchResultListener* listener) const override {
2845     return this->MatchAndExplainImpl(false, container, listener);
2846   }
2847 };
2848 
2849 // Implements Each(element_matcher) for the given argument type Container.
2850 // Symmetric to ContainsMatcherImpl.
2851 template <typename Container>
2852 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2853  public:
2854   template <typename InnerMatcher>
2855   explicit EachMatcherImpl(InnerMatcher inner_matcher)
2856       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2857 
2858   // Describes what this matcher does.
2859   void DescribeTo(::std::ostream* os) const override {
2860     *os << "only contains elements that ";
2861     this->inner_matcher_.DescribeTo(os);
2862   }
2863 
2864   void DescribeNegationTo(::std::ostream* os) const override {
2865     *os << "contains some element that ";
2866     this->inner_matcher_.DescribeNegationTo(os);
2867   }
2868 
2869   bool MatchAndExplain(Container container,
2870                        MatchResultListener* listener) const override {
2871     return this->MatchAndExplainImpl(true, container, listener);
2872   }
2873 };
2874 
2875 // Implements Contains(element_matcher).Times(n) for the given argument type
2876 // Container.
2877 template <typename Container>
2878 class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2879  public:
2880   template <typename InnerMatcher>
2881   explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2882                                     Matcher<size_t> count_matcher)
2883       : QuantifierMatcherImpl<Container>(inner_matcher),
2884         count_matcher_(std::move(count_matcher)) {}
2885 
2886   void DescribeTo(::std::ostream* os) const override {
2887     *os << "quantity of elements that match ";
2888     this->inner_matcher_.DescribeTo(os);
2889     *os << " ";
2890     count_matcher_.DescribeTo(os);
2891   }
2892 
2893   void DescribeNegationTo(::std::ostream* os) const override {
2894     *os << "quantity of elements that match ";
2895     this->inner_matcher_.DescribeTo(os);
2896     *os << " ";
2897     count_matcher_.DescribeNegationTo(os);
2898   }
2899 
2900   bool MatchAndExplain(Container container,
2901                        MatchResultListener* listener) const override {
2902     return this->MatchAndExplainImpl(count_matcher_, container, listener);
2903   }
2904 
2905  private:
2906   const Matcher<size_t> count_matcher_;
2907 };
2908 
2909 // Implements polymorphic Contains(element_matcher).Times(n).
2910 template <typename M>
2911 class ContainsTimesMatcher {
2912  public:
2913   explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2914       : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2915 
2916   template <typename Container>
2917   operator Matcher<Container>() const {  // NOLINT
2918     return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2919         inner_matcher_, count_matcher_));
2920   }
2921 
2922  private:
2923   const M inner_matcher_;
2924   const Matcher<size_t> count_matcher_;
2925 };
2926 
2927 // Implements polymorphic Contains(element_matcher).
2928 template <typename M>
2929 class ContainsMatcher {
2930  public:
2931   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2932 
2933   template <typename Container>
2934   operator Matcher<Container>() const {  // NOLINT
2935     return Matcher<Container>(
2936         new ContainsMatcherImpl<const Container&>(inner_matcher_));
2937   }
2938 
2939   ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2940     return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2941   }
2942 
2943  private:
2944   const M inner_matcher_;
2945 };
2946 
2947 // Implements polymorphic Each(element_matcher).
2948 template <typename M>
2949 class EachMatcher {
2950  public:
2951   explicit EachMatcher(M m) : inner_matcher_(m) {}
2952 
2953   template <typename Container>
2954   operator Matcher<Container>() const {  // NOLINT
2955     return Matcher<Container>(
2956         new EachMatcherImpl<const Container&>(inner_matcher_));
2957   }
2958 
2959  private:
2960   const M inner_matcher_;
2961 };
2962 
2963 namespace pair_getters {
2964 using std::get;
2965 template <typename T>
2966 auto First(T& x, Rank0) -> decltype(get<0>(x)) {  // NOLINT
2967   return get<0>(x);
2968 }
2969 template <typename T>
2970 auto First(T& x, Rank1) -> decltype((x.first)) {  // NOLINT
2971   return x.first;
2972 }
2973 
2974 template <typename T>
2975 auto Second(T& x, Rank0) -> decltype(get<1>(x)) {  // NOLINT
2976   return get<1>(x);
2977 }
2978 template <typename T>
2979 auto Second(T& x, Rank1) -> decltype((x.second)) {  // NOLINT
2980   return x.second;
2981 }
2982 }  // namespace pair_getters
2983 
2984 // Implements Key(inner_matcher) for the given argument pair type.
2985 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2986 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2987 // std::map that contains at least one element whose key is >= 5.
2988 template <typename PairType>
2989 class KeyMatcherImpl : public MatcherInterface<PairType> {
2990  public:
2991   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2992   typedef typename RawPairType::first_type KeyType;
2993 
2994   template <typename InnerMatcher>
2995   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2996       : inner_matcher_(
2997             testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2998 
2999   // Returns true if and only if 'key_value.first' (the key) matches the inner
3000   // matcher.
3001   bool MatchAndExplain(PairType key_value,
3002                        MatchResultListener* listener) const override {
3003     StringMatchResultListener inner_listener;
3004     const bool match = inner_matcher_.MatchAndExplain(
3005         pair_getters::First(key_value, Rank1()), &inner_listener);
3006     const std::string explanation = inner_listener.str();
3007     if (!explanation.empty()) {
3008       *listener << "whose first field is a value " << explanation;
3009     }
3010     return match;
3011   }
3012 
3013   // Describes what this matcher does.
3014   void DescribeTo(::std::ostream* os) const override {
3015     *os << "has a key that ";
3016     inner_matcher_.DescribeTo(os);
3017   }
3018 
3019   // Describes what the negation of this matcher does.
3020   void DescribeNegationTo(::std::ostream* os) const override {
3021     *os << "doesn't have a key that ";
3022     inner_matcher_.DescribeTo(os);
3023   }
3024 
3025  private:
3026   const Matcher<const KeyType&> inner_matcher_;
3027 };
3028 
3029 // Implements polymorphic Key(matcher_for_key).
3030 template <typename M>
3031 class KeyMatcher {
3032  public:
3033   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
3034 
3035   template <typename PairType>
3036   operator Matcher<PairType>() const {
3037     return Matcher<PairType>(
3038         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
3039   }
3040 
3041  private:
3042   const M matcher_for_key_;
3043 };
3044 
3045 // Implements polymorphic Address(matcher_for_address).
3046 template <typename InnerMatcher>
3047 class AddressMatcher {
3048  public:
3049   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3050 
3051   template <typename Type>
3052   operator Matcher<Type>() const {  // NOLINT
3053     return Matcher<Type>(new Impl<const Type&>(matcher_));
3054   }
3055 
3056  private:
3057   // The monomorphic implementation that works for a particular object type.
3058   template <typename Type>
3059   class Impl : public MatcherInterface<Type> {
3060    public:
3061     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3062     explicit Impl(const InnerMatcher& matcher)
3063         : matcher_(MatcherCast<Address>(matcher)) {}
3064 
3065     void DescribeTo(::std::ostream* os) const override {
3066       *os << "has address that ";
3067       matcher_.DescribeTo(os);
3068     }
3069 
3070     void DescribeNegationTo(::std::ostream* os) const override {
3071       *os << "does not have address that ";
3072       matcher_.DescribeTo(os);
3073     }
3074 
3075     bool MatchAndExplain(Type object,
3076                          MatchResultListener* listener) const override {
3077       *listener << "which has address ";
3078       Address address = std::addressof(object);
3079       return MatchPrintAndExplain(address, matcher_, listener);
3080     }
3081 
3082    private:
3083     const Matcher<Address> matcher_;
3084   };
3085   const InnerMatcher matcher_;
3086 };
3087 
3088 // Implements Pair(first_matcher, second_matcher) for the given argument pair
3089 // type with its two matchers. See Pair() function below.
3090 template <typename PairType>
3091 class PairMatcherImpl : public MatcherInterface<PairType> {
3092  public:
3093   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3094   typedef typename RawPairType::first_type FirstType;
3095   typedef typename RawPairType::second_type SecondType;
3096 
3097   template <typename FirstMatcher, typename SecondMatcher>
3098   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3099       : first_matcher_(
3100             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3101         second_matcher_(
3102             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3103 
3104   // Describes what this matcher does.
3105   void DescribeTo(::std::ostream* os) const override {
3106     *os << "has a first field that ";
3107     first_matcher_.DescribeTo(os);
3108     *os << ", and has a second field that ";
3109     second_matcher_.DescribeTo(os);
3110   }
3111 
3112   // Describes what the negation of this matcher does.
3113   void DescribeNegationTo(::std::ostream* os) const override {
3114     *os << "has a first field that ";
3115     first_matcher_.DescribeNegationTo(os);
3116     *os << ", or has a second field that ";
3117     second_matcher_.DescribeNegationTo(os);
3118   }
3119 
3120   // Returns true if and only if 'a_pair.first' matches first_matcher and
3121   // 'a_pair.second' matches second_matcher.
3122   bool MatchAndExplain(PairType a_pair,
3123                        MatchResultListener* listener) const override {
3124     if (!listener->IsInterested()) {
3125       // If the listener is not interested, we don't need to construct the
3126       // explanation.
3127       return first_matcher_.Matches(pair_getters::First(a_pair, Rank1())) &&
3128              second_matcher_.Matches(pair_getters::Second(a_pair, Rank1()));
3129     }
3130     StringMatchResultListener first_inner_listener;
3131     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank1()),
3132                                         &first_inner_listener)) {
3133       *listener << "whose first field does not match";
3134       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3135       return false;
3136     }
3137     StringMatchResultListener second_inner_listener;
3138     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank1()),
3139                                          &second_inner_listener)) {
3140       *listener << "whose second field does not match";
3141       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3142       return false;
3143     }
3144     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3145                    listener);
3146     return true;
3147   }
3148 
3149  private:
3150   void ExplainSuccess(const std::string& first_explanation,
3151                       const std::string& second_explanation,
3152                       MatchResultListener* listener) const {
3153     *listener << "whose both fields match";
3154     if (!first_explanation.empty()) {
3155       *listener << ", where the first field is a value " << first_explanation;
3156     }
3157     if (!second_explanation.empty()) {
3158       *listener << ", ";
3159       if (!first_explanation.empty()) {
3160         *listener << "and ";
3161       } else {
3162         *listener << "where ";
3163       }
3164       *listener << "the second field is a value " << second_explanation;
3165     }
3166   }
3167 
3168   const Matcher<const FirstType&> first_matcher_;
3169   const Matcher<const SecondType&> second_matcher_;
3170 };
3171 
3172 // Implements polymorphic Pair(first_matcher, second_matcher).
3173 template <typename FirstMatcher, typename SecondMatcher>
3174 class PairMatcher {
3175  public:
3176   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3177       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3178 
3179   template <typename PairType>
3180   operator Matcher<PairType>() const {
3181     return Matcher<PairType>(
3182         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3183   }
3184 
3185  private:
3186   const FirstMatcher first_matcher_;
3187   const SecondMatcher second_matcher_;
3188 };
3189 
3190 template <typename T, size_t... I>
3191 auto UnpackStructImpl(const T& t, std::index_sequence<I...>,
3192                       int) -> decltype(std::tie(get<I>(t)...)) {
3193   static_assert(std::tuple_size<T>::value == sizeof...(I),
3194                 "Number of arguments doesn't match the number of fields.");
3195   return std::tie(get<I>(t)...);
3196 }
3197 
3198 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3199 template <typename T>
3200 auto UnpackStructImpl(const T& t, std::make_index_sequence<1>, char) {
3201   const auto& [a] = t;
3202   return std::tie(a);
3203 }
3204 template <typename T>
3205 auto UnpackStructImpl(const T& t, std::make_index_sequence<2>, char) {
3206   const auto& [a, b] = t;
3207   return std::tie(a, b);
3208 }
3209 template <typename T>
3210 auto UnpackStructImpl(const T& t, std::make_index_sequence<3>, char) {
3211   const auto& [a, b, c] = t;
3212   return std::tie(a, b, c);
3213 }
3214 template <typename T>
3215 auto UnpackStructImpl(const T& t, std::make_index_sequence<4>, char) {
3216   const auto& [a, b, c, d] = t;
3217   return std::tie(a, b, c, d);
3218 }
3219 template <typename T>
3220 auto UnpackStructImpl(const T& t, std::make_index_sequence<5>, char) {
3221   const auto& [a, b, c, d, e] = t;
3222   return std::tie(a, b, c, d, e);
3223 }
3224 template <typename T>
3225 auto UnpackStructImpl(const T& t, std::make_index_sequence<6>, char) {
3226   const auto& [a, b, c, d, e, f] = t;
3227   return std::tie(a, b, c, d, e, f);
3228 }
3229 template <typename T>
3230 auto UnpackStructImpl(const T& t, std::make_index_sequence<7>, char) {
3231   const auto& [a, b, c, d, e, f, g] = t;
3232   return std::tie(a, b, c, d, e, f, g);
3233 }
3234 template <typename T>
3235 auto UnpackStructImpl(const T& t, std::make_index_sequence<8>, char) {
3236   const auto& [a, b, c, d, e, f, g, h] = t;
3237   return std::tie(a, b, c, d, e, f, g, h);
3238 }
3239 template <typename T>
3240 auto UnpackStructImpl(const T& t, std::make_index_sequence<9>, char) {
3241   const auto& [a, b, c, d, e, f, g, h, i] = t;
3242   return std::tie(a, b, c, d, e, f, g, h, i);
3243 }
3244 template <typename T>
3245 auto UnpackStructImpl(const T& t, std::make_index_sequence<10>, char) {
3246   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3247   return std::tie(a, b, c, d, e, f, g, h, i, j);
3248 }
3249 template <typename T>
3250 auto UnpackStructImpl(const T& t, std::make_index_sequence<11>, char) {
3251   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3252   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3253 }
3254 template <typename T>
3255 auto UnpackStructImpl(const T& t, std::make_index_sequence<12>, char) {
3256   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3257   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3258 }
3259 template <typename T>
3260 auto UnpackStructImpl(const T& t, std::make_index_sequence<13>, char) {
3261   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3262   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3263 }
3264 template <typename T>
3265 auto UnpackStructImpl(const T& t, std::make_index_sequence<14>, char) {
3266   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3267   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3268 }
3269 template <typename T>
3270 auto UnpackStructImpl(const T& t, std::make_index_sequence<15>, char) {
3271   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3272   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3273 }
3274 template <typename T>
3275 auto UnpackStructImpl(const T& t, std::make_index_sequence<16>, char) {
3276   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3277   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3278 }
3279 template <typename T>
3280 auto UnpackStructImpl(const T& t, std::make_index_sequence<17>, char) {
3281   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3282   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3283 }
3284 template <typename T>
3285 auto UnpackStructImpl(const T& t, std::make_index_sequence<18>, char) {
3286   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3287   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3288 }
3289 template <typename T>
3290 auto UnpackStructImpl(const T& t, std::make_index_sequence<19>, char) {
3291   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3292   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3293 }
3294 #endif  // defined(__cpp_structured_bindings)
3295 
3296 template <size_t I, typename T>
3297 auto UnpackStruct(const T& t)
3298     -> decltype((UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0)) {
3299   return (UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0);
3300 }
3301 
3302 // Helper function to do comma folding in C++11.
3303 // The array ensures left-to-right order of evaluation.
3304 // Usage: VariadicExpand({expr...});
3305 template <typename T, size_t N>
3306 void VariadicExpand(const T (&)[N]) {}
3307 
3308 template <typename Struct, typename StructSize>
3309 class FieldsAreMatcherImpl;
3310 
3311 template <typename Struct, size_t... I>
3312 class FieldsAreMatcherImpl<Struct, std::index_sequence<I...>>
3313     : public MatcherInterface<Struct> {
3314   using UnpackedType =
3315       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3316   using MatchersType = std::tuple<
3317       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3318 
3319  public:
3320   template <typename Inner>
3321   explicit FieldsAreMatcherImpl(const Inner& matchers)
3322       : matchers_(testing::SafeMatcherCast<
3323                   const typename std::tuple_element<I, UnpackedType>::type&>(
3324             std::get<I>(matchers))...) {}
3325 
3326   void DescribeTo(::std::ostream* os) const override {
3327     const char* separator = "";
3328     VariadicExpand(
3329         {(*os << separator << "has field #" << I << " that ",
3330           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3331   }
3332 
3333   void DescribeNegationTo(::std::ostream* os) const override {
3334     const char* separator = "";
3335     VariadicExpand({(*os << separator << "has field #" << I << " that ",
3336                      std::get<I>(matchers_).DescribeNegationTo(os),
3337                      separator = ", or ")...});
3338   }
3339 
3340   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3341     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3342   }
3343 
3344  private:
3345   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3346     if (!listener->IsInterested()) {
3347       // If the listener is not interested, we don't need to construct the
3348       // explanation.
3349       bool good = true;
3350       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3351                                          std::get<I>(tuple))...});
3352       return good;
3353     }
3354 
3355     size_t failed_pos = ~size_t{};
3356 
3357     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3358 
3359     VariadicExpand(
3360         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3361                                         std::get<I>(tuple), &inner_listener[I])
3362              ? failed_pos = I
3363              : 0 ...});
3364     if (failed_pos != ~size_t{}) {
3365       *listener << "whose field #" << failed_pos << " does not match";
3366       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3367       return false;
3368     }
3369 
3370     *listener << "whose all elements match";
3371     const char* separator = ", where";
3372     for (size_t index = 0; index < sizeof...(I); ++index) {
3373       const std::string str = inner_listener[index].str();
3374       if (!str.empty()) {
3375         *listener << separator << " field #" << index << " is a value " << str;
3376         separator = ", and";
3377       }
3378     }
3379 
3380     return true;
3381   }
3382 
3383   MatchersType matchers_;
3384 };
3385 
3386 template <typename... Inner>
3387 class FieldsAreMatcher {
3388  public:
3389   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3390 
3391   template <typename Struct>
3392   operator Matcher<Struct>() const {  // NOLINT
3393     return Matcher<Struct>(
3394         new FieldsAreMatcherImpl<const Struct&,
3395                                  std::index_sequence_for<Inner...>>(matchers_));
3396   }
3397 
3398  private:
3399   std::tuple<Inner...> matchers_;
3400 };
3401 
3402 // Implements ElementsAre() and ElementsAreArray().
3403 template <typename Container>
3404 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3405  public:
3406   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3407   typedef internal::StlContainerView<RawContainer> View;
3408   typedef typename View::type StlContainer;
3409   typedef typename View::const_reference StlContainerReference;
3410   typedef typename StlContainer::value_type Element;
3411 
3412   // Constructs the matcher from a sequence of element values or
3413   // element matchers.
3414   template <typename InputIter>
3415   ElementsAreMatcherImpl(InputIter first, InputIter last) {
3416     while (first != last) {
3417       matchers_.push_back(MatcherCast<const Element&>(*first++));
3418     }
3419   }
3420 
3421   // Describes what this matcher does.
3422   void DescribeTo(::std::ostream* os) const override {
3423     if (count() == 0) {
3424       *os << "is empty";
3425     } else if (count() == 1) {
3426       *os << "has 1 element that ";
3427       matchers_[0].DescribeTo(os);
3428     } else {
3429       *os << "has " << Elements(count()) << " where\n";
3430       for (size_t i = 0; i != count(); ++i) {
3431         *os << "element #" << i << " ";
3432         matchers_[i].DescribeTo(os);
3433         if (i + 1 < count()) {
3434           *os << ",\n";
3435         }
3436       }
3437     }
3438   }
3439 
3440   // Describes what the negation of this matcher does.
3441   void DescribeNegationTo(::std::ostream* os) const override {
3442     if (count() == 0) {
3443       *os << "isn't empty";
3444       return;
3445     }
3446 
3447     *os << "doesn't have " << Elements(count()) << ", or\n";
3448     for (size_t i = 0; i != count(); ++i) {
3449       *os << "element #" << i << " ";
3450       matchers_[i].DescribeNegationTo(os);
3451       if (i + 1 < count()) {
3452         *os << ", or\n";
3453       }
3454     }
3455   }
3456 
3457   bool MatchAndExplain(Container container,
3458                        MatchResultListener* listener) const override {
3459     // To work with stream-like "containers", we must only walk
3460     // through the elements in one pass.
3461 
3462     const bool listener_interested = listener->IsInterested();
3463 
3464     // explanations[i] is the explanation of the element at index i.
3465     ::std::vector<std::string> explanations(count());
3466     StlContainerReference stl_container = View::ConstReference(container);
3467     auto it = stl_container.begin();
3468     size_t exam_pos = 0;
3469     bool mismatch_found = false;  // Have we found a mismatched element yet?
3470 
3471     // Go through the elements and matchers in pairs, until we reach
3472     // the end of either the elements or the matchers, or until we find a
3473     // mismatch.
3474     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3475       bool match;  // Does the current element match the current matcher?
3476       if (listener_interested) {
3477         StringMatchResultListener s;
3478         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3479         explanations[exam_pos] = s.str();
3480       } else {
3481         match = matchers_[exam_pos].Matches(*it);
3482       }
3483 
3484       if (!match) {
3485         mismatch_found = true;
3486         break;
3487       }
3488     }
3489     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3490 
3491     // Find how many elements the actual container has.  We avoid
3492     // calling size() s.t. this code works for stream-like "containers"
3493     // that don't define size().
3494     size_t actual_count = exam_pos;
3495     for (; it != stl_container.end(); ++it) {
3496       ++actual_count;
3497     }
3498 
3499     if (actual_count != count()) {
3500       // The element count doesn't match.  If the container is empty,
3501       // there's no need to explain anything as Google Mock already
3502       // prints the empty container.  Otherwise we just need to show
3503       // how many elements there actually are.
3504       if (listener_interested && (actual_count != 0)) {
3505         *listener << "which has " << Elements(actual_count);
3506       }
3507       return false;
3508     }
3509 
3510     if (mismatch_found) {
3511       // The element count matches, but the exam_pos-th element doesn't match.
3512       if (listener_interested) {
3513         *listener << "whose element #" << exam_pos << " doesn't match";
3514         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3515       }
3516       return false;
3517     }
3518 
3519     // Every element matches its expectation.  We need to explain why
3520     // (the obvious ones can be skipped).
3521     if (listener_interested) {
3522       bool reason_printed = false;
3523       for (size_t i = 0; i != count(); ++i) {
3524         const std::string& s = explanations[i];
3525         if (!s.empty()) {
3526           if (reason_printed) {
3527             *listener << ",\nand ";
3528           }
3529           *listener << "whose element #" << i << " matches, " << s;
3530           reason_printed = true;
3531         }
3532       }
3533     }
3534     return true;
3535   }
3536 
3537  private:
3538   static Message Elements(size_t count) {
3539     return Message() << count << (count == 1 ? " element" : " elements");
3540   }
3541 
3542   size_t count() const { return matchers_.size(); }
3543 
3544   ::std::vector<Matcher<const Element&>> matchers_;
3545 };
3546 
3547 // Connectivity matrix of (elements X matchers), in element-major order.
3548 // Initially, there are no edges.
3549 // Use NextGraph() to iterate over all possible edge configurations.
3550 // Use Randomize() to generate a random edge configuration.
3551 class GTEST_API_ MatchMatrix {
3552  public:
3553   MatchMatrix(size_t num_elements, size_t num_matchers)
3554       : num_elements_(num_elements),
3555         num_matchers_(num_matchers),
3556         matched_(num_elements_ * num_matchers_, 0) {}
3557 
3558   size_t LhsSize() const { return num_elements_; }
3559   size_t RhsSize() const { return num_matchers_; }
3560   bool HasEdge(size_t ilhs, size_t irhs) const {
3561     return matched_[SpaceIndex(ilhs, irhs)] == 1;
3562   }
3563   void SetEdge(size_t ilhs, size_t irhs, bool b) {
3564     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3565   }
3566 
3567   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3568   // adds 1 to that number; returns false if incrementing the graph left it
3569   // empty.
3570   bool NextGraph();
3571 
3572   void Randomize();
3573 
3574   std::string DebugString() const;
3575 
3576  private:
3577   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3578     return ilhs * num_matchers_ + irhs;
3579   }
3580 
3581   size_t num_elements_;
3582   size_t num_matchers_;
3583 
3584   // Each element is a char interpreted as bool. They are stored as a
3585   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3586   // a (ilhs, irhs) matrix coordinate into an offset.
3587   ::std::vector<char> matched_;
3588 };
3589 
3590 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3591 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3592 
3593 // Returns a maximum bipartite matching for the specified graph 'g'.
3594 // The matching is represented as a vector of {element, matcher} pairs.
3595 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3596 
3597 struct UnorderedMatcherRequire {
3598   enum Flags {
3599     Superset = 1 << 0,
3600     Subset = 1 << 1,
3601     ExactMatch = Superset | Subset,
3602   };
3603 };
3604 
3605 // Untyped base class for implementing UnorderedElementsAre.  By
3606 // putting logic that's not specific to the element type here, we
3607 // reduce binary bloat and increase compilation speed.
3608 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3609  protected:
3610   explicit UnorderedElementsAreMatcherImplBase(
3611       UnorderedMatcherRequire::Flags matcher_flags)
3612       : match_flags_(matcher_flags) {}
3613 
3614   // A vector of matcher describers, one for each element matcher.
3615   // Does not own the describers (and thus can be used only when the
3616   // element matchers are alive).
3617   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3618 
3619   // Describes this UnorderedElementsAre matcher.
3620   void DescribeToImpl(::std::ostream* os) const;
3621 
3622   // Describes the negation of this UnorderedElementsAre matcher.
3623   void DescribeNegationToImpl(::std::ostream* os) const;
3624 
3625   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3626                          const MatchMatrix& matrix,
3627                          MatchResultListener* listener) const;
3628 
3629   bool FindPairing(const MatchMatrix& matrix,
3630                    MatchResultListener* listener) const;
3631 
3632   MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3633 
3634   static Message Elements(size_t n) {
3635     return Message() << n << " element" << (n == 1 ? "" : "s");
3636   }
3637 
3638   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3639 
3640  private:
3641   UnorderedMatcherRequire::Flags match_flags_;
3642   MatcherDescriberVec matcher_describers_;
3643 };
3644 
3645 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3646 // IsSupersetOf.
3647 template <typename Container>
3648 class UnorderedElementsAreMatcherImpl
3649     : public MatcherInterface<Container>,
3650       public UnorderedElementsAreMatcherImplBase {
3651  public:
3652   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3653   typedef internal::StlContainerView<RawContainer> View;
3654   typedef typename View::type StlContainer;
3655   typedef typename View::const_reference StlContainerReference;
3656   typedef typename StlContainer::value_type Element;
3657 
3658   template <typename InputIter>
3659   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3660                                   InputIter first, InputIter last)
3661       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3662     for (; first != last; ++first) {
3663       matchers_.push_back(MatcherCast<const Element&>(*first));
3664     }
3665     for (const auto& m : matchers_) {
3666       matcher_describers().push_back(m.GetDescriber());
3667     }
3668   }
3669 
3670   // Describes what this matcher does.
3671   void DescribeTo(::std::ostream* os) const override {
3672     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3673   }
3674 
3675   // Describes what the negation of this matcher does.
3676   void DescribeNegationTo(::std::ostream* os) const override {
3677     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3678   }
3679 
3680   bool MatchAndExplain(Container container,
3681                        MatchResultListener* listener) const override {
3682     StlContainerReference stl_container = View::ConstReference(container);
3683     ::std::vector<std::string> element_printouts;
3684     MatchMatrix matrix =
3685         AnalyzeElements(stl_container.begin(), stl_container.end(),
3686                         &element_printouts, listener);
3687 
3688     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3689            FindPairing(matrix, listener);
3690   }
3691 
3692  private:
3693   template <typename ElementIter>
3694   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3695                               ::std::vector<std::string>* element_printouts,
3696                               MatchResultListener* listener) const {
3697     element_printouts->clear();
3698     ::std::vector<char> did_match;
3699     size_t num_elements = 0;
3700     DummyMatchResultListener dummy;
3701     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3702       if (listener->IsInterested()) {
3703         element_printouts->push_back(PrintToString(*elem_first));
3704       }
3705       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3706         did_match.push_back(
3707             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3708       }
3709     }
3710 
3711     MatchMatrix matrix(num_elements, matchers_.size());
3712     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3713     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3714       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3715         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3716       }
3717     }
3718     return matrix;
3719   }
3720 
3721   ::std::vector<Matcher<const Element&>> matchers_;
3722 };
3723 
3724 // Functor for use in TransformTuple.
3725 // Performs MatcherCast<Target> on an input argument of any type.
3726 template <typename Target>
3727 struct CastAndAppendTransform {
3728   template <typename Arg>
3729   Matcher<Target> operator()(const Arg& a) const {
3730     return MatcherCast<Target>(a);
3731   }
3732 };
3733 
3734 // Implements UnorderedElementsAre.
3735 template <typename MatcherTuple>
3736 class UnorderedElementsAreMatcher {
3737  public:
3738   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3739       : matchers_(args) {}
3740 
3741   template <typename Container>
3742   operator Matcher<Container>() const {
3743     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3744     typedef typename internal::StlContainerView<RawContainer>::type View;
3745     typedef typename View::value_type Element;
3746     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3747     MatcherVec matchers;
3748     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3749     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3750                          ::std::back_inserter(matchers));
3751     return Matcher<Container>(
3752         new UnorderedElementsAreMatcherImpl<const Container&>(
3753             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3754             matchers.end()));
3755   }
3756 
3757  private:
3758   const MatcherTuple matchers_;
3759 };
3760 
3761 // Implements ElementsAre.
3762 template <typename MatcherTuple>
3763 class ElementsAreMatcher {
3764  public:
3765   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3766 
3767   template <typename Container>
3768   operator Matcher<Container>() const {
3769     static_assert(
3770         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3771             ::std::tuple_size<MatcherTuple>::value < 2,
3772         "use UnorderedElementsAre with hash tables");
3773 
3774     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3775     typedef typename internal::StlContainerView<RawContainer>::type View;
3776     typedef typename View::value_type Element;
3777     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3778     MatcherVec matchers;
3779     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3780     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3781                          ::std::back_inserter(matchers));
3782     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3783         matchers.begin(), matchers.end()));
3784   }
3785 
3786  private:
3787   const MatcherTuple matchers_;
3788 };
3789 
3790 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3791 template <typename T>
3792 class UnorderedElementsAreArrayMatcher {
3793  public:
3794   template <typename Iter>
3795   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3796                                    Iter first, Iter last)
3797       : match_flags_(match_flags), matchers_(first, last) {}
3798 
3799   template <typename Container>
3800   operator Matcher<Container>() const {
3801     return Matcher<Container>(
3802         new UnorderedElementsAreMatcherImpl<const Container&>(
3803             match_flags_, matchers_.begin(), matchers_.end()));
3804   }
3805 
3806  private:
3807   UnorderedMatcherRequire::Flags match_flags_;
3808   std::vector<std::remove_const_t<T>> matchers_;
3809 };
3810 
3811 // Implements ElementsAreArray().
3812 template <typename T>
3813 class ElementsAreArrayMatcher {
3814  public:
3815   template <typename Iter>
3816   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3817 
3818   template <typename Container>
3819   operator Matcher<Container>() const {
3820     static_assert(
3821         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3822         "use UnorderedElementsAreArray with hash tables");
3823 
3824     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3825         matchers_.begin(), matchers_.end()));
3826   }
3827 
3828  private:
3829   const std::vector<std::remove_const_t<T>> matchers_;
3830 };
3831 
3832 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3833 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3834 // second) is a polymorphic matcher that matches a value x if and only if
3835 // tm matches tuple (x, second).  Useful for implementing
3836 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3837 //
3838 // BoundSecondMatcher is copyable and assignable, as we need to put
3839 // instances of this class in a vector when implementing
3840 // UnorderedPointwise().
3841 template <typename Tuple2Matcher, typename Second>
3842 class BoundSecondMatcher {
3843  public:
3844   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3845       : tuple2_matcher_(tm), second_value_(second) {}
3846 
3847   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3848 
3849   template <typename T>
3850   operator Matcher<T>() const {
3851     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3852   }
3853 
3854   // We have to define this for UnorderedPointwise() to compile in
3855   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3856   // which requires the elements to be assignable in C++98.  The
3857   // compiler cannot generate the operator= for us, as Tuple2Matcher
3858   // and Second may not be assignable.
3859   //
3860   // However, this should never be called, so the implementation just
3861   // need to assert.
3862   void operator=(const BoundSecondMatcher& /*rhs*/) {
3863     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3864   }
3865 
3866  private:
3867   template <typename T>
3868   class Impl : public MatcherInterface<T> {
3869    public:
3870     typedef ::std::tuple<T, Second> ArgTuple;
3871 
3872     Impl(const Tuple2Matcher& tm, const Second& second)
3873         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3874           second_value_(second) {}
3875 
3876     void DescribeTo(::std::ostream* os) const override {
3877       *os << "and ";
3878       UniversalPrint(second_value_, os);
3879       *os << " ";
3880       mono_tuple2_matcher_.DescribeTo(os);
3881     }
3882 
3883     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3884       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3885                                                   listener);
3886     }
3887 
3888    private:
3889     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3890     const Second second_value_;
3891   };
3892 
3893   const Tuple2Matcher tuple2_matcher_;
3894   const Second second_value_;
3895 };
3896 
3897 // Given a 2-tuple matcher tm and a value second,
3898 // MatcherBindSecond(tm, second) returns a matcher that matches a
3899 // value x if and only if tm matches tuple (x, second).  Useful for
3900 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3901 template <typename Tuple2Matcher, typename Second>
3902 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3903     const Tuple2Matcher& tm, const Second& second) {
3904   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3905 }
3906 
3907 // Returns the description for a matcher defined using the MATCHER*()
3908 // macro where the user-supplied description string is "", if
3909 // 'negation' is false; otherwise returns the description of the
3910 // negation of the matcher.  'param_values' contains a list of strings
3911 // that are the print-out of the matcher's parameters.
3912 GTEST_API_ std::string FormatMatcherDescription(
3913     bool negation, const char* matcher_name,
3914     const std::vector<const char*>& param_names, const Strings& param_values);
3915 
3916 // Overloads to support `OptionalMatcher` being used with a type that either
3917 // supports implicit conversion to bool or a `has_value()` method.
3918 template <typename Optional>
3919 auto IsOptionalEngaged(const Optional& optional,
3920                        Rank1) -> decltype(!!optional) {
3921   // The use of double-negation here is to preserve historical behavior where
3922   // the matcher used `operator!` rather than directly using `operator bool`.
3923   return !static_cast<bool>(!optional);
3924 }
3925 template <typename Optional>
3926 auto IsOptionalEngaged(const Optional& optional,
3927                        Rank0) -> decltype(!optional.has_value()) {
3928   return optional.has_value();
3929 }
3930 
3931 // Implements a matcher that checks the value of a optional<> type variable.
3932 template <typename ValueMatcher>
3933 class OptionalMatcher {
3934  public:
3935   explicit OptionalMatcher(const ValueMatcher& value_matcher)
3936       : value_matcher_(value_matcher) {}
3937 
3938   template <typename Optional>
3939   operator Matcher<Optional>() const {
3940     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3941   }
3942 
3943   template <typename Optional>
3944   class Impl : public MatcherInterface<Optional> {
3945    public:
3946     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3947     typedef typename OptionalView::value_type ValueType;
3948     explicit Impl(const ValueMatcher& value_matcher)
3949         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3950 
3951     void DescribeTo(::std::ostream* os) const override {
3952       *os << "value ";
3953       value_matcher_.DescribeTo(os);
3954     }
3955 
3956     void DescribeNegationTo(::std::ostream* os) const override {
3957       *os << "value ";
3958       value_matcher_.DescribeNegationTo(os);
3959     }
3960 
3961     bool MatchAndExplain(Optional optional,
3962                          MatchResultListener* listener) const override {
3963       if (!IsOptionalEngaged(optional, HighestRank())) {
3964         *listener << "which is not engaged";
3965         return false;
3966       }
3967       const ValueType& value = *optional;
3968       StringMatchResultListener value_listener;
3969       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3970       *listener << "whose value " << PrintToString(value)
3971                 << (match ? " matches" : " doesn't match");
3972       PrintIfNotEmpty(value_listener.str(), listener->stream());
3973       return match;
3974     }
3975 
3976    private:
3977     const Matcher<ValueType> value_matcher_;
3978   };
3979 
3980  private:
3981   const ValueMatcher value_matcher_;
3982 };
3983 
3984 namespace variant_matcher {
3985 // Overloads to allow VariantMatcher to do proper ADL lookup.
3986 template <typename T>
3987 void holds_alternative() {}
3988 template <typename T>
3989 void get() {}
3990 
3991 // Implements a matcher that checks the value of a variant<> type variable.
3992 template <typename T>
3993 class VariantMatcher {
3994  public:
3995   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3996       : matcher_(std::move(matcher)) {}
3997 
3998   template <typename Variant>
3999   bool MatchAndExplain(const Variant& value,
4000                        ::testing::MatchResultListener* listener) const {
4001     using std::get;
4002     if (!listener->IsInterested()) {
4003       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
4004     }
4005 
4006     if (!holds_alternative<T>(value)) {
4007       *listener << "whose value is not of type '" << GetTypeName() << "'";
4008       return false;
4009     }
4010 
4011     const T& elem = get<T>(value);
4012     StringMatchResultListener elem_listener;
4013     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
4014     *listener << "whose value " << PrintToString(elem)
4015               << (match ? " matches" : " doesn't match");
4016     PrintIfNotEmpty(elem_listener.str(), listener->stream());
4017     return match;
4018   }
4019 
4020   void DescribeTo(std::ostream* os) const {
4021     *os << "is a variant<> with value of type '" << GetTypeName()
4022         << "' and the value ";
4023     matcher_.DescribeTo(os);
4024   }
4025 
4026   void DescribeNegationTo(std::ostream* os) const {
4027     *os << "is a variant<> with value of type other than '" << GetTypeName()
4028         << "' or the value ";
4029     matcher_.DescribeNegationTo(os);
4030   }
4031 
4032  private:
4033   static std::string GetTypeName() {
4034 #if GTEST_HAS_RTTI
4035     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4036         return internal::GetTypeName<T>());
4037 #endif
4038     return "the element type";
4039   }
4040 
4041   const ::testing::Matcher<const T&> matcher_;
4042 };
4043 
4044 }  // namespace variant_matcher
4045 
4046 namespace any_cast_matcher {
4047 
4048 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
4049 template <typename T>
4050 void any_cast() {}
4051 
4052 // Implements a matcher that any_casts the value.
4053 template <typename T>
4054 class AnyCastMatcher {
4055  public:
4056   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4057       : matcher_(matcher) {}
4058 
4059   template <typename AnyType>
4060   bool MatchAndExplain(const AnyType& value,
4061                        ::testing::MatchResultListener* listener) const {
4062     if (!listener->IsInterested()) {
4063       const T* ptr = any_cast<T>(&value);
4064       return ptr != nullptr && matcher_.Matches(*ptr);
4065     }
4066 
4067     const T* elem = any_cast<T>(&value);
4068     if (elem == nullptr) {
4069       *listener << "whose value is not of type '" << GetTypeName() << "'";
4070       return false;
4071     }
4072 
4073     StringMatchResultListener elem_listener;
4074     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4075     *listener << "whose value " << PrintToString(*elem)
4076               << (match ? " matches" : " doesn't match");
4077     PrintIfNotEmpty(elem_listener.str(), listener->stream());
4078     return match;
4079   }
4080 
4081   void DescribeTo(std::ostream* os) const {
4082     *os << "is an 'any' type with value of type '" << GetTypeName()
4083         << "' and the value ";
4084     matcher_.DescribeTo(os);
4085   }
4086 
4087   void DescribeNegationTo(std::ostream* os) const {
4088     *os << "is an 'any' type with value of type other than '" << GetTypeName()
4089         << "' or the value ";
4090     matcher_.DescribeNegationTo(os);
4091   }
4092 
4093  private:
4094   static std::string GetTypeName() {
4095 #if GTEST_HAS_RTTI
4096     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4097         return internal::GetTypeName<T>());
4098 #endif
4099     return "the element type";
4100   }
4101 
4102   const ::testing::Matcher<const T&> matcher_;
4103 };
4104 
4105 }  // namespace any_cast_matcher
4106 
4107 // Implements the Args() matcher.
4108 template <class ArgsTuple, size_t... k>
4109 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4110  public:
4111   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4112   using SelectedArgs =
4113       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4114   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4115 
4116   template <typename InnerMatcher>
4117   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4118       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4119 
4120   bool MatchAndExplain(ArgsTuple args,
4121                        MatchResultListener* listener) const override {
4122     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4123     (void)args;
4124     const SelectedArgs& selected_args =
4125         std::forward_as_tuple(std::get<k>(args)...);
4126     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4127 
4128     PrintIndices(listener->stream());
4129     *listener << "are " << PrintToString(selected_args);
4130 
4131     StringMatchResultListener inner_listener;
4132     const bool match =
4133         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4134     PrintIfNotEmpty(inner_listener.str(), listener->stream());
4135     return match;
4136   }
4137 
4138   void DescribeTo(::std::ostream* os) const override {
4139     *os << "are a tuple ";
4140     PrintIndices(os);
4141     inner_matcher_.DescribeTo(os);
4142   }
4143 
4144   void DescribeNegationTo(::std::ostream* os) const override {
4145     *os << "are a tuple ";
4146     PrintIndices(os);
4147     inner_matcher_.DescribeNegationTo(os);
4148   }
4149 
4150  private:
4151   // Prints the indices of the selected fields.
4152   static void PrintIndices(::std::ostream* os) {
4153     *os << "whose fields (";
4154     const char* sep = "";
4155     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4156     (void)sep;
4157     // The static_cast to void is needed to silence Clang's -Wcomma warning.
4158     // This pattern looks suspiciously like we may have mismatched parentheses
4159     // and may have been trying to use the first operation of the comma operator
4160     // as a member of the array, so Clang warns that we may have made a mistake.
4161     const char* dummy[] = {
4162         "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4163     (void)dummy;
4164     *os << ") ";
4165   }
4166 
4167   MonomorphicInnerMatcher inner_matcher_;
4168 };
4169 
4170 template <class InnerMatcher, size_t... k>
4171 class ArgsMatcher {
4172  public:
4173   explicit ArgsMatcher(InnerMatcher inner_matcher)
4174       : inner_matcher_(std::move(inner_matcher)) {}
4175 
4176   template <typename ArgsTuple>
4177   operator Matcher<ArgsTuple>() const {  // NOLINT
4178     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4179   }
4180 
4181  private:
4182   InnerMatcher inner_matcher_;
4183 };
4184 
4185 }  // namespace internal
4186 
4187 // ElementsAreArray(iterator_first, iterator_last)
4188 // ElementsAreArray(pointer, count)
4189 // ElementsAreArray(array)
4190 // ElementsAreArray(container)
4191 // ElementsAreArray({ e1, e2, ..., en })
4192 //
4193 // The ElementsAreArray() functions are like ElementsAre(...), except
4194 // that they are given a homogeneous sequence rather than taking each
4195 // element as a function argument. The sequence can be specified as an
4196 // array, a pointer and count, a vector, an initializer list, or an
4197 // STL iterator range. In each of these cases, the underlying sequence
4198 // can be either a sequence of values or a sequence of matchers.
4199 //
4200 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
4201 
4202 template <typename Iter>
4203 inline internal::ElementsAreArrayMatcher<
4204     typename ::std::iterator_traits<Iter>::value_type>
4205 ElementsAreArray(Iter first, Iter last) {
4206   typedef typename ::std::iterator_traits<Iter>::value_type T;
4207   return internal::ElementsAreArrayMatcher<T>(first, last);
4208 }
4209 
4210 template <typename T>
4211 inline auto ElementsAreArray(const T* pointer, size_t count)
4212     -> decltype(ElementsAreArray(pointer, pointer + count)) {
4213   return ElementsAreArray(pointer, pointer + count);
4214 }
4215 
4216 template <typename T, size_t N>
4217 inline auto ElementsAreArray(const T (&array)[N])
4218     -> decltype(ElementsAreArray(array, N)) {
4219   return ElementsAreArray(array, N);
4220 }
4221 
4222 template <typename Container>
4223 inline auto ElementsAreArray(const Container& container)
4224     -> decltype(ElementsAreArray(container.begin(), container.end())) {
4225   return ElementsAreArray(container.begin(), container.end());
4226 }
4227 
4228 template <typename T>
4229 inline auto ElementsAreArray(::std::initializer_list<T> xs)
4230     -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4231   return ElementsAreArray(xs.begin(), xs.end());
4232 }
4233 
4234 // UnorderedElementsAreArray(iterator_first, iterator_last)
4235 // UnorderedElementsAreArray(pointer, count)
4236 // UnorderedElementsAreArray(array)
4237 // UnorderedElementsAreArray(container)
4238 // UnorderedElementsAreArray({ e1, e2, ..., en })
4239 //
4240 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4241 // collection of matchers exists.
4242 //
4243 // The matchers can be specified as an array, a pointer and count, a container,
4244 // an initializer list, or an STL iterator range. In each of these cases, the
4245 // underlying matchers can be either values or matchers.
4246 
4247 template <typename Iter>
4248 inline internal::UnorderedElementsAreArrayMatcher<
4249     typename ::std::iterator_traits<Iter>::value_type>
4250 UnorderedElementsAreArray(Iter first, Iter last) {
4251   typedef typename ::std::iterator_traits<Iter>::value_type T;
4252   return internal::UnorderedElementsAreArrayMatcher<T>(
4253       internal::UnorderedMatcherRequire::ExactMatch, first, last);
4254 }
4255 
4256 template <typename T>
4257 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4258     const T* pointer, size_t count) {
4259   return UnorderedElementsAreArray(pointer, pointer + count);
4260 }
4261 
4262 template <typename T, size_t N>
4263 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4264     const T (&array)[N]) {
4265   return UnorderedElementsAreArray(array, N);
4266 }
4267 
4268 template <typename Container>
4269 inline internal::UnorderedElementsAreArrayMatcher<
4270     typename Container::value_type>
4271 UnorderedElementsAreArray(const Container& container) {
4272   return UnorderedElementsAreArray(container.begin(), container.end());
4273 }
4274 
4275 template <typename T>
4276 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4277     ::std::initializer_list<T> xs) {
4278   return UnorderedElementsAreArray(xs.begin(), xs.end());
4279 }
4280 
4281 // _ is a matcher that matches anything of any type.
4282 //
4283 // This definition is fine as:
4284 //
4285 //   1. The C++ standard permits using the name _ in a namespace that
4286 //      is not the global namespace or ::std.
4287 //   2. The AnythingMatcher class has no data member or constructor,
4288 //      so it's OK to create global variables of this type.
4289 //   3. c-style has approved of using _ in this case.
4290 const internal::AnythingMatcher _ = {};
4291 // Creates a matcher that matches any value of the given type T.
4292 template <typename T>
4293 inline Matcher<T> A() {
4294   return _;
4295 }
4296 
4297 // Creates a matcher that matches any value of the given type T.
4298 template <typename T>
4299 inline Matcher<T> An() {
4300   return _;
4301 }
4302 
4303 template <typename T, typename M>
4304 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4305     const M& value, std::false_type /* convertible_to_matcher */,
4306     std::false_type /* convertible_to_T */) {
4307   return Eq(value);
4308 }
4309 
4310 // Creates a polymorphic matcher that matches any NULL pointer.
4311 inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4312   return MakePolymorphicMatcher(internal::IsNullMatcher());
4313 }
4314 
4315 // Creates a polymorphic matcher that matches any non-NULL pointer.
4316 // This is convenient as Not(NULL) doesn't compile (the compiler
4317 // thinks that that expression is comparing a pointer with an integer).
4318 inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4319   return MakePolymorphicMatcher(internal::NotNullMatcher());
4320 }
4321 
4322 // Creates a polymorphic matcher that matches any argument that
4323 // references variable x.
4324 template <typename T>
4325 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
4326   return internal::RefMatcher<T&>(x);
4327 }
4328 
4329 // Creates a polymorphic matcher that matches any NaN floating point.
4330 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4331   return MakePolymorphicMatcher(internal::IsNanMatcher());
4332 }
4333 
4334 // Creates a matcher that matches any double argument approximately
4335 // equal to rhs, where two NANs are considered unequal.
4336 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4337   return internal::FloatingEqMatcher<double>(rhs, false);
4338 }
4339 
4340 // Creates a matcher that matches any double argument approximately
4341 // equal to rhs, including NaN values when rhs is NaN.
4342 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4343   return internal::FloatingEqMatcher<double>(rhs, true);
4344 }
4345 
4346 // Creates a matcher that matches any double argument approximately equal to
4347 // rhs, up to the specified max absolute error bound, where two NANs are
4348 // considered unequal.  The max absolute error bound must be non-negative.
4349 inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4350                                                       double max_abs_error) {
4351   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4352 }
4353 
4354 // Creates a matcher that matches any double argument approximately equal to
4355 // rhs, up to the specified max absolute error bound, including NaN values when
4356 // rhs is NaN.  The max absolute error bound must be non-negative.
4357 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4358     double rhs, double max_abs_error) {
4359   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4360 }
4361 
4362 // Creates a matcher that matches any float argument approximately
4363 // equal to rhs, where two NANs are considered unequal.
4364 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4365   return internal::FloatingEqMatcher<float>(rhs, false);
4366 }
4367 
4368 // Creates a matcher that matches any float argument approximately
4369 // equal to rhs, including NaN values when rhs is NaN.
4370 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4371   return internal::FloatingEqMatcher<float>(rhs, true);
4372 }
4373 
4374 // Creates a matcher that matches any float argument approximately equal to
4375 // rhs, up to the specified max absolute error bound, where two NANs are
4376 // considered unequal.  The max absolute error bound must be non-negative.
4377 inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4378                                                     float max_abs_error) {
4379   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4380 }
4381 
4382 // Creates a matcher that matches any float argument approximately equal to
4383 // rhs, up to the specified max absolute error bound, including NaN values when
4384 // rhs is NaN.  The max absolute error bound must be non-negative.
4385 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4386     float rhs, float max_abs_error) {
4387   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4388 }
4389 
4390 // Creates a matcher that matches a pointer (raw or smart) that points
4391 // to a value that matches inner_matcher.
4392 template <typename InnerMatcher>
4393 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4394     const InnerMatcher& inner_matcher) {
4395   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4396 }
4397 
4398 #if GTEST_HAS_RTTI
4399 // Creates a matcher that matches a pointer or reference that matches
4400 // inner_matcher when dynamic_cast<To> is applied.
4401 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4402 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4403 // If To is a reference and the cast fails, this matcher returns false
4404 // immediately.
4405 template <typename To>
4406 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4407 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4408   return MakePolymorphicMatcher(
4409       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4410 }
4411 #endif  // GTEST_HAS_RTTI
4412 
4413 // Creates a matcher that matches an object whose given field matches
4414 // 'matcher'.  For example,
4415 //   Field(&Foo::number, Ge(5))
4416 // matches a Foo object x if and only if x.number >= 5.
4417 template <typename Class, typename FieldType, typename FieldMatcher>
4418 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4419     FieldType Class::*field, const FieldMatcher& matcher) {
4420   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4421       field, MatcherCast<const FieldType&>(matcher)));
4422   // The call to MatcherCast() is required for supporting inner
4423   // matchers of compatible types.  For example, it allows
4424   //   Field(&Foo::bar, m)
4425   // to compile where bar is an int32 and m is a matcher for int64.
4426 }
4427 
4428 // Same as Field() but also takes the name of the field to provide better error
4429 // messages.
4430 template <typename Class, typename FieldType, typename FieldMatcher>
4431 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4432     const std::string& field_name, FieldType Class::*field,
4433     const FieldMatcher& matcher) {
4434   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4435       field_name, field, MatcherCast<const FieldType&>(matcher)));
4436 }
4437 
4438 // Creates a matcher that matches an object whose given property
4439 // matches 'matcher'.  For example,
4440 //   Property(&Foo::str, StartsWith("hi"))
4441 // matches a Foo object x if and only if x.str() starts with "hi".
4442 template <typename Class, typename PropertyType, typename PropertyMatcher>
4443 inline PolymorphicMatcher<internal::PropertyMatcher<
4444     Class, PropertyType, PropertyType (Class::*)() const>>
4445 Property(PropertyType (Class::*property)() const,
4446          const PropertyMatcher& matcher) {
4447   return MakePolymorphicMatcher(
4448       internal::PropertyMatcher<Class, PropertyType,
4449                                 PropertyType (Class::*)() const>(
4450           property, MatcherCast<const PropertyType&>(matcher)));
4451   // The call to MatcherCast() is required for supporting inner
4452   // matchers of compatible types.  For example, it allows
4453   //   Property(&Foo::bar, m)
4454   // to compile where bar() returns an int32 and m is a matcher for int64.
4455 }
4456 
4457 // Same as Property() above, but also takes the name of the property to provide
4458 // better error messages.
4459 template <typename Class, typename PropertyType, typename PropertyMatcher>
4460 inline PolymorphicMatcher<internal::PropertyMatcher<
4461     Class, PropertyType, PropertyType (Class::*)() const>>
4462 Property(const std::string& property_name,
4463          PropertyType (Class::*property)() const,
4464          const PropertyMatcher& matcher) {
4465   return MakePolymorphicMatcher(
4466       internal::PropertyMatcher<Class, PropertyType,
4467                                 PropertyType (Class::*)() const>(
4468           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4469 }
4470 
4471 // The same as above but for reference-qualified member functions.
4472 template <typename Class, typename PropertyType, typename PropertyMatcher>
4473 inline PolymorphicMatcher<internal::PropertyMatcher<
4474     Class, PropertyType, PropertyType (Class::*)() const&>>
4475 Property(PropertyType (Class::*property)() const&,
4476          const PropertyMatcher& matcher) {
4477   return MakePolymorphicMatcher(
4478       internal::PropertyMatcher<Class, PropertyType,
4479                                 PropertyType (Class::*)() const&>(
4480           property, MatcherCast<const PropertyType&>(matcher)));
4481 }
4482 
4483 // Three-argument form for reference-qualified member functions.
4484 template <typename Class, typename PropertyType, typename PropertyMatcher>
4485 inline PolymorphicMatcher<internal::PropertyMatcher<
4486     Class, PropertyType, PropertyType (Class::*)() const&>>
4487 Property(const std::string& property_name,
4488          PropertyType (Class::*property)() const&,
4489          const PropertyMatcher& matcher) {
4490   return MakePolymorphicMatcher(
4491       internal::PropertyMatcher<Class, PropertyType,
4492                                 PropertyType (Class::*)() const&>(
4493           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4494 }
4495 
4496 // Creates a matcher that matches an object if and only if the result of
4497 // applying a callable to x matches 'matcher'. For example,
4498 //   ResultOf(f, StartsWith("hi"))
4499 // matches a Foo object x if and only if f(x) starts with "hi".
4500 // `callable` parameter can be a function, function pointer, or a functor. It is
4501 // required to keep no state affecting the results of the calls on it and make
4502 // no assumptions about how many calls will be made. Any state it keeps must be
4503 // protected from the concurrent access.
4504 template <typename Callable, typename InnerMatcher>
4505 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4506     Callable callable, InnerMatcher matcher) {
4507   return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4508                                                            std::move(matcher));
4509 }
4510 
4511 // Same as ResultOf() above, but also takes a description of the `callable`
4512 // result to provide better error messages.
4513 template <typename Callable, typename InnerMatcher>
4514 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4515     const std::string& result_description, Callable callable,
4516     InnerMatcher matcher) {
4517   return internal::ResultOfMatcher<Callable, InnerMatcher>(
4518       result_description, std::move(callable), std::move(matcher));
4519 }
4520 
4521 // String matchers.
4522 
4523 // Matches a string equal to str.
4524 template <typename T = std::string>
4525 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4526     const internal::StringLike<T>& str) {
4527   return MakePolymorphicMatcher(
4528       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4529 }
4530 
4531 // Matches a string not equal to str.
4532 template <typename T = std::string>
4533 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4534     const internal::StringLike<T>& str) {
4535   return MakePolymorphicMatcher(
4536       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4537 }
4538 
4539 // Matches a string equal to str, ignoring case.
4540 template <typename T = std::string>
4541 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4542     const internal::StringLike<T>& str) {
4543   return MakePolymorphicMatcher(
4544       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4545 }
4546 
4547 // Matches a string not equal to str, ignoring case.
4548 template <typename T = std::string>
4549 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4550     const internal::StringLike<T>& str) {
4551   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4552       std::string(str), false, false));
4553 }
4554 
4555 // Creates a matcher that matches any string, std::string, or C string
4556 // that contains the given substring.
4557 template <typename T = std::string>
4558 PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4559     const internal::StringLike<T>& substring) {
4560   return MakePolymorphicMatcher(
4561       internal::HasSubstrMatcher<std::string>(std::string(substring)));
4562 }
4563 
4564 // Matches a string that starts with 'prefix' (case-sensitive).
4565 template <typename T = std::string>
4566 PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4567     const internal::StringLike<T>& prefix) {
4568   return MakePolymorphicMatcher(
4569       internal::StartsWithMatcher<std::string>(std::string(prefix)));
4570 }
4571 
4572 // Matches a string that ends with 'suffix' (case-sensitive).
4573 template <typename T = std::string>
4574 PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4575     const internal::StringLike<T>& suffix) {
4576   return MakePolymorphicMatcher(
4577       internal::EndsWithMatcher<std::string>(std::string(suffix)));
4578 }
4579 
4580 #if GTEST_HAS_STD_WSTRING
4581 // Wide string matchers.
4582 
4583 // Matches a string equal to str.
4584 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4585     const std::wstring& str) {
4586   return MakePolymorphicMatcher(
4587       internal::StrEqualityMatcher<std::wstring>(str, true, true));
4588 }
4589 
4590 // Matches a string not equal to str.
4591 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4592     const std::wstring& str) {
4593   return MakePolymorphicMatcher(
4594       internal::StrEqualityMatcher<std::wstring>(str, false, true));
4595 }
4596 
4597 // Matches a string equal to str, ignoring case.
4598 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4599     const std::wstring& str) {
4600   return MakePolymorphicMatcher(
4601       internal::StrEqualityMatcher<std::wstring>(str, true, false));
4602 }
4603 
4604 // Matches a string not equal to str, ignoring case.
4605 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4606     const std::wstring& str) {
4607   return MakePolymorphicMatcher(
4608       internal::StrEqualityMatcher<std::wstring>(str, false, false));
4609 }
4610 
4611 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4612 // that contains the given substring.
4613 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4614     const std::wstring& substring) {
4615   return MakePolymorphicMatcher(
4616       internal::HasSubstrMatcher<std::wstring>(substring));
4617 }
4618 
4619 // Matches a string that starts with 'prefix' (case-sensitive).
4620 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4621     const std::wstring& prefix) {
4622   return MakePolymorphicMatcher(
4623       internal::StartsWithMatcher<std::wstring>(prefix));
4624 }
4625 
4626 // Matches a string that ends with 'suffix' (case-sensitive).
4627 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4628     const std::wstring& suffix) {
4629   return MakePolymorphicMatcher(
4630       internal::EndsWithMatcher<std::wstring>(suffix));
4631 }
4632 
4633 #endif  // GTEST_HAS_STD_WSTRING
4634 
4635 // Creates a polymorphic matcher that matches a 2-tuple where the
4636 // first field == the second field.
4637 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4638 
4639 // Creates a polymorphic matcher that matches a 2-tuple where the
4640 // first field >= the second field.
4641 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4642 
4643 // Creates a polymorphic matcher that matches a 2-tuple where the
4644 // first field > the second field.
4645 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4646 
4647 // Creates a polymorphic matcher that matches a 2-tuple where the
4648 // first field <= the second field.
4649 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4650 
4651 // Creates a polymorphic matcher that matches a 2-tuple where the
4652 // first field < the second field.
4653 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4654 
4655 // Creates a polymorphic matcher that matches a 2-tuple where the
4656 // first field != the second field.
4657 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4658 
4659 // Creates a polymorphic matcher that matches a 2-tuple where
4660 // FloatEq(first field) matches the second field.
4661 inline internal::FloatingEq2Matcher<float> FloatEq() {
4662   return internal::FloatingEq2Matcher<float>();
4663 }
4664 
4665 // Creates a polymorphic matcher that matches a 2-tuple where
4666 // DoubleEq(first field) matches the second field.
4667 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4668   return internal::FloatingEq2Matcher<double>();
4669 }
4670 
4671 // Creates a polymorphic matcher that matches a 2-tuple where
4672 // FloatEq(first field) matches the second field with NaN equality.
4673 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4674   return internal::FloatingEq2Matcher<float>(true);
4675 }
4676 
4677 // Creates a polymorphic matcher that matches a 2-tuple where
4678 // DoubleEq(first field) matches the second field with NaN equality.
4679 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4680   return internal::FloatingEq2Matcher<double>(true);
4681 }
4682 
4683 // Creates a polymorphic matcher that matches a 2-tuple where
4684 // FloatNear(first field, max_abs_error) matches the second field.
4685 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4686   return internal::FloatingEq2Matcher<float>(max_abs_error);
4687 }
4688 
4689 // Creates a polymorphic matcher that matches a 2-tuple where
4690 // DoubleNear(first field, max_abs_error) matches the second field.
4691 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4692   return internal::FloatingEq2Matcher<double>(max_abs_error);
4693 }
4694 
4695 // Creates a polymorphic matcher that matches a 2-tuple where
4696 // FloatNear(first field, max_abs_error) matches the second field with NaN
4697 // equality.
4698 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4699     float max_abs_error) {
4700   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4701 }
4702 
4703 // Creates a polymorphic matcher that matches a 2-tuple where
4704 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4705 // equality.
4706 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4707     double max_abs_error) {
4708   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4709 }
4710 
4711 // Creates a matcher that matches any value of type T that m doesn't
4712 // match.
4713 template <typename InnerMatcher>
4714 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4715   return internal::NotMatcher<InnerMatcher>(m);
4716 }
4717 
4718 // Returns a matcher that matches anything that satisfies the given
4719 // predicate.  The predicate can be any unary function or functor
4720 // whose return type can be implicitly converted to bool.
4721 template <typename Predicate>
4722 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4723     Predicate pred) {
4724   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4725 }
4726 
4727 // Returns a matcher that matches the container size. The container must
4728 // support both size() and size_type which all STL-like containers provide.
4729 // Note that the parameter 'size' can be a value of type size_type as well as
4730 // matcher. For instance:
4731 //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4732 //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4733 template <typename SizeMatcher>
4734 inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4735     const SizeMatcher& size_matcher) {
4736   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4737 }
4738 
4739 // Returns a matcher that matches the distance between the container's begin()
4740 // iterator and its end() iterator, i.e. the size of the container. This matcher
4741 // can be used instead of SizeIs with containers such as std::forward_list which
4742 // do not implement size(). The container must provide const_iterator (with
4743 // valid iterator_traits), begin() and end().
4744 template <typename DistanceMatcher>
4745 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4746     const DistanceMatcher& distance_matcher) {
4747   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4748 }
4749 
4750 // Returns a matcher that matches an equal container.
4751 // This matcher behaves like Eq(), but in the event of mismatch lists the
4752 // values that are included in one container but not the other. (Duplicate
4753 // values and order differences are not explained.)
4754 template <typename Container>
4755 inline PolymorphicMatcher<
4756     internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4757 ContainerEq(const Container& rhs) {
4758   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4759 }
4760 
4761 // Returns a matcher that matches a container that, when sorted using
4762 // the given comparator, matches container_matcher.
4763 template <typename Comparator, typename ContainerMatcher>
4764 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4765     const Comparator& comparator, const ContainerMatcher& container_matcher) {
4766   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4767       comparator, container_matcher);
4768 }
4769 
4770 // Returns a matcher that matches a container that, when sorted using
4771 // the < operator, matches container_matcher.
4772 template <typename ContainerMatcher>
4773 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4774 WhenSorted(const ContainerMatcher& container_matcher) {
4775   return internal::WhenSortedByMatcher<internal::LessComparator,
4776                                        ContainerMatcher>(
4777       internal::LessComparator(), container_matcher);
4778 }
4779 
4780 // Matches an STL-style container or a native array that contains the
4781 // same number of elements as in rhs, where its i-th element and rhs's
4782 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4783 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4784 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4785 // LHS container and the RHS container respectively.
4786 template <typename TupleMatcher, typename Container>
4787 inline internal::PointwiseMatcher<TupleMatcher,
4788                                   typename std::remove_const<Container>::type>
4789 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4790   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4791                                                              rhs);
4792 }
4793 
4794 // Supports the Pointwise(m, {a, b, c}) syntax.
4795 template <typename TupleMatcher, typename T>
4796 inline internal::PointwiseMatcher<TupleMatcher,
4797                                   std::vector<std::remove_const_t<T>>>
4798 Pointwise(const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4799   return Pointwise(tuple_matcher, std::vector<std::remove_const_t<T>>(rhs));
4800 }
4801 
4802 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4803 // container or a native array that contains the same number of
4804 // elements as in rhs, where in some permutation of the container, its
4805 // i-th element and rhs's i-th element (as a pair) satisfy the given
4806 // pair matcher, for all i.  Tuple2Matcher must be able to be safely
4807 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4808 // the types of elements in the LHS container and the RHS container
4809 // respectively.
4810 //
4811 // This is like Pointwise(pair_matcher, rhs), except that the element
4812 // order doesn't matter.
4813 template <typename Tuple2Matcher, typename RhsContainer>
4814 inline internal::UnorderedElementsAreArrayMatcher<
4815     typename internal::BoundSecondMatcher<
4816         Tuple2Matcher,
4817         typename internal::StlContainerView<
4818             typename std::remove_const<RhsContainer>::type>::type::value_type>>
4819 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4820                    const RhsContainer& rhs_container) {
4821   // RhsView allows the same code to handle RhsContainer being a
4822   // STL-style container and it being a native C-style array.
4823   typedef typename internal::StlContainerView<RhsContainer> RhsView;
4824   typedef typename RhsView::type RhsStlContainer;
4825   typedef typename RhsStlContainer::value_type Second;
4826   const RhsStlContainer& rhs_stl_container =
4827       RhsView::ConstReference(rhs_container);
4828 
4829   // Create a matcher for each element in rhs_container.
4830   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4831   for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4832        ++it) {
4833     matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4834   }
4835 
4836   // Delegate the work to UnorderedElementsAreArray().
4837   return UnorderedElementsAreArray(matchers);
4838 }
4839 
4840 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4841 template <typename Tuple2Matcher, typename T>
4842 inline internal::UnorderedElementsAreArrayMatcher<
4843     typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4844 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4845                    std::initializer_list<T> rhs) {
4846   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4847 }
4848 
4849 // Matches an STL-style container or a native array that contains at
4850 // least one element matching the given value or matcher.
4851 //
4852 // Examples:
4853 //   ::std::set<int> page_ids;
4854 //   page_ids.insert(3);
4855 //   page_ids.insert(1);
4856 //   EXPECT_THAT(page_ids, Contains(1));
4857 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
4858 //   EXPECT_THAT(page_ids, Not(Contains(4)));  // See below for Times(0)
4859 //
4860 //   ::std::map<int, size_t> page_lengths;
4861 //   page_lengths[1] = 100;
4862 //   EXPECT_THAT(page_lengths,
4863 //               Contains(::std::pair<const int, size_t>(1, 100)));
4864 //
4865 //   const char* user_ids[] = { "joe", "mike", "tom" };
4866 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4867 //
4868 // The matcher supports a modifier `Times` that allows to check for arbitrary
4869 // occurrences including testing for absence with Times(0).
4870 //
4871 // Examples:
4872 //   ::std::vector<int> ids;
4873 //   ids.insert(1);
4874 //   ids.insert(1);
4875 //   ids.insert(3);
4876 //   EXPECT_THAT(ids, Contains(1).Times(2));      // 1 occurs 2 times
4877 //   EXPECT_THAT(ids, Contains(2).Times(0));      // 2 is not present
4878 //   EXPECT_THAT(ids, Contains(3).Times(Ge(1)));  // 3 occurs at least once
4879 
4880 template <typename M>
4881 inline internal::ContainsMatcher<M> Contains(M matcher) {
4882   return internal::ContainsMatcher<M>(matcher);
4883 }
4884 
4885 // IsSupersetOf(iterator_first, iterator_last)
4886 // IsSupersetOf(pointer, count)
4887 // IsSupersetOf(array)
4888 // IsSupersetOf(container)
4889 // IsSupersetOf({e1, e2, ..., en})
4890 //
4891 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4892 // of matchers exists. In other words, a container matches
4893 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4894 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4895 // ..., and yn matches en. Obviously, the size of the container must be >= n
4896 // in order to have a match. Examples:
4897 //
4898 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4899 //   1 matches Ne(0).
4900 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4901 //   both Eq(1) and Lt(2). The reason is that different matchers must be used
4902 //   for elements in different slots of the container.
4903 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4904 //   Eq(1) and (the second) 1 matches Lt(2).
4905 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4906 //   Gt(1) and 3 matches (the second) Gt(1).
4907 //
4908 // The matchers can be specified as an array, a pointer and count, a container,
4909 // an initializer list, or an STL iterator range. In each of these cases, the
4910 // underlying matchers can be either values or matchers.
4911 
4912 template <typename Iter>
4913 inline internal::UnorderedElementsAreArrayMatcher<
4914     typename ::std::iterator_traits<Iter>::value_type>
4915 IsSupersetOf(Iter first, Iter last) {
4916   typedef typename ::std::iterator_traits<Iter>::value_type T;
4917   return internal::UnorderedElementsAreArrayMatcher<T>(
4918       internal::UnorderedMatcherRequire::Superset, first, last);
4919 }
4920 
4921 template <typename T>
4922 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4923     const T* pointer, size_t count) {
4924   return IsSupersetOf(pointer, pointer + count);
4925 }
4926 
4927 template <typename T, size_t N>
4928 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4929     const T (&array)[N]) {
4930   return IsSupersetOf(array, N);
4931 }
4932 
4933 template <typename Container>
4934 inline internal::UnorderedElementsAreArrayMatcher<
4935     typename Container::value_type>
4936 IsSupersetOf(const Container& container) {
4937   return IsSupersetOf(container.begin(), container.end());
4938 }
4939 
4940 template <typename T>
4941 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4942     ::std::initializer_list<T> xs) {
4943   return IsSupersetOf(xs.begin(), xs.end());
4944 }
4945 
4946 // IsSubsetOf(iterator_first, iterator_last)
4947 // IsSubsetOf(pointer, count)
4948 // IsSubsetOf(array)
4949 // IsSubsetOf(container)
4950 // IsSubsetOf({e1, e2, ..., en})
4951 //
4952 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4953 // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4954 // only if there is a subset of matchers {m1, ..., mk} which would match the
4955 // container using UnorderedElementsAre.  Obviously, the size of the container
4956 // must be <= n in order to have a match. Examples:
4957 //
4958 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4959 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4960 //   matches Lt(0).
4961 // - {1, 2} doesn't match IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4962 //   match Gt(0). The reason is that different matchers must be used for
4963 //   elements in different slots of the container.
4964 //
4965 // The matchers can be specified as an array, a pointer and count, a container,
4966 // an initializer list, or an STL iterator range. In each of these cases, the
4967 // underlying matchers can be either values or matchers.
4968 
4969 template <typename Iter>
4970 inline internal::UnorderedElementsAreArrayMatcher<
4971     typename ::std::iterator_traits<Iter>::value_type>
4972 IsSubsetOf(Iter first, Iter last) {
4973   typedef typename ::std::iterator_traits<Iter>::value_type T;
4974   return internal::UnorderedElementsAreArrayMatcher<T>(
4975       internal::UnorderedMatcherRequire::Subset, first, last);
4976 }
4977 
4978 template <typename T>
4979 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4980     const T* pointer, size_t count) {
4981   return IsSubsetOf(pointer, pointer + count);
4982 }
4983 
4984 template <typename T, size_t N>
4985 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4986     const T (&array)[N]) {
4987   return IsSubsetOf(array, N);
4988 }
4989 
4990 template <typename Container>
4991 inline internal::UnorderedElementsAreArrayMatcher<
4992     typename Container::value_type>
4993 IsSubsetOf(const Container& container) {
4994   return IsSubsetOf(container.begin(), container.end());
4995 }
4996 
4997 template <typename T>
4998 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4999     ::std::initializer_list<T> xs) {
5000   return IsSubsetOf(xs.begin(), xs.end());
5001 }
5002 
5003 // Matches an STL-style container or a native array that contains only
5004 // elements matching the given value or matcher.
5005 //
5006 // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
5007 // the messages are different.
5008 //
5009 // Examples:
5010 //   ::std::set<int> page_ids;
5011 //   // Each(m) matches an empty container, regardless of what m is.
5012 //   EXPECT_THAT(page_ids, Each(Eq(1)));
5013 //   EXPECT_THAT(page_ids, Each(Eq(77)));
5014 //
5015 //   page_ids.insert(3);
5016 //   EXPECT_THAT(page_ids, Each(Gt(0)));
5017 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
5018 //   page_ids.insert(1);
5019 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
5020 //
5021 //   ::std::map<int, size_t> page_lengths;
5022 //   page_lengths[1] = 100;
5023 //   page_lengths[2] = 200;
5024 //   page_lengths[3] = 300;
5025 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
5026 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
5027 //
5028 //   const char* user_ids[] = { "joe", "mike", "tom" };
5029 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
5030 template <typename M>
5031 inline internal::EachMatcher<M> Each(M matcher) {
5032   return internal::EachMatcher<M>(matcher);
5033 }
5034 
5035 // Key(inner_matcher) matches an std::pair whose 'first' field matches
5036 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
5037 // std::map that contains at least one element whose key is >= 5.
5038 template <typename M>
5039 inline internal::KeyMatcher<M> Key(M inner_matcher) {
5040   return internal::KeyMatcher<M>(inner_matcher);
5041 }
5042 
5043 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
5044 // matches first_matcher and whose 'second' field matches second_matcher.  For
5045 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
5046 // to match a std::map<int, string> that contains exactly one element whose key
5047 // is >= 5 and whose value equals "foo".
5048 template <typename FirstMatcher, typename SecondMatcher>
5049 inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
5050     FirstMatcher first_matcher, SecondMatcher second_matcher) {
5051   return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
5052                                                             second_matcher);
5053 }
5054 
5055 namespace no_adl {
5056 // Conditional() creates a matcher that conditionally uses either the first or
5057 // second matcher provided. For example, we could create an `equal if, and only
5058 // if' matcher using the Conditional wrapper as follows:
5059 //
5060 //   EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5061 template <typename MatcherTrue, typename MatcherFalse>
5062 internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5063     bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5064   return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5065       condition, std::move(matcher_true), std::move(matcher_false));
5066 }
5067 
5068 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5069 // These include those that support `get<I>(obj)`, and when structured bindings
5070 // are enabled any class that supports them.
5071 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5072 template <typename... M>
5073 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5074     M&&... matchers) {
5075   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5076       std::forward<M>(matchers)...);
5077 }
5078 
5079 // Creates a matcher that matches a pointer (raw or smart) that matches
5080 // inner_matcher.
5081 template <typename InnerMatcher>
5082 inline internal::PointerMatcher<InnerMatcher> Pointer(
5083     const InnerMatcher& inner_matcher) {
5084   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5085 }
5086 
5087 // Creates a matcher that matches an object that has an address that matches
5088 // inner_matcher.
5089 template <typename InnerMatcher>
5090 inline internal::AddressMatcher<InnerMatcher> Address(
5091     const InnerMatcher& inner_matcher) {
5092   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5093 }
5094 
5095 // Matches a base64 escaped string, when the unescaped string matches the
5096 // internal matcher.
5097 template <typename MatcherType>
5098 internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5099     const MatcherType& internal_matcher) {
5100   return internal::WhenBase64UnescapedMatcher(internal_matcher);
5101 }
5102 }  // namespace no_adl
5103 
5104 // Returns a predicate that is satisfied by anything that matches the
5105 // given matcher.
5106 template <typename M>
5107 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5108   return internal::MatcherAsPredicate<M>(matcher);
5109 }
5110 
5111 // Returns true if and only if the value matches the matcher.
5112 template <typename T, typename M>
5113 inline bool Value(const T& value, M matcher) {
5114   return testing::Matches(matcher)(value);
5115 }
5116 
5117 // Matches the value against the given matcher and explains the match
5118 // result to listener.
5119 template <typename T, typename M>
5120 inline bool ExplainMatchResult(M matcher, const T& value,
5121                                MatchResultListener* listener) {
5122   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5123 }
5124 
5125 // Returns a string representation of the given matcher.  Useful for description
5126 // strings of matchers defined using MATCHER_P* macros that accept matchers as
5127 // their arguments.  For example:
5128 //
5129 // MATCHER_P(XAndYThat, matcher,
5130 //           "X that " + DescribeMatcher<int>(matcher, negation) +
5131 //               (negation ? " or" : " and") + " Y that " +
5132 //               DescribeMatcher<double>(matcher, negation)) {
5133 //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5134 //          ExplainMatchResult(matcher, arg.y(), result_listener);
5135 // }
5136 template <typename T, typename M>
5137 std::string DescribeMatcher(const M& matcher, bool negation = false) {
5138   ::std::stringstream ss;
5139   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5140   if (negation) {
5141     monomorphic_matcher.DescribeNegationTo(&ss);
5142   } else {
5143     monomorphic_matcher.DescribeTo(&ss);
5144   }
5145   return ss.str();
5146 }
5147 
5148 template <typename... Args>
5149 internal::ElementsAreMatcher<
5150     std::tuple<typename std::decay<const Args&>::type...>>
5151 ElementsAre(const Args&... matchers) {
5152   return internal::ElementsAreMatcher<
5153       std::tuple<typename std::decay<const Args&>::type...>>(
5154       std::make_tuple(matchers...));
5155 }
5156 
5157 template <typename... Args>
5158 internal::UnorderedElementsAreMatcher<
5159     std::tuple<typename std::decay<const Args&>::type...>>
5160 UnorderedElementsAre(const Args&... matchers) {
5161   return internal::UnorderedElementsAreMatcher<
5162       std::tuple<typename std::decay<const Args&>::type...>>(
5163       std::make_tuple(matchers...));
5164 }
5165 
5166 // Define variadic matcher versions.
5167 template <typename... Args>
5168 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5169     const Args&... matchers) {
5170   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5171       matchers...);
5172 }
5173 
5174 template <typename... Args>
5175 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5176     const Args&... matchers) {
5177   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5178       matchers...);
5179 }
5180 
5181 // AnyOfArray(array)
5182 // AnyOfArray(pointer, count)
5183 // AnyOfArray(container)
5184 // AnyOfArray({ e1, e2, ..., en })
5185 // AnyOfArray(iterator_first, iterator_last)
5186 //
5187 // AnyOfArray() verifies whether a given value matches any member of a
5188 // collection of matchers.
5189 //
5190 // AllOfArray(array)
5191 // AllOfArray(pointer, count)
5192 // AllOfArray(container)
5193 // AllOfArray({ e1, e2, ..., en })
5194 // AllOfArray(iterator_first, iterator_last)
5195 //
5196 // AllOfArray() verifies whether a given value matches all members of a
5197 // collection of matchers.
5198 //
5199 // The matchers can be specified as an array, a pointer and count, a container,
5200 // an initializer list, or an STL iterator range. In each of these cases, the
5201 // underlying matchers can be either values or matchers.
5202 
5203 template <typename Iter>
5204 inline internal::AnyOfArrayMatcher<
5205     typename ::std::iterator_traits<Iter>::value_type>
5206 AnyOfArray(Iter first, Iter last) {
5207   return internal::AnyOfArrayMatcher<
5208       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5209 }
5210 
5211 template <typename Iter>
5212 inline internal::AllOfArrayMatcher<
5213     typename ::std::iterator_traits<Iter>::value_type>
5214 AllOfArray(Iter first, Iter last) {
5215   return internal::AllOfArrayMatcher<
5216       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5217 }
5218 
5219 template <typename T>
5220 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5221   return AnyOfArray(ptr, ptr + count);
5222 }
5223 
5224 template <typename T>
5225 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5226   return AllOfArray(ptr, ptr + count);
5227 }
5228 
5229 template <typename T, size_t N>
5230 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5231   return AnyOfArray(array, N);
5232 }
5233 
5234 template <typename T, size_t N>
5235 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5236   return AllOfArray(array, N);
5237 }
5238 
5239 template <typename Container>
5240 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5241     const Container& container) {
5242   return AnyOfArray(container.begin(), container.end());
5243 }
5244 
5245 template <typename Container>
5246 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5247     const Container& container) {
5248   return AllOfArray(container.begin(), container.end());
5249 }
5250 
5251 template <typename T>
5252 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5253     ::std::initializer_list<T> xs) {
5254   return AnyOfArray(xs.begin(), xs.end());
5255 }
5256 
5257 template <typename T>
5258 inline internal::AllOfArrayMatcher<T> AllOfArray(
5259     ::std::initializer_list<T> xs) {
5260   return AllOfArray(xs.begin(), xs.end());
5261 }
5262 
5263 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5264 // fields of it matches a_matcher.  C++ doesn't support default
5265 // arguments for function templates, so we have to overload it.
5266 template <size_t... k, typename InnerMatcher>
5267 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5268     InnerMatcher&& matcher) {
5269   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5270       std::forward<InnerMatcher>(matcher));
5271 }
5272 
5273 // AllArgs(m) is a synonym of m.  This is useful in
5274 //
5275 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5276 //
5277 // which is easier to read than
5278 //
5279 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5280 template <typename InnerMatcher>
5281 inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5282   return matcher;
5283 }
5284 
5285 // Returns a matcher that matches the value of an optional<> type variable.
5286 // The matcher implementation only uses '!arg' (or 'arg.has_value()' if '!arg`
5287 // isn't a valid expression) and requires that the optional<> type has a
5288 // 'value_type' member type and that '*arg' is of type 'value_type' and is
5289 // printable using 'PrintToString'. It is compatible with
5290 // std::optional/std::experimental::optional.
5291 // Note that to compare an optional type variable against nullopt you should
5292 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5293 // optional value contains an optional itself.
5294 template <typename ValueMatcher>
5295 inline internal::OptionalMatcher<ValueMatcher> Optional(
5296     const ValueMatcher& value_matcher) {
5297   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5298 }
5299 
5300 // Returns a matcher that matches the value of a absl::any type variable.
5301 template <typename T>
5302 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5303     const Matcher<const T&>& matcher) {
5304   return MakePolymorphicMatcher(
5305       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5306 }
5307 
5308 // Returns a matcher that matches the value of a variant<> type variable.
5309 // The matcher implementation uses ADL to find the holds_alternative and get
5310 // functions.
5311 // It is compatible with std::variant.
5312 template <typename T>
5313 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5314     const Matcher<const T&>& matcher) {
5315   return MakePolymorphicMatcher(
5316       internal::variant_matcher::VariantMatcher<T>(matcher));
5317 }
5318 
5319 #if GTEST_HAS_EXCEPTIONS
5320 
5321 // Anything inside the `internal` namespace is internal to the implementation
5322 // and must not be used in user code!
5323 namespace internal {
5324 
5325 class WithWhatMatcherImpl {
5326  public:
5327   WithWhatMatcherImpl(Matcher<std::string> matcher)
5328       : matcher_(std::move(matcher)) {}
5329 
5330   void DescribeTo(std::ostream* os) const {
5331     *os << "contains .what() that ";
5332     matcher_.DescribeTo(os);
5333   }
5334 
5335   void DescribeNegationTo(std::ostream* os) const {
5336     *os << "contains .what() that does not ";
5337     matcher_.DescribeTo(os);
5338   }
5339 
5340   template <typename Err>
5341   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5342     *listener << "which contains .what() (of value = " << err.what()
5343               << ") that ";
5344     return matcher_.MatchAndExplain(err.what(), listener);
5345   }
5346 
5347  private:
5348   const Matcher<std::string> matcher_;
5349 };
5350 
5351 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5352     Matcher<std::string> m) {
5353   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5354 }
5355 
5356 template <typename Err>
5357 class ExceptionMatcherImpl {
5358   class NeverThrown {
5359    public:
5360     const char* what() const noexcept {
5361       return "this exception should never be thrown";
5362     }
5363   };
5364 
5365   // If the matchee raises an exception of a wrong type, we'd like to
5366   // catch it and print its message and type. To do that, we add an additional
5367   // catch clause:
5368   //
5369   //     try { ... }
5370   //     catch (const Err&) { /* an expected exception */ }
5371   //     catch (const std::exception&) { /* exception of a wrong type */ }
5372   //
5373   // However, if the `Err` itself is `std::exception`, we'd end up with two
5374   // identical `catch` clauses:
5375   //
5376   //     try { ... }
5377   //     catch (const std::exception&) { /* an expected exception */ }
5378   //     catch (const std::exception&) { /* exception of a wrong type */ }
5379   //
5380   // This can cause a warning or an error in some compilers. To resolve
5381   // the issue, we use a fake error type whenever `Err` is `std::exception`:
5382   //
5383   //     try { ... }
5384   //     catch (const std::exception&) { /* an expected exception */ }
5385   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
5386   using DefaultExceptionType = typename std::conditional<
5387       std::is_same<typename std::remove_cv<
5388                        typename std::remove_reference<Err>::type>::type,
5389                    std::exception>::value,
5390       const NeverThrown&, const std::exception&>::type;
5391 
5392  public:
5393   ExceptionMatcherImpl(Matcher<const Err&> matcher)
5394       : matcher_(std::move(matcher)) {}
5395 
5396   void DescribeTo(std::ostream* os) const {
5397     *os << "throws an exception which is a " << GetTypeName<Err>();
5398     *os << " which ";
5399     matcher_.DescribeTo(os);
5400   }
5401 
5402   void DescribeNegationTo(std::ostream* os) const {
5403     *os << "throws an exception which is not a " << GetTypeName<Err>();
5404     *os << " which ";
5405     matcher_.DescribeNegationTo(os);
5406   }
5407 
5408   template <typename T>
5409   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5410     try {
5411       (void)(std::forward<T>(x)());
5412     } catch (const Err& err) {
5413       *listener << "throws an exception which is a " << GetTypeName<Err>();
5414       *listener << " ";
5415       return matcher_.MatchAndExplain(err, listener);
5416     } catch (DefaultExceptionType err) {
5417 #if GTEST_HAS_RTTI
5418       *listener << "throws an exception of type " << GetTypeName(typeid(err));
5419       *listener << " ";
5420 #else
5421       *listener << "throws an std::exception-derived type ";
5422 #endif
5423       *listener << "with description \"" << err.what() << "\"";
5424       return false;
5425     } catch (...) {
5426       *listener << "throws an exception of an unknown type";
5427       return false;
5428     }
5429 
5430     *listener << "does not throw any exception";
5431     return false;
5432   }
5433 
5434  private:
5435   const Matcher<const Err&> matcher_;
5436 };
5437 
5438 }  // namespace internal
5439 
5440 // Throws()
5441 // Throws(exceptionMatcher)
5442 // ThrowsMessage(messageMatcher)
5443 //
5444 // This matcher accepts a callable and verifies that when invoked, it throws
5445 // an exception with the given type and properties.
5446 //
5447 // Examples:
5448 //
5449 //   EXPECT_THAT(
5450 //       []() { throw std::runtime_error("message"); },
5451 //       Throws<std::runtime_error>());
5452 //
5453 //   EXPECT_THAT(
5454 //       []() { throw std::runtime_error("message"); },
5455 //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5456 //
5457 //   EXPECT_THAT(
5458 //       []() { throw std::runtime_error("message"); },
5459 //       Throws<std::runtime_error>(
5460 //           Property(&std::runtime_error::what, HasSubstr("message"))));
5461 
5462 template <typename Err>
5463 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5464   return MakePolymorphicMatcher(
5465       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5466 }
5467 
5468 template <typename Err, typename ExceptionMatcher>
5469 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5470     const ExceptionMatcher& exception_matcher) {
5471   // Using matcher cast allows users to pass a matcher of a more broad type.
5472   // For example user may want to pass Matcher<std::exception>
5473   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5474   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5475       SafeMatcherCast<const Err&>(exception_matcher)));
5476 }
5477 
5478 template <typename Err, typename MessageMatcher>
5479 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5480     MessageMatcher&& message_matcher) {
5481   static_assert(std::is_base_of<std::exception, Err>::value,
5482                 "expected an std::exception-derived type");
5483   return Throws<Err>(internal::WithWhat(
5484       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5485 }
5486 
5487 #endif  // GTEST_HAS_EXCEPTIONS
5488 
5489 // These macros allow using matchers to check values in Google Test
5490 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5491 // succeed if and only if the value matches the matcher.  If the assertion
5492 // fails, the value and the description of the matcher will be printed.
5493 #define ASSERT_THAT(value, matcher) \
5494   ASSERT_PRED_FORMAT1(              \
5495       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5496 #define EXPECT_THAT(value, matcher) \
5497   EXPECT_PRED_FORMAT1(              \
5498       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5499 
5500 // MATCHER* macros itself are listed below.
5501 #define MATCHER(name, description)                                            \
5502   class name##Matcher                                                         \
5503       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {          \
5504    public:                                                                    \
5505     template <typename arg_type>                                              \
5506     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {  \
5507      public:                                                                  \
5508       gmock_Impl() {}                                                         \
5509       bool MatchAndExplain(                                                   \
5510           const arg_type& arg,                                                \
5511           ::testing::MatchResultListener* result_listener) const override;    \
5512       void DescribeTo(::std::ostream* gmock_os) const override {              \
5513         *gmock_os << FormatDescription(false);                                \
5514       }                                                                       \
5515       void DescribeNegationTo(::std::ostream* gmock_os) const override {      \
5516         *gmock_os << FormatDescription(true);                                 \
5517       }                                                                       \
5518                                                                               \
5519      private:                                                                 \
5520       ::std::string FormatDescription(bool negation) const {                  \
5521         /* NOLINTNEXTLINE readability-redundant-string-init */                \
5522         ::std::string gmock_description = (description);                      \
5523         if (!gmock_description.empty()) {                                     \
5524           return gmock_description;                                           \
5525         }                                                                     \
5526         return ::testing::internal::FormatMatcherDescription(negation, #name, \
5527                                                              {}, {});         \
5528       }                                                                       \
5529     };                                                                        \
5530   };                                                                          \
5531   inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH()                          \
5532       GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function")              \
5533           GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function")   \
5534               name GMOCK_INTERNAL_WARNING_POP()() {                           \
5535     return {};                                                                \
5536   }                                                                           \
5537   template <typename arg_type>                                                \
5538   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                  \
5539       const arg_type& arg,                                                    \
5540       GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED ::testing::MatchResultListener*   \
5541           result_listener) const
5542 
5543 #define MATCHER_P(name, p0, description) \
5544   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5545 #define MATCHER_P2(name, p0, p1, description)                            \
5546   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5547                          (p0, p1))
5548 #define MATCHER_P3(name, p0, p1, p2, description)                             \
5549   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5550                          (p0, p1, p2))
5551 #define MATCHER_P4(name, p0, p1, p2, p3, description)        \
5552   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5553                          (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5554 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
5555   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5556                          (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5557 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5558   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
5559                          (#p0, #p1, #p2, #p3, #p4, #p5),      \
5560                          (p0, p1, p2, p3, p4, p5))
5561 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5562   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
5563                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6),     \
5564                          (p0, p1, p2, p3, p4, p5, p6))
5565 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5566   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
5567                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7),    \
5568                          (p0, p1, p2, p3, p4, p5, p6, p7))
5569 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5570   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
5571                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8),   \
5572                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5573 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5574   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
5575                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9),   \
5576                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5577 
5578 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args)  \
5579   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5580   class full_name : public ::testing::internal::MatcherBaseImpl<               \
5581                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5582    public:                                                                     \
5583     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
5584     template <typename arg_type>                                               \
5585     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5586      public:                                                                   \
5587       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
5588           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
5589       bool MatchAndExplain(                                                    \
5590           const arg_type& arg,                                                 \
5591           ::testing::MatchResultListener* result_listener) const override;     \
5592       void DescribeTo(::std::ostream* gmock_os) const override {               \
5593         *gmock_os << FormatDescription(false);                                 \
5594       }                                                                        \
5595       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5596         *gmock_os << FormatDescription(true);                                  \
5597       }                                                                        \
5598       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
5599                                                                                \
5600      private:                                                                  \
5601       ::std::string FormatDescription(bool negation) const {                   \
5602         ::std::string gmock_description;                                       \
5603         gmock_description = (description);                                     \
5604         if (!gmock_description.empty()) {                                      \
5605           return gmock_description;                                            \
5606         }                                                                      \
5607         return ::testing::internal::FormatMatcherDescription(                  \
5608             negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)},              \
5609             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
5610                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
5611                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
5612       }                                                                        \
5613     };                                                                         \
5614   };                                                                           \
5615   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5616   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
5617       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
5618     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
5619         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
5620   }                                                                            \
5621   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5622   template <typename arg_type>                                                 \
5623   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::                   \
5624       gmock_Impl<arg_type>::MatchAndExplain(                                   \
5625           const arg_type& arg,                                                 \
5626           GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED ::testing::                    \
5627               MatchResultListener* result_listener) const
5628 
5629 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5630   GMOCK_PP_TAIL(                                     \
5631       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5632 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5633   , typename arg##_type
5634 
5635 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5636   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5637 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5638   , arg##_type
5639 
5640 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5641   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
5642       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5643 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5644   , arg##_type gmock_p##i
5645 
5646 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5647   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5648 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5649   , arg(::std::forward<arg##_type>(gmock_p##i))
5650 
5651 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5652   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5653 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5654   const arg##_type arg;
5655 
5656 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5657   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5658 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5659 
5660 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5661   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5662 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg) \
5663   , ::std::forward<arg##_type>(gmock_p##i)
5664 
5665 // To prevent ADL on certain functions we put them on a separate namespace.
5666 using namespace no_adl;  // NOLINT
5667 
5668 }  // namespace testing
5669 
5670 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
5671 
5672 // Include any custom callback matchers added by the local installation.
5673 // We must include this header at the end to make sure it can use the
5674 // declarations from this file.
5675 #include "gmock/internal/custom/gmock-matchers.h"
5676 
5677 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5678