1 // Copyright 2013 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifdef UNSAFE_BUFFERS_BUILD
6 // TODO(crbug.com/350788890): Remove this and spanify to fix the errors.
7 #pragma allow_unsafe_buffers
8 #endif
9
10 #include "url/url_canon_ip.h"
11
12 #include <stdint.h>
13 #include <stdlib.h>
14
15 #include <limits>
16
17 #include "base/check.h"
18 #include "url/url_canon_internal.h"
19 #include "url/url_features.h"
20
21 namespace url {
22
23 namespace {
24
25 // Converts one of the character types that represent a numerical base to the
26 // corresponding base.
BaseForType(SharedCharTypes type)27 int BaseForType(SharedCharTypes type) {
28 switch (type) {
29 case CHAR_HEX:
30 return 16;
31 case CHAR_DEC:
32 return 10;
33 case CHAR_OCT:
34 return 8;
35 default:
36 return 0;
37 }
38 }
39
40 // Converts an IPv4 component to a 32-bit number, while checking for overflow.
41 //
42 // Possible return values:
43 // - IPV4 - The number was valid, and did not overflow.
44 // - BROKEN - The input was numeric, but too large for a 32-bit field.
45 // - NEUTRAL - Input was not numeric.
46 //
47 // The input is assumed to be ASCII. The components are assumed to be non-empty.
48 template<typename CHAR>
IPv4ComponentToNumber(const CHAR * spec,const Component & component,uint32_t * number)49 CanonHostInfo::Family IPv4ComponentToNumber(const CHAR* spec,
50 const Component& component,
51 uint32_t* number) {
52 // Empty components are considered non-numeric.
53 if (component.is_empty())
54 return CanonHostInfo::NEUTRAL;
55
56 // Figure out the base
57 SharedCharTypes base;
58 int base_prefix_len = 0; // Size of the prefix for this base.
59 if (spec[component.begin] == '0') {
60 // Either hex or dec, or a standalone zero.
61 if (component.len == 1) {
62 base = CHAR_DEC;
63 } else if (spec[component.begin + 1] == 'X' ||
64 spec[component.begin + 1] == 'x') {
65 base = CHAR_HEX;
66 base_prefix_len = 2;
67 } else {
68 base = CHAR_OCT;
69 base_prefix_len = 1;
70 }
71 } else {
72 base = CHAR_DEC;
73 }
74
75 // Extend the prefix to consume all leading zeros.
76 while (base_prefix_len < component.len &&
77 spec[component.begin + base_prefix_len] == '0')
78 base_prefix_len++;
79
80 // Put the component, minus any base prefix, into a NULL-terminated buffer so
81 // we can call the standard library. Because leading zeros have already been
82 // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
83 // overflow check.
84 const int kMaxComponentLen = 16;
85 char buf[kMaxComponentLen + 1]; // digits + '\0'
86 int dest_i = 0;
87 bool may_be_broken_octal = false;
88 for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
89 if (spec[i] >= 0x80)
90 return CanonHostInfo::NEUTRAL;
91
92 // We know the input is 7-bit, so convert to narrow (if this is the wide
93 // version of the template) by casting.
94 char input = static_cast<char>(spec[i]);
95
96 // Validate that this character is OK for the given base.
97 if (!IsCharOfType(input, base)) {
98 if (IsCharOfType(input, CHAR_DEC)) {
99 // Entirely numeric components with leading 0s that aren't octal are
100 // considered broken.
101 may_be_broken_octal = true;
102 } else {
103 return CanonHostInfo::NEUTRAL;
104 }
105 }
106
107 // Fill the buffer, if there's space remaining. This check allows us to
108 // verify that all characters are numeric, even those that don't fit.
109 if (dest_i < kMaxComponentLen)
110 buf[dest_i++] = input;
111 }
112
113 if (may_be_broken_octal)
114 return CanonHostInfo::BROKEN;
115
116 buf[dest_i] = '\0';
117
118 // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
119 // number can overflow a 64-bit number in <= 16 characters).
120 uint64_t num = _strtoui64(buf, NULL, BaseForType(base));
121
122 // Check for 32-bit overflow.
123 if (num > std::numeric_limits<uint32_t>::max())
124 return CanonHostInfo::BROKEN;
125
126 // No overflow. Success!
127 *number = static_cast<uint32_t>(num);
128 return CanonHostInfo::IPV4;
129 }
130
131 // See declaration of IPv4AddressToNumber for documentation.
132 template <typename CHAR, typename UCHAR>
DoIPv4AddressToNumber(const CHAR * spec,Component host,unsigned char address[4],int * num_ipv4_components)133 CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
134 Component host,
135 unsigned char address[4],
136 int* num_ipv4_components) {
137 // Ignore terminal dot, if present.
138 if (host.is_nonempty() && spec[host.end() - 1] == '.')
139 --host.len;
140
141 // Do nothing if empty.
142 if (host.is_empty())
143 return CanonHostInfo::NEUTRAL;
144
145 // Read component values. The first `existing_components` of them are
146 // populated front to back, with the first one corresponding to the last
147 // component, which allows for early exit if the last component isn't a
148 // number.
149 uint32_t component_values[4];
150 int existing_components = 0;
151
152 int current_component_end = host.end();
153 int current_position = current_component_end;
154 while (true) {
155 // If this is not the first character of a component, go to the next
156 // component.
157 if (current_position != host.begin && spec[current_position - 1] != '.') {
158 --current_position;
159 continue;
160 }
161
162 CanonHostInfo::Family family = IPv4ComponentToNumber(
163 spec,
164 Component(current_position, current_component_end - current_position),
165 &component_values[existing_components]);
166
167 // If `family` is NEUTRAL and this is the last component, return NEUTRAL. If
168 // `family` is NEUTRAL but not the last component, this is considered a
169 // BROKEN IPv4 address, as opposed to a non-IPv4 hostname.
170 if (family == CanonHostInfo::NEUTRAL && existing_components == 0)
171 return CanonHostInfo::NEUTRAL;
172
173 if (family != CanonHostInfo::IPV4)
174 return CanonHostInfo::BROKEN;
175
176 ++existing_components;
177
178 // If this is the final component, nothing else to do.
179 if (current_position == host.begin)
180 break;
181
182 // If there are more than 4 components, fail.
183 if (existing_components == 4)
184 return CanonHostInfo::BROKEN;
185
186 current_component_end = current_position - 1;
187 --current_position;
188 }
189
190 // Use `component_values` to fill out the 4-component IP address.
191
192 // First, process all components but the last, while making sure each fits
193 // within an 8-bit field.
194 for (int i = existing_components - 1; i > 0; i--) {
195 if (component_values[i] > std::numeric_limits<uint8_t>::max())
196 return CanonHostInfo::BROKEN;
197 address[existing_components - i - 1] =
198 static_cast<unsigned char>(component_values[i]);
199 }
200
201 uint32_t last_value = component_values[0];
202 for (int i = 3; i >= existing_components - 1; i--) {
203 address[i] = static_cast<unsigned char>(last_value);
204 last_value >>= 8;
205 }
206
207 // If the last component has residual bits, report overflow.
208 if (last_value != 0)
209 return CanonHostInfo::BROKEN;
210
211 // Tell the caller how many components we saw.
212 *num_ipv4_components = existing_components;
213
214 // Success!
215 return CanonHostInfo::IPV4;
216 }
217
218 // Return true if we've made a final IPV4/BROKEN decision, false if the result
219 // is NEUTRAL, and we could use a second opinion.
220 template<typename CHAR, typename UCHAR>
DoCanonicalizeIPv4Address(const CHAR * spec,const Component & host,CanonOutput * output,CanonHostInfo * host_info)221 bool DoCanonicalizeIPv4Address(const CHAR* spec,
222 const Component& host,
223 CanonOutput* output,
224 CanonHostInfo* host_info) {
225 host_info->family = IPv4AddressToNumber(
226 spec, host, host_info->address, &host_info->num_ipv4_components);
227
228 switch (host_info->family) {
229 case CanonHostInfo::IPV4:
230 // Definitely an IPv4 address.
231 host_info->out_host.begin = output->length();
232 AppendIPv4Address(host_info->address, output);
233 host_info->out_host.len = output->length() - host_info->out_host.begin;
234 return true;
235 case CanonHostInfo::BROKEN:
236 // Definitely broken.
237 return true;
238 default:
239 // Could be IPv6 or a hostname.
240 return false;
241 }
242 }
243
244 // Helper class that describes the main components of an IPv6 input string.
245 // See the following examples to understand how it breaks up an input string:
246 //
247 // [Example 1]: input = "[::aa:bb]"
248 // ==> num_hex_components = 2
249 // ==> hex_components[0] = Component(3,2) "aa"
250 // ==> hex_components[1] = Component(6,2) "bb"
251 // ==> index_of_contraction = 0
252 // ==> ipv4_component = Component(0, -1)
253 //
254 // [Example 2]: input = "[1:2::3:4:5]"
255 // ==> num_hex_components = 5
256 // ==> hex_components[0] = Component(1,1) "1"
257 // ==> hex_components[1] = Component(3,1) "2"
258 // ==> hex_components[2] = Component(6,1) "3"
259 // ==> hex_components[3] = Component(8,1) "4"
260 // ==> hex_components[4] = Component(10,1) "5"
261 // ==> index_of_contraction = 2
262 // ==> ipv4_component = Component(0, -1)
263 //
264 // [Example 3]: input = "[::ffff:192.168.0.1]"
265 // ==> num_hex_components = 1
266 // ==> hex_components[0] = Component(3,4) "ffff"
267 // ==> index_of_contraction = 0
268 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
269 //
270 // [Example 4]: input = "[1::]"
271 // ==> num_hex_components = 1
272 // ==> hex_components[0] = Component(1,1) "1"
273 // ==> index_of_contraction = 1
274 // ==> ipv4_component = Component(0, -1)
275 //
276 // [Example 5]: input = "[::192.168.0.1]"
277 // ==> num_hex_components = 0
278 // ==> index_of_contraction = 0
279 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
280 //
281 struct IPv6Parsed {
282 // Zero-out the parse information.
reseturl::__anon2b11fe760111::IPv6Parsed283 void reset() {
284 num_hex_components = 0;
285 index_of_contraction = -1;
286 ipv4_component.reset();
287 }
288
289 // There can be up to 8 hex components (colon separated) in the literal.
290 Component hex_components[8];
291
292 // The count of hex components present. Ranges from [0,8].
293 int num_hex_components;
294
295 // The index of the hex component that the "::" contraction precedes, or
296 // -1 if there is no contraction.
297 int index_of_contraction;
298
299 // The range of characters which are an IPv4 literal.
300 Component ipv4_component;
301 };
302
303 // Parse the IPv6 input string. If parsing succeeded returns true and fills
304 // |parsed| with the information. If parsing failed (because the input is
305 // invalid) returns false.
306 template<typename CHAR, typename UCHAR>
DoParseIPv6(const CHAR * spec,const Component & host,IPv6Parsed * parsed)307 bool DoParseIPv6(const CHAR* spec, const Component& host, IPv6Parsed* parsed) {
308 // Zero-out the info.
309 parsed->reset();
310
311 if (host.is_empty())
312 return false;
313
314 // The index for start and end of address range (no brackets).
315 int begin = host.begin;
316 int end = host.end();
317
318 int cur_component_begin = begin; // Start of the current component.
319
320 // Scan through the input, searching for hex components, "::" contractions,
321 // and IPv4 components.
322 for (int i = begin; /* i <= end */; i++) {
323 bool is_colon = spec[i] == ':';
324 bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
325
326 // We reached the end of the current component if we encounter a colon
327 // (separator between hex components, or start of a contraction), or end of
328 // input.
329 if (is_colon || i == end) {
330 int component_len = i - cur_component_begin;
331
332 // A component should not have more than 4 hex digits.
333 if (component_len > 4)
334 return false;
335
336 // Don't allow empty components.
337 if (component_len == 0) {
338 // The exception is when contractions appear at beginning of the
339 // input or at the end of the input.
340 if (!((is_contraction && i == begin) || (i == end &&
341 parsed->index_of_contraction == parsed->num_hex_components)))
342 return false;
343 }
344
345 // Add the hex component we just found to running list.
346 if (component_len > 0) {
347 // Can't have more than 8 components!
348 if (parsed->num_hex_components >= 8)
349 return false;
350
351 parsed->hex_components[parsed->num_hex_components++] =
352 Component(cur_component_begin, component_len);
353 }
354 }
355
356 if (i == end)
357 break; // Reached the end of the input, DONE.
358
359 // We found a "::" contraction.
360 if (is_contraction) {
361 // There can be at most one contraction in the literal.
362 if (parsed->index_of_contraction != -1)
363 return false;
364 parsed->index_of_contraction = parsed->num_hex_components;
365 ++i; // Consume the colon we peeked.
366 }
367
368 if (is_colon) {
369 // Colons are separators between components, keep track of where the
370 // current component started (after this colon).
371 cur_component_begin = i + 1;
372 } else {
373 if (static_cast<UCHAR>(spec[i]) >= 0x80)
374 return false; // Not ASCII.
375
376 if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
377 // Regular components are hex numbers. It is also possible for
378 // a component to be an IPv4 address in dotted form.
379 if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
380 // Since IPv4 address can only appear at the end, assume the rest
381 // of the string is an IPv4 address. (We will parse this separately
382 // later).
383 parsed->ipv4_component =
384 Component(cur_component_begin, end - cur_component_begin);
385 break;
386 } else {
387 // The character was neither a hex digit, nor an IPv4 character.
388 return false;
389 }
390 }
391 }
392 }
393
394 return true;
395 }
396
397 // Verifies the parsed IPv6 information, checking that the various components
398 // add up to the right number of bits (hex components are 16 bits, while
399 // embedded IPv4 formats are 32 bits, and contractions are placeholdes for
400 // 16 or more bits). Returns true if sizes match up, false otherwise. On
401 // success writes the length of the contraction (if any) to
402 // |out_num_bytes_of_contraction|.
CheckIPv6ComponentsSize(const IPv6Parsed & parsed,int * out_num_bytes_of_contraction)403 bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
404 int* out_num_bytes_of_contraction) {
405 // Each group of four hex digits contributes 16 bits.
406 int num_bytes_without_contraction = parsed.num_hex_components * 2;
407
408 // If an IPv4 address was embedded at the end, it contributes 32 bits.
409 if (parsed.ipv4_component.is_valid())
410 num_bytes_without_contraction += 4;
411
412 // If there was a "::" contraction, its size is going to be:
413 // MAX([16bits], [128bits] - num_bytes_without_contraction).
414 int num_bytes_of_contraction = 0;
415 if (parsed.index_of_contraction != -1) {
416 num_bytes_of_contraction = 16 - num_bytes_without_contraction;
417 if (num_bytes_of_contraction < 2)
418 num_bytes_of_contraction = 2;
419 }
420
421 // Check that the numbers add up.
422 if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
423 return false;
424
425 *out_num_bytes_of_contraction = num_bytes_of_contraction;
426 return true;
427 }
428
429 // Converts a hex component into a number. This cannot fail since the caller has
430 // already verified that each character in the string was a hex digit, and
431 // that there were no more than 4 characters.
432 template <typename CHAR>
IPv6HexComponentToNumber(const CHAR * spec,const Component & component)433 uint16_t IPv6HexComponentToNumber(const CHAR* spec,
434 const Component& component) {
435 DCHECK(component.len <= 4);
436
437 // Copy the hex string into a C-string.
438 char buf[5];
439 for (int i = 0; i < component.len; ++i)
440 buf[i] = static_cast<char>(spec[component.begin + i]);
441 buf[component.len] = '\0';
442
443 // Convert it to a number (overflow is not possible, since with 4 hex
444 // characters we can at most have a 16 bit number).
445 return static_cast<uint16_t>(_strtoui64(buf, NULL, 16));
446 }
447
448 // Converts an IPv6 address to a 128-bit number (network byte order), returning
449 // true on success. False means that the input was not a valid IPv6 address.
450 template<typename CHAR, typename UCHAR>
DoIPv6AddressToNumber(const CHAR * spec,const Component & host,unsigned char address[16])451 bool DoIPv6AddressToNumber(const CHAR* spec,
452 const Component& host,
453 unsigned char address[16]) {
454 // Make sure the component is bounded by '[' and ']'.
455 int end = host.end();
456 if (host.is_empty() || spec[host.begin] != '[' || spec[end - 1] != ']')
457 return false;
458
459 // Exclude the square brackets.
460 Component ipv6_comp(host.begin + 1, host.len - 2);
461
462 // Parse the IPv6 address -- identify where all the colon separated hex
463 // components are, the "::" contraction, and the embedded IPv4 address.
464 IPv6Parsed ipv6_parsed;
465 if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
466 return false;
467
468 // Do some basic size checks to make sure that the address doesn't
469 // specify more than 128 bits or fewer than 128 bits. This also resolves
470 // how may zero bytes the "::" contraction represents.
471 int num_bytes_of_contraction;
472 if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
473 return false;
474
475 int cur_index_in_address = 0;
476
477 // Loop through each hex components, and contraction in order.
478 for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
479 // Append the contraction if it appears before this component.
480 if (i == ipv6_parsed.index_of_contraction) {
481 for (int j = 0; j < num_bytes_of_contraction; ++j)
482 address[cur_index_in_address++] = 0;
483 }
484 // Append the hex component's value.
485 if (i != ipv6_parsed.num_hex_components) {
486 // Get the 16-bit value for this hex component.
487 uint16_t number = IPv6HexComponentToNumber<CHAR>(
488 spec, ipv6_parsed.hex_components[i]);
489 // Append to |address|, in network byte order.
490 address[cur_index_in_address++] = (number & 0xFF00) >> 8;
491 address[cur_index_in_address++] = (number & 0x00FF);
492 }
493 }
494
495 // If there was an IPv4 section, convert it into a 32-bit number and append
496 // it to |address|.
497 if (ipv6_parsed.ipv4_component.is_valid()) {
498 // Append the 32-bit number to |address|.
499 int num_ipv4_components = 0;
500 // IPv4AddressToNumber will remove the trailing dot from the component.
501 bool trailing_dot = ipv6_parsed.ipv4_component.is_nonempty() &&
502 spec[ipv6_parsed.ipv4_component.end() - 1] == '.';
503 // The URL standard requires the embedded IPv4 address to be concisely
504 // composed of 4 parts and disallows terminal dots.
505 // See https://url.spec.whatwg.org/#concept-ipv6-parser
506 if (CanonHostInfo::IPV4 !=
507 IPv4AddressToNumber(spec, ipv6_parsed.ipv4_component,
508 &address[cur_index_in_address],
509 &num_ipv4_components)) {
510 return false;
511 }
512 if ((num_ipv4_components != 4 || trailing_dot)) {
513 return false;
514 }
515 }
516
517 return true;
518 }
519
520 // Searches for the longest sequence of zeros in |address|, and writes the
521 // range into |contraction_range|. The run of zeros must be at least 16 bits,
522 // and if there is a tie the first is chosen.
ChooseIPv6ContractionRange(const unsigned char address[16],Component * contraction_range)523 void ChooseIPv6ContractionRange(const unsigned char address[16],
524 Component* contraction_range) {
525 // The longest run of zeros in |address| seen so far.
526 Component max_range;
527
528 // The current run of zeros in |address| being iterated over.
529 Component cur_range;
530
531 for (int i = 0; i < 16; i += 2) {
532 // Test for 16 bits worth of zero.
533 bool is_zero = (address[i] == 0 && address[i + 1] == 0);
534
535 if (is_zero) {
536 // Add the zero to the current range (or start a new one).
537 if (!cur_range.is_valid())
538 cur_range = Component(i, 0);
539 cur_range.len += 2;
540 }
541
542 if (!is_zero || i == 14) {
543 // Just completed a run of zeros. If the run is greater than 16 bits,
544 // it is a candidate for the contraction.
545 if (cur_range.len > 2 && cur_range.len > max_range.len) {
546 max_range = cur_range;
547 }
548 cur_range.reset();
549 }
550 }
551 *contraction_range = max_range;
552 }
553
554 // Return true if we've made a final IPV6/BROKEN decision, false if the result
555 // is NEUTRAL, and we could use a second opinion.
556 template<typename CHAR, typename UCHAR>
DoCanonicalizeIPv6Address(const CHAR * spec,const Component & host,CanonOutput * output,CanonHostInfo * host_info)557 bool DoCanonicalizeIPv6Address(const CHAR* spec,
558 const Component& host,
559 CanonOutput* output,
560 CanonHostInfo* host_info) {
561 // Turn the IP address into a 128 bit number.
562 if (!IPv6AddressToNumber(spec, host, host_info->address)) {
563 // If it's not an IPv6 address, scan for characters that should *only*
564 // exist in an IPv6 address.
565 for (int i = host.begin; i < host.end(); i++) {
566 switch (spec[i]) {
567 case '[':
568 case ']':
569 case ':':
570 host_info->family = CanonHostInfo::BROKEN;
571 return true;
572 }
573 }
574
575 // No invalid characters. Could still be IPv4 or a hostname.
576 host_info->family = CanonHostInfo::NEUTRAL;
577 return false;
578 }
579
580 host_info->out_host.begin = output->length();
581 output->push_back('[');
582 AppendIPv6Address(host_info->address, output);
583 output->push_back(']');
584 host_info->out_host.len = output->length() - host_info->out_host.begin;
585
586 host_info->family = CanonHostInfo::IPV6;
587 return true;
588 }
589
590 } // namespace
591
AppendIPv4Address(const unsigned char address[4],CanonOutput * output)592 void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) {
593 for (int i = 0; i < 4; i++) {
594 char str[16];
595 _itoa_s(address[i], str, 10);
596
597 for (int ch = 0; str[ch] != 0; ch++)
598 output->push_back(str[ch]);
599
600 if (i != 3)
601 output->push_back('.');
602 }
603 }
604
AppendIPv6Address(const unsigned char address[16],CanonOutput * output)605 void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) {
606 // We will output the address according to the rules in:
607 // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
608
609 // Start by finding where to place the "::" contraction (if any).
610 Component contraction_range;
611 ChooseIPv6ContractionRange(address, &contraction_range);
612
613 for (int i = 0; i <= 14;) {
614 // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
615 DCHECK(i % 2 == 0);
616 if (i == contraction_range.begin && contraction_range.len > 0) {
617 // Jump over the contraction.
618 if (i == 0)
619 output->push_back(':');
620 output->push_back(':');
621 i = contraction_range.end();
622 } else {
623 // Consume the next 16 bits from |address|.
624 int x = address[i] << 8 | address[i + 1];
625
626 i += 2;
627
628 // Stringify the 16 bit number (at most requires 4 hex digits).
629 char str[5];
630 _itoa_s(x, str, 16);
631 for (int ch = 0; str[ch] != 0; ++ch)
632 output->push_back(str[ch]);
633
634 // Put a colon after each number, except the last.
635 if (i < 16)
636 output->push_back(':');
637 }
638 }
639 }
640
CanonicalizeIPAddress(const char * spec,const Component & host,CanonOutput * output,CanonHostInfo * host_info)641 void CanonicalizeIPAddress(const char* spec,
642 const Component& host,
643 CanonOutput* output,
644 CanonHostInfo* host_info) {
645 if (DoCanonicalizeIPv4Address<char, unsigned char>(
646 spec, host, output, host_info))
647 return;
648 if (DoCanonicalizeIPv6Address<char, unsigned char>(
649 spec, host, output, host_info))
650 return;
651 }
652
CanonicalizeIPAddress(const char16_t * spec,const Component & host,CanonOutput * output,CanonHostInfo * host_info)653 void CanonicalizeIPAddress(const char16_t* spec,
654 const Component& host,
655 CanonOutput* output,
656 CanonHostInfo* host_info) {
657 if (DoCanonicalizeIPv4Address<char16_t, char16_t>(spec, host, output,
658 host_info))
659 return;
660 if (DoCanonicalizeIPv6Address<char16_t, char16_t>(spec, host, output,
661 host_info))
662 return;
663 }
664
CanonicalizeIPv6Address(const char * spec,const Component & host,CanonOutput & output,CanonHostInfo & host_info)665 void CanonicalizeIPv6Address(const char* spec,
666 const Component& host,
667 CanonOutput& output,
668 CanonHostInfo& host_info) {
669 DoCanonicalizeIPv6Address<char, unsigned char>(spec, host, &output,
670 &host_info);
671 }
672
CanonicalizeIPv6Address(const char16_t * spec,const Component & host,CanonOutput & output,CanonHostInfo & host_info)673 void CanonicalizeIPv6Address(const char16_t* spec,
674 const Component& host,
675 CanonOutput& output,
676 CanonHostInfo& host_info) {
677 DoCanonicalizeIPv6Address<char16_t, char16_t>(spec, host, &output,
678 &host_info);
679 }
680
IPv4AddressToNumber(const char * spec,const Component & host,unsigned char address[4],int * num_ipv4_components)681 CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
682 const Component& host,
683 unsigned char address[4],
684 int* num_ipv4_components) {
685 return DoIPv4AddressToNumber<char, unsigned char>(spec, host, address,
686 num_ipv4_components);
687 }
688
IPv4AddressToNumber(const char16_t * spec,const Component & host,unsigned char address[4],int * num_ipv4_components)689 CanonHostInfo::Family IPv4AddressToNumber(const char16_t* spec,
690 const Component& host,
691 unsigned char address[4],
692 int* num_ipv4_components) {
693 return DoIPv4AddressToNumber<char16_t, char16_t>(spec, host, address,
694 num_ipv4_components);
695 }
696
IPv6AddressToNumber(const char * spec,const Component & host,unsigned char address[16])697 bool IPv6AddressToNumber(const char* spec,
698 const Component& host,
699 unsigned char address[16]) {
700 return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
701 }
702
IPv6AddressToNumber(const char16_t * spec,const Component & host,unsigned char address[16])703 bool IPv6AddressToNumber(const char16_t* spec,
704 const Component& host,
705 unsigned char address[16]) {
706 return DoIPv6AddressToNumber<char16_t, char16_t>(spec, host, address);
707 }
708
709 } // namespace url
710