• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The ChromiumOS Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 use std::arch::x86_64::CpuidResult;
6 use std::arch::x86_64::__cpuid;
7 use std::arch::x86_64::__cpuid_count;
8 use std::cmp;
9 use std::result;
10 
11 use devices::Apic;
12 use devices::IrqChipCap;
13 use devices::IrqChipX86_64;
14 use hypervisor::CpuConfigX86_64;
15 use hypervisor::CpuHybridType;
16 use hypervisor::CpuIdEntry;
17 use hypervisor::HypervisorCap;
18 use hypervisor::HypervisorX86_64;
19 use hypervisor::VcpuX86_64;
20 use remain::sorted;
21 use thiserror::Error;
22 
23 use crate::CpuManufacturer;
24 
25 #[sorted]
26 #[derive(Error, Debug, PartialEq, Eq)]
27 pub enum Error {
28     #[error("GetSupportedCpus ioctl failed: {0}")]
29     GetSupportedCpusFailed(base::Error),
30     #[error("SetSupportedCpus ioctl failed: {0}")]
31     SetSupportedCpusFailed(base::Error),
32 }
33 
34 pub type Result<T> = result::Result<T, Error>;
35 
36 // CPUID bits in ebx, ecx, and edx.
37 pub const EBX_CLFLUSH_CACHELINE: u32 = 8; // Flush a cache line size.
38 pub const EBX_CLFLUSH_SIZE_SHIFT: u32 = 8; // Bytes flushed when executing CLFLUSH.
39 pub const EBX_CPU_COUNT_SHIFT: u32 = 16; // Index of this CPU.
40 pub const EBX_CPUID_SHIFT: u32 = 24; // Index of this CPU.
41 pub const ECX_EPB_SHIFT: u32 = 3; // "Energy Performance Bias" bit.
42 pub const ECX_X2APIC_SHIFT: u32 = 21; // APIC supports extended xAPIC (x2APIC) standard.
43 pub const ECX_TSC_DEADLINE_TIMER_SHIFT: u32 = 24; // TSC deadline mode of APIC timer.
44 pub const ECX_HYPERVISOR_SHIFT: u32 = 31; // Flag to be set when the cpu is running on a hypervisor.
45 pub const EDX_HTT_SHIFT: u32 = 28; // Hyper Threading Enabled.
46 pub const ECX_TOPO_TYPE_SHIFT: u32 = 8; // Topology Level type.
47 pub const ECX_TOPO_SMT_TYPE: u32 = 1; // SMT type.
48 pub const ECX_TOPO_CORE_TYPE: u32 = 2; // CORE type.
49 pub const ECX_HCFC_PERF_SHIFT: u32 = 0; // Presence of IA32_MPERF and IA32_APERF.
50 pub const EAX_CPU_CORES_SHIFT: u32 = 26; // Index of cpu cores in the same physical package.
51 pub const EDX_HYBRID_CPU_SHIFT: u32 = 15; // Hybrid. The processor is identified as a hybrid part.
52 pub const EAX_HWP_SHIFT: u32 = 7; // Intel Hardware P-states.
53 pub const EAX_HWP_NOTIFICATION_SHIFT: u32 = 8; // IA32_HWP_INTERRUPT MSR is supported
54 pub const EAX_HWP_EPP_SHIFT: u32 = 10; // HWP Energy Perf. Preference.
55 pub const EAX_ITMT_SHIFT: u32 = 14; // Intel Turbo Boost Max Technology 3.0 available.
56 pub const EAX_CORE_TEMP: u32 = 0; // Core Temperature
57 pub const EAX_PKG_TEMP: u32 = 6; // Package Temperature
58 pub const EAX_CORE_TYPE_SHIFT: u32 = 24; // Hybrid information. Hybrid core type.
59 
60 const EAX_CORE_TYPE_ATOM: u32 = 0x20; // Hybrid Atom CPU.
61 const EAX_CORE_TYPE_CORE: u32 = 0x40; // Hybrid Core CPU.
62 
63 /// All of the context required to emulate the CPUID instruction.
64 #[derive(Clone, Debug, PartialEq, Eq)]
65 pub struct CpuIdContext {
66     /// Id of the Vcpu associated with this context.
67     vcpu_id: usize,
68     /// The total number of vcpus on this VM.
69     cpu_count: usize,
70     /// Whether or not the IrqChip's APICs support X2APIC.
71     x2apic: bool,
72     /// Whether or not the IrqChip's APICs support a TSC deadline timer.
73     tsc_deadline_timer: bool,
74     /// The frequency at which the IrqChip's APICs run.
75     apic_frequency: u32,
76     /// The TSC frequency in Hz, if it could be determined.
77     tsc_frequency: Option<u64>,
78     /// CPU feature configurations.
79     cpu_config: CpuConfigX86_64,
80     /// __cpuid_count or a fake function for test.
81     cpuid_count: unsafe fn(u32, u32) -> CpuidResult,
82     /// __cpuid or a fake function for test.
83     cpuid: unsafe fn(u32) -> CpuidResult,
84 }
85 
86 impl CpuIdContext {
new( vcpu_id: usize, cpu_count: usize, irq_chip: Option<&dyn IrqChipX86_64>, cpu_config: CpuConfigX86_64, calibrated_tsc_leaf_required: bool, cpuid_count: unsafe fn(u32, u32) -> CpuidResult, cpuid: unsafe fn(u32) -> CpuidResult, ) -> CpuIdContext87     pub fn new(
88         vcpu_id: usize,
89         cpu_count: usize,
90         irq_chip: Option<&dyn IrqChipX86_64>,
91         cpu_config: CpuConfigX86_64,
92         calibrated_tsc_leaf_required: bool,
93         cpuid_count: unsafe fn(u32, u32) -> CpuidResult,
94         cpuid: unsafe fn(u32) -> CpuidResult,
95     ) -> CpuIdContext {
96         CpuIdContext {
97             vcpu_id,
98             cpu_count,
99             x2apic: irq_chip.is_some_and(|chip| chip.check_capability(IrqChipCap::X2Apic)),
100             tsc_deadline_timer: irq_chip
101                 .is_some_and(|chip| chip.check_capability(IrqChipCap::TscDeadlineTimer)),
102             apic_frequency: irq_chip.map_or(Apic::frequency(), |chip| chip.lapic_frequency()),
103             tsc_frequency: if calibrated_tsc_leaf_required || cpu_config.force_calibrated_tsc_leaf {
104                 devices::tsc::tsc_frequency().ok()
105             } else {
106                 None
107             },
108             cpu_config,
109             cpuid_count,
110             cpuid,
111         }
112     }
113 }
114 
115 /// Adjust a CPUID instruction result to return values that work with crosvm.
116 ///
117 /// Given an input CpuIdEntry `entry`, which represents what the Hypervisor would normally return
118 /// for a given CPUID instruction result, adjust that result to reflect the capabilities of crosvm.
119 /// The `ctx` argument contains all of the Vm-specific and Vcpu-specific information required to
120 /// return the appropriate results.
adjust_cpuid(entry: &mut CpuIdEntry, ctx: &CpuIdContext)121 pub fn adjust_cpuid(entry: &mut CpuIdEntry, ctx: &CpuIdContext) {
122     match entry.function {
123         0 => {
124             if ctx.tsc_frequency.is_some() {
125                 // We add leaf 0x15 for the TSC frequency if it is available.
126                 entry.cpuid.eax = cmp::max(0x15, entry.cpuid.eax);
127             }
128         }
129         1 => {
130             // X86 hypervisor feature
131             if entry.index == 0 {
132                 entry.cpuid.ecx |= 1 << ECX_HYPERVISOR_SHIFT;
133             }
134             if ctx.x2apic {
135                 entry.cpuid.ecx |= 1 << ECX_X2APIC_SHIFT;
136             } else {
137                 entry.cpuid.ecx &= !(1 << ECX_X2APIC_SHIFT);
138             }
139             if ctx.tsc_deadline_timer {
140                 entry.cpuid.ecx |= 1 << ECX_TSC_DEADLINE_TIMER_SHIFT;
141             }
142 
143             if ctx.cpu_config.host_cpu_topology {
144                 entry.cpuid.ebx |= EBX_CLFLUSH_CACHELINE << EBX_CLFLUSH_SIZE_SHIFT;
145 
146                 // Expose HT flag to Guest.
147                 // SAFETY: trivially safe
148                 let result = unsafe { (ctx.cpuid)(entry.function) };
149                 entry.cpuid.edx |= result.edx & (1 << EDX_HTT_SHIFT);
150                 return;
151             }
152 
153             entry.cpuid.ebx = (ctx.vcpu_id << EBX_CPUID_SHIFT) as u32
154                 | (EBX_CLFLUSH_CACHELINE << EBX_CLFLUSH_SIZE_SHIFT);
155             if ctx.cpu_count > 1 {
156                 // This field is only valid if CPUID.1.EDX.HTT[bit 28]= 1.
157                 entry.cpuid.ebx |= (ctx.cpu_count as u32) << EBX_CPU_COUNT_SHIFT;
158                 // A value of 0 for HTT indicates there is only a single logical
159                 // processor in the package and software should assume only a
160                 // single APIC ID is reserved.
161                 entry.cpuid.edx |= 1 << EDX_HTT_SHIFT;
162             }
163         }
164         2 | // Cache and TLB Descriptor information
165         0x80000002 | 0x80000003 | 0x80000004 | // Processor Brand String
166         0x80000005 | 0x80000006 // L1 and L2 cache information
167             => entry.cpuid = {
168                 // SAFETY: trivially safe
169                 unsafe { (ctx.cpuid)(entry.function) }},
170         4 => {
171             entry.cpuid = {
172                 // SAFETY: trivially safe
173                 unsafe { (ctx.cpuid_count)(entry.function, entry.index) }};
174 
175             if ctx.cpu_config.host_cpu_topology {
176                 return;
177             }
178 
179             entry.cpuid.eax &= !0xFC000000;
180             if ctx.cpu_count > 1 {
181                 let cpu_cores = if ctx.cpu_config.no_smt {
182                     ctx.cpu_count as u32
183                 } else if ctx.cpu_count % 2 == 0 {
184                     (ctx.cpu_count >> 1) as u32
185                 } else {
186                     1
187                 };
188                 entry.cpuid.eax |= (cpu_cores - 1) << EAX_CPU_CORES_SHIFT;
189             }
190         }
191         6 => {
192             let result = {
193                 // SAFETY:
194                 // Safe because we pass 6 for this call and the host
195                 // supports the `cpuid` instruction
196                 unsafe { (ctx.cpuid)(entry.function) }};
197 
198             if ctx.cpu_config.enable_hwp {
199                 entry.cpuid.eax |= result.eax & (1 << EAX_HWP_SHIFT);
200                 entry.cpuid.eax |= result.eax & (1 << EAX_HWP_NOTIFICATION_SHIFT);
201                 entry.cpuid.eax |= result.eax & (1 << EAX_HWP_EPP_SHIFT);
202                 entry.cpuid.ecx |= result.ecx & (1 << ECX_EPB_SHIFT);
203 
204                 if ctx.cpu_config.itmt {
205                     entry.cpuid.eax |= result.eax & (1 << EAX_ITMT_SHIFT);
206                 }
207             }
208         }
209         7 => {
210             if ctx.cpu_config.host_cpu_topology && entry.index == 0 {
211                 // SAFETY:
212                 // Safe because we pass 7 and 0 for this call and the host supports the
213                 // `cpuid` instruction
214                 let result = unsafe { (ctx.cpuid_count)(entry.function, entry.index) };
215                 entry.cpuid.edx |= result.edx & (1 << EDX_HYBRID_CPU_SHIFT);
216             }
217             if ctx.cpu_config.hybrid_type.is_some() && entry.index == 0 {
218                 entry.cpuid.edx |= 1 << EDX_HYBRID_CPU_SHIFT;
219             }
220         }
221         0x15 => {
222             if let Some(tsc_freq) = ctx.tsc_frequency {
223                 // A calibrated TSC is required by the hypervisor or was forced by the user.
224                 entry.cpuid = devices::tsc::fake_tsc_frequency_cpuid(tsc_freq, ctx.apic_frequency);
225             }
226         }
227         0x1A => {
228             // Hybrid information leaf.
229             if ctx.cpu_config.host_cpu_topology {
230                 // SAFETY:
231                 // Safe because we pass 0x1A for this call and the host supports the
232                 // `cpuid` instruction
233                 entry.cpuid = unsafe { (ctx.cpuid)(entry.function) };
234             }
235             if let Some(hybrid) = &ctx.cpu_config.hybrid_type {
236                 match hybrid {
237                     CpuHybridType::Atom => {
238                         entry.cpuid.eax |= EAX_CORE_TYPE_ATOM << EAX_CORE_TYPE_SHIFT;
239                     }
240                     CpuHybridType::Core => {
241                         entry.cpuid.eax |= EAX_CORE_TYPE_CORE << EAX_CORE_TYPE_SHIFT;
242                     }
243                 }
244             }
245         }
246         0xB | 0x1F => {
247             if ctx.cpu_config.host_cpu_topology {
248                 return;
249             }
250             // Extended topology enumeration / V2 Extended topology enumeration
251             // NOTE: these will need to be split if any of the fields that differ between
252             // the two versions are to be set.
253             // On AMD, these leaves are not used, so it is currently safe to leave in.
254             entry.cpuid.edx = ctx.vcpu_id as u32; // x2APIC ID
255             if entry.index == 0 {
256                 if ctx.cpu_config.no_smt || (ctx.cpu_count == 1) {
257                     // Make it so that all VCPUs appear as different,
258                     // non-hyperthreaded cores on the same package.
259                     entry.cpuid.eax = 0; // Shift to get id of next level
260                     entry.cpuid.ebx = 1; // Number of logical cpus at this level
261                 } else if ctx.cpu_count % 2 == 0 {
262                     // Each core has 2 hyperthreads
263                     entry.cpuid.eax = 1; // Shift to get id of next level
264                     entry.cpuid.ebx = 2; // Number of logical cpus at this level
265                 } else {
266                     // One core contain all the cpu_count hyperthreads
267                     let cpu_bits: u32 = 32 - ((ctx.cpu_count - 1) as u32).leading_zeros();
268                     entry.cpuid.eax = cpu_bits; // Shift to get id of next level
269                     entry.cpuid.ebx = ctx.cpu_count as u32; // Number of logical cpus at this level
270                 }
271                 entry.cpuid.ecx = (ECX_TOPO_SMT_TYPE << ECX_TOPO_TYPE_SHIFT) | entry.index;
272             } else if entry.index == 1 {
273                 let cpu_bits: u32 = 32 - ((ctx.cpu_count - 1) as u32).leading_zeros();
274                 entry.cpuid.eax = cpu_bits;
275                 // Number of logical cpus at this level
276                 entry.cpuid.ebx = (ctx.cpu_count as u32) & 0xffff;
277                 entry.cpuid.ecx = (ECX_TOPO_CORE_TYPE << ECX_TOPO_TYPE_SHIFT) | entry.index;
278             } else {
279                 entry.cpuid.eax = 0;
280                 entry.cpuid.ebx = 0;
281                 entry.cpuid.ecx = 0;
282             }
283         }
284         _ => (),
285     }
286 }
287 
288 /// Adjust all the entries in `cpuid` based on crosvm's cpuid logic and `ctx`. Calls `adjust_cpuid`
289 /// on each entry in `cpuid`, and adds any entries that should exist and are missing from `cpuid`.
filter_cpuid(cpuid: &mut hypervisor::CpuId, ctx: &CpuIdContext)290 pub fn filter_cpuid(cpuid: &mut hypervisor::CpuId, ctx: &CpuIdContext) {
291     // Add an empty leaf 0x15 if we have a tsc_frequency and it's not in the current set of leaves.
292     // It will be filled with the appropriate frequency information by `adjust_cpuid`.
293     if ctx.tsc_frequency.is_some()
294         && !cpuid
295             .cpu_id_entries
296             .iter()
297             .any(|entry| entry.function == 0x15)
298     {
299         cpuid.cpu_id_entries.push(CpuIdEntry {
300             function: 0x15,
301             index: 0,
302             flags: 0,
303             cpuid: CpuidResult {
304                 eax: 0,
305                 ebx: 0,
306                 ecx: 0,
307                 edx: 0,
308             },
309         })
310     }
311 
312     let entries = &mut cpuid.cpu_id_entries;
313     for entry in entries.iter_mut() {
314         adjust_cpuid(entry, ctx);
315     }
316 }
317 
318 /// Sets up the cpuid entries for the given vcpu.  Can fail if there are too many CPUs specified or
319 /// if an ioctl returns an error.
320 ///
321 /// # Arguments
322 ///
323 /// * `hypervisor` - `HypervisorX86_64` impl for getting supported CPU IDs.
324 /// * `irq_chip` - `IrqChipX86_64` for adjusting appropriate IrqChip CPUID bits.
325 /// * `vcpu` - `VcpuX86_64` for setting CPU ID.
326 /// * `vcpu_id` - The vcpu index of `vcpu`.
327 /// * `cpu_config` - CPU feature configurations.
setup_cpuid( hypervisor: &dyn HypervisorX86_64, irq_chip: &dyn IrqChipX86_64, vcpu: &dyn VcpuX86_64, vcpu_id: usize, nrcpus: usize, cpu_config: CpuConfigX86_64, ) -> Result<()>328 pub fn setup_cpuid(
329     hypervisor: &dyn HypervisorX86_64,
330     irq_chip: &dyn IrqChipX86_64,
331     vcpu: &dyn VcpuX86_64,
332     vcpu_id: usize,
333     nrcpus: usize,
334     cpu_config: CpuConfigX86_64,
335 ) -> Result<()> {
336     let mut cpuid = hypervisor
337         .get_supported_cpuid()
338         .map_err(Error::GetSupportedCpusFailed)?;
339 
340     filter_cpuid(
341         &mut cpuid,
342         &CpuIdContext::new(
343             vcpu_id,
344             nrcpus,
345             Some(irq_chip),
346             cpu_config,
347             hypervisor.check_capability(HypervisorCap::CalibratedTscLeafRequired),
348             __cpuid_count,
349             __cpuid,
350         ),
351     );
352 
353     vcpu.set_cpuid(&cpuid)
354         .map_err(Error::SetSupportedCpusFailed)
355 }
356 
357 const MANUFACTURER_ID_FUNCTION: u32 = 0x00000000;
358 const AMD_EBX: u32 = u32::from_le_bytes([b'A', b'u', b't', b'h']);
359 const AMD_EDX: u32 = u32::from_le_bytes([b'e', b'n', b't', b'i']);
360 const AMD_ECX: u32 = u32::from_le_bytes([b'c', b'A', b'M', b'D']);
361 const INTEL_EBX: u32 = u32::from_le_bytes([b'G', b'e', b'n', b'u']);
362 const INTEL_EDX: u32 = u32::from_le_bytes([b'i', b'n', b'e', b'I']);
363 const INTEL_ECX: u32 = u32::from_le_bytes([b'n', b't', b'e', b'l']);
364 
cpu_manufacturer() -> CpuManufacturer365 pub fn cpu_manufacturer() -> CpuManufacturer {
366     // SAFETY:
367     // safe because MANUFACTURER_ID_FUNCTION is a well known cpuid function,
368     // and we own the result value afterwards.
369     let result = unsafe { __cpuid(MANUFACTURER_ID_FUNCTION) };
370     if result.ebx == AMD_EBX && result.edx == AMD_EDX && result.ecx == AMD_ECX {
371         return CpuManufacturer::Amd;
372     } else if result.ebx == INTEL_EBX && result.edx == INTEL_EDX && result.ecx == INTEL_ECX {
373         return CpuManufacturer::Intel;
374     }
375     CpuManufacturer::Unknown
376 }
377 
378 #[cfg(test)]
379 mod tests {
380     use super::*;
381 
382     #[test]
cpu_manufacturer_test()383     fn cpu_manufacturer_test() {
384         // this should be amd or intel. We don't support other processors for virtualization.
385         let manufacturer = cpu_manufacturer();
386         assert_ne!(manufacturer, CpuManufacturer::Unknown);
387     }
388 
389     #[test]
cpuid_copies_register()390     fn cpuid_copies_register() {
391         let fake_cpuid_count = |_function: u32, _index: u32| CpuidResult {
392             eax: 27,
393             ebx: 18,
394             ecx: 28,
395             edx: 18,
396         };
397         let fake_cpuid = |_function: u32| CpuidResult {
398             eax: 0,
399             ebx: 0,
400             ecx: 0,
401             edx: 0,
402         };
403         let cpu_config = CpuConfigX86_64 {
404             force_calibrated_tsc_leaf: false,
405             host_cpu_topology: true,
406             enable_hwp: false,
407             no_smt: false,
408             itmt: false,
409             hybrid_type: None,
410         };
411         let ctx = CpuIdContext {
412             vcpu_id: 0,
413             cpu_count: 0,
414             x2apic: false,
415             tsc_deadline_timer: false,
416             apic_frequency: 0,
417             tsc_frequency: None,
418             cpu_config,
419             cpuid_count: fake_cpuid_count,
420             cpuid: fake_cpuid,
421         };
422         let mut cpu_id_entry = CpuIdEntry {
423             function: 0x4,
424             index: 0,
425             flags: 0,
426             cpuid: CpuidResult {
427                 eax: 31,
428                 ebx: 41,
429                 ecx: 59,
430                 edx: 26,
431             },
432         };
433         adjust_cpuid(&mut cpu_id_entry, &ctx);
434         assert_eq!(cpu_id_entry.cpuid.eax, 27)
435     }
436 }
437