1 // Copyright (c) 2016 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef SOURCE_OPT_INSTRUCTION_H_
16 #define SOURCE_OPT_INSTRUCTION_H_
17
18 #include <cassert>
19 #include <functional>
20 #include <memory>
21 #include <string>
22 #include <utility>
23 #include <vector>
24
25 #include "NonSemanticShaderDebugInfo100.h"
26 #include "OpenCLDebugInfo100.h"
27 #include "source/binary.h"
28 #include "source/common_debug_info.h"
29 #include "source/latest_version_glsl_std_450_header.h"
30 #include "source/latest_version_spirv_header.h"
31 #include "source/opcode.h"
32 #include "source/operand.h"
33 #include "source/opt/reflect.h"
34 #include "source/util/ilist_node.h"
35 #include "source/util/small_vector.h"
36 #include "source/util/string_utils.h"
37 #include "spirv-tools/libspirv.h"
38
39 constexpr uint32_t kNoDebugScope = 0;
40 constexpr uint32_t kNoInlinedAt = 0;
41
42 namespace spvtools {
43 namespace opt {
44
45 class Function;
46 class IRContext;
47 class Module;
48 class InstructionList;
49
50 // Relaxed logical addressing:
51 //
52 // In the logical addressing model, pointers cannot be stored or loaded. This
53 // is a useful assumption because it simplifies the aliasing significantly.
54 // However, for the purpose of legalizing code generated from HLSL, we will have
55 // to allow storing and loading of pointers to opaque objects and runtime
56 // arrays. This relaxation of the rule still implies that function and private
57 // scope variables do not have any aliasing, so we can treat them as before.
58 // This will be call the relaxed logical addressing model.
59 //
60 // This relaxation of the rule will be allowed by |GetBaseAddress|, but it will
61 // enforce that no other pointers are stored or loaded.
62
63 // About operand:
64 //
65 // In the SPIR-V specification, the term "operand" is used to mean any single
66 // SPIR-V word following the leading wordcount-opcode word. Here, the term
67 // "operand" is used to mean a *logical* operand. A logical operand may consist
68 // of multiple SPIR-V words, which together make up the same component. For
69 // example, a logical operand of a 64-bit integer needs two words to express.
70 //
71 // Further, we categorize logical operands into *in* and *out* operands.
72 // In operands are operands actually serve as input to operations, while out
73 // operands are operands that represent ids generated from operations (result
74 // type id or result id). For example, for "OpIAdd %rtype %rid %inop1 %inop2",
75 // "%inop1" and "%inop2" are in operands, while "%rtype" and "%rid" are out
76 // operands.
77
78 // A *logical* operand to a SPIR-V instruction. It can be the type id, result
79 // id, or other additional operands carried in an instruction.
80 struct Operand {
81 using OperandData = utils::SmallVector<uint32_t, 2>;
OperandOperand82 Operand(spv_operand_type_t t, OperandData&& w)
83 : type(t), words(std::move(w)) {}
84
OperandOperand85 Operand(spv_operand_type_t t, const OperandData& w) : type(t), words(w) {}
86
87 template <class InputIt>
OperandOperand88 Operand(spv_operand_type_t t, InputIt firstOperandData,
89 InputIt lastOperandData)
90 : type(t), words(firstOperandData, lastOperandData) {}
91
92 spv_operand_type_t type; // Type of this logical operand.
93 OperandData words; // Binary segments of this logical operand.
94
AsIdOperand95 uint32_t AsId() const {
96 assert(spvIsIdType(type));
97 assert(words.size() == 1);
98 return words[0];
99 }
100
101 // Returns a string operand as a std::string.
AsStringOperand102 std::string AsString() const {
103 assert(type == SPV_OPERAND_TYPE_LITERAL_STRING);
104 return spvtools::utils::MakeString(words);
105 }
106
107 // Returns a literal integer operand as a uint64_t
AsLiteralUint64Operand108 uint64_t AsLiteralUint64() const {
109 assert(type == SPV_OPERAND_TYPE_LITERAL_INTEGER ||
110 type == SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER ||
111 type == SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER ||
112 type == SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER);
113 assert(1 <= words.size());
114 assert(words.size() <= 2);
115 uint64_t result = 0;
116 if (words.size() > 0) { // Needed to avoid maybe-uninitialized GCC warning
117 uint32_t low = words[0];
118 result = uint64_t(low);
119 }
120 if (words.size() > 1) {
121 uint32_t high = words[1];
122 result = result | (uint64_t(high) << 32);
123 }
124 return result;
125 }
126
127 friend bool operator==(const Operand& o1, const Operand& o2) {
128 return o1.type == o2.type && o1.words == o2.words;
129 }
130
131 // TODO(antiagainst): create fields for literal number kind, width, etc.
132 };
133
134 inline bool operator!=(const Operand& o1, const Operand& o2) {
135 return !(o1 == o2);
136 }
137
138 // This structure is used to represent a DebugScope instruction from
139 // the OpenCL.100.DebugInfo extended instruction set. Note that we can
140 // ignore the result id of DebugScope instruction because it is not
141 // used for anything. We do not keep it to reduce the size of
142 // structure.
143 // TODO: Let validator check that the result id is not used anywhere.
144 class DebugScope {
145 public:
DebugScope(uint32_t lexical_scope,uint32_t inlined_at)146 DebugScope(uint32_t lexical_scope, uint32_t inlined_at)
147 : lexical_scope_(lexical_scope), inlined_at_(inlined_at) {}
148
149 inline bool operator!=(const DebugScope& d) const {
150 return lexical_scope_ != d.lexical_scope_ || inlined_at_ != d.inlined_at_;
151 }
152
153 // Accessor functions for |lexical_scope_|.
GetLexicalScope()154 uint32_t GetLexicalScope() const { return lexical_scope_; }
SetLexicalScope(uint32_t scope)155 void SetLexicalScope(uint32_t scope) { lexical_scope_ = scope; }
156
157 // Accessor functions for |inlined_at_|.
GetInlinedAt()158 uint32_t GetInlinedAt() const { return inlined_at_; }
SetInlinedAt(uint32_t at)159 void SetInlinedAt(uint32_t at) { inlined_at_ = at; }
160
161 // Pushes the binary segments for this DebugScope instruction into
162 // the back of *|binary|.
163 void ToBinary(uint32_t type_id, uint32_t result_id, uint32_t ext_set,
164 std::vector<uint32_t>* binary) const;
165
166 private:
167 // The result id of the lexical scope in which this debug scope is
168 // contained. The value is kNoDebugScope if there is no scope.
169 uint32_t lexical_scope_;
170
171 // The result id of DebugInlinedAt if instruction in this debug scope
172 // is inlined. The value is kNoInlinedAt if it is not inlined.
173 uint32_t inlined_at_;
174 };
175
176 // A SPIR-V instruction. It contains the opcode and any additional logical
177 // operand, including the result id (if any) and result type id (if any). It
178 // may also contain line-related debug instruction (OpLine, OpNoLine) directly
179 // appearing before this instruction. Note that the result id of an instruction
180 // should never change after the instruction being built. If the result id
181 // needs to change, the user should create a new instruction instead.
182 class Instruction : public utils::IntrusiveNodeBase<Instruction> {
183 public:
184 using OperandList = std::vector<Operand>;
185 using iterator = OperandList::iterator;
186 using const_iterator = OperandList::const_iterator;
187
188 // Creates a default OpNop instruction.
189 // This exists solely for containers that can't do without. Should be removed.
Instruction()190 Instruction()
191 : utils::IntrusiveNodeBase<Instruction>(),
192 context_(nullptr),
193 opcode_(spv::Op::OpNop),
194 has_type_id_(false),
195 has_result_id_(false),
196 unique_id_(0),
197 dbg_scope_(kNoDebugScope, kNoInlinedAt) {}
198
199 // Creates a default OpNop instruction.
200 Instruction(IRContext*);
201 // Creates an instruction with the given opcode |op| and no additional logical
202 // operands.
203 Instruction(IRContext*, spv::Op);
204 // Creates an instruction using the given spv_parsed_instruction_t |inst|. All
205 // the data inside |inst| will be copied and owned in this instance. And keep
206 // record of line-related debug instructions |dbg_line| ahead of this
207 // instruction, if any.
208 Instruction(IRContext* c, const spv_parsed_instruction_t& inst,
209 std::vector<Instruction>&& dbg_line = {});
210
211 Instruction(IRContext* c, const spv_parsed_instruction_t& inst,
212 const DebugScope& dbg_scope);
213
214 // Creates an instruction with the given opcode |op|, type id: |ty_id|,
215 // result id: |res_id| and input operands: |in_operands|.
216 Instruction(IRContext* c, spv::Op op, uint32_t ty_id, uint32_t res_id,
217 const OperandList& in_operands);
218
219 // TODO: I will want to remove these, but will first have to remove the use of
220 // std::vector<Instruction>.
221 Instruction(const Instruction&) = default;
222 Instruction& operator=(const Instruction&) = default;
223
224 Instruction(Instruction&&);
225 Instruction& operator=(Instruction&&);
226
227 ~Instruction() override = default;
228
229 // Returns a newly allocated instruction that has the same operands, result,
230 // and type as |this|. The new instruction is not linked into any list.
231 // It is the responsibility of the caller to make sure that the storage is
232 // removed. It is the caller's responsibility to make sure that there is only
233 // one instruction for each result id.
234 Instruction* Clone(IRContext* c) const;
235
context()236 IRContext* context() const { return context_; }
237
opcode()238 spv::Op opcode() const { return opcode_; }
239 // Sets the opcode of this instruction to a specific opcode. Note this may
240 // invalidate the instruction.
241 // TODO(qining): Remove this function when instruction building and insertion
242 // is well implemented.
SetOpcode(spv::Op op)243 void SetOpcode(spv::Op op) { opcode_ = op; }
type_id()244 uint32_t type_id() const {
245 return has_type_id_ ? GetSingleWordOperand(0) : 0;
246 }
result_id()247 uint32_t result_id() const {
248 return has_result_id_ ? GetSingleWordOperand(has_type_id_ ? 1 : 0) : 0;
249 }
unique_id()250 uint32_t unique_id() const {
251 assert(unique_id_ != 0);
252 return unique_id_;
253 }
254 // Returns the vector of line-related debug instructions attached to this
255 // instruction and the caller can directly modify them.
dbg_line_insts()256 std::vector<Instruction>& dbg_line_insts() { return dbg_line_insts_; }
dbg_line_insts()257 const std::vector<Instruction>& dbg_line_insts() const {
258 return dbg_line_insts_;
259 }
260
dbg_line_inst()261 const Instruction* dbg_line_inst() const {
262 return dbg_line_insts_.empty() ? nullptr : &dbg_line_insts_[0];
263 }
264
265 // Clear line-related debug instructions attached to this instruction.
clear_dbg_line_insts()266 void clear_dbg_line_insts() { dbg_line_insts_.clear(); }
267
268 // Same semantics as in the base class except the list the InstructionList
269 // containing |pos| will now assume ownership of |this|.
270 // inline void MoveBefore(Instruction* pos);
271 // inline void InsertAfter(Instruction* pos);
272
273 // Begin and end iterators for operands.
begin()274 iterator begin() { return operands_.begin(); }
end()275 iterator end() { return operands_.end(); }
begin()276 const_iterator begin() const { return operands_.cbegin(); }
end()277 const_iterator end() const { return operands_.cend(); }
278 // Const begin and end iterators for operands.
cbegin()279 const_iterator cbegin() const { return operands_.cbegin(); }
cend()280 const_iterator cend() const { return operands_.cend(); }
281
282 // Gets the number of logical operands.
NumOperands()283 uint32_t NumOperands() const {
284 return static_cast<uint32_t>(operands_.size());
285 }
286 // Gets the number of SPIR-V words occupied by all logical operands.
NumOperandWords()287 uint32_t NumOperandWords() const {
288 return NumInOperandWords() + TypeResultIdCount();
289 }
290 // Gets the |index|-th logical operand.
291 inline Operand& GetOperand(uint32_t index);
292 inline const Operand& GetOperand(uint32_t index) const;
293 // Adds |operand| to the list of operands of this instruction.
294 // It is the responsibility of the caller to make sure
295 // that the instruction remains valid.
296 inline void AddOperand(Operand&& operand);
297 // Adds a copy of |operand| to the list of operands of this instruction.
298 inline void AddOperand(const Operand& operand);
299 // Gets the |index|-th logical operand as a single SPIR-V word. This method is
300 // not expected to be used with logical operands consisting of multiple SPIR-V
301 // words.
302 uint32_t GetSingleWordOperand(uint32_t index) const;
303 // Sets the |index|-th in-operand's data to the given |data|.
304 inline void SetInOperand(uint32_t index, Operand::OperandData&& data);
305 // Sets the |index|-th operand's data to the given |data|.
306 // This is for in-operands modification only, but with |index| expressed in
307 // terms of operand index rather than in-operand index.
308 inline void SetOperand(uint32_t index, Operand::OperandData&& data);
309 // Replace all of the in operands with those in |new_operands|.
310 inline void SetInOperands(OperandList&& new_operands);
311 // Sets the result type id.
312 inline void SetResultType(uint32_t ty_id);
HasResultType()313 inline bool HasResultType() const { return has_type_id_; }
314 // Sets the result id
315 inline void SetResultId(uint32_t res_id);
HasResultId()316 inline bool HasResultId() const { return has_result_id_; }
317 // Sets DebugScope.
318 inline void SetDebugScope(const DebugScope& scope);
GetDebugScope()319 inline const DebugScope& GetDebugScope() const { return dbg_scope_; }
320 // Add debug line inst. Renew result id if Debug[No]Line
321 void AddDebugLine(const Instruction* inst);
322 // Updates DebugInlinedAt of DebugScope and OpLine.
323 void UpdateDebugInlinedAt(uint32_t new_inlined_at);
324 // Clear line-related debug instructions attached to this instruction
325 // along with def-use entries.
326 void ClearDbgLineInsts();
327 // Return true if Shader100:Debug[No]Line
328 bool IsDebugLineInst() const;
329 // Return true if Op[No]Line or Shader100:Debug[No]Line
330 bool IsLineInst() const;
331 // Return true if OpLine or Shader100:DebugLine
332 bool IsLine() const;
333 // Return true if OpNoLine or Shader100:DebugNoLine
334 bool IsNoLine() const;
GetDebugInlinedAt()335 inline uint32_t GetDebugInlinedAt() const {
336 return dbg_scope_.GetInlinedAt();
337 }
338 // Updates lexical scope of DebugScope and OpLine.
339 void UpdateLexicalScope(uint32_t scope);
340 // Updates OpLine and DebugScope based on the information of |from|.
341 void UpdateDebugInfoFrom(const Instruction* from);
342 // Remove the |index|-th operand
RemoveOperand(uint32_t index)343 void RemoveOperand(uint32_t index) {
344 operands_.erase(operands_.begin() + index);
345 }
346 // Insert an operand before the |index|-th operand
InsertOperand(uint32_t index,Operand && operand)347 void InsertOperand(uint32_t index, Operand&& operand) {
348 operands_.insert(operands_.begin() + index, operand);
349 }
350
351 // The following methods are similar to the above, but are for in operands.
NumInOperands()352 uint32_t NumInOperands() const {
353 return static_cast<uint32_t>(operands_.size() - TypeResultIdCount());
354 }
355 uint32_t NumInOperandWords() const;
GetInOperand(uint32_t index)356 Operand& GetInOperand(uint32_t index) {
357 return GetOperand(index + TypeResultIdCount());
358 }
GetInOperand(uint32_t index)359 const Operand& GetInOperand(uint32_t index) const {
360 return GetOperand(index + TypeResultIdCount());
361 }
GetSingleWordInOperand(uint32_t index)362 uint32_t GetSingleWordInOperand(uint32_t index) const {
363 return GetSingleWordOperand(index + TypeResultIdCount());
364 }
RemoveInOperand(uint32_t index)365 void RemoveInOperand(uint32_t index) {
366 operands_.erase(operands_.begin() + index + TypeResultIdCount());
367 }
368
369 // Returns true if this instruction is OpNop.
370 inline bool IsNop() const;
371 // Turns this instruction to OpNop. This does not clear out all preceding
372 // line-related debug instructions.
373 inline void ToNop();
374
375 // Runs the given function |f| on this instruction and optionally on the
376 // preceding debug line instructions. The function will always be run
377 // if this is itself a debug line instruction.
378 inline void ForEachInst(const std::function<void(Instruction*)>& f,
379 bool run_on_debug_line_insts = false);
380 inline void ForEachInst(const std::function<void(const Instruction*)>& f,
381 bool run_on_debug_line_insts = false) const;
382
383 // Runs the given function |f| on this instruction and optionally on the
384 // preceding debug line instructions. The function will always be run
385 // if this is itself a debug line instruction. If |f| returns false,
386 // iteration is terminated and this function returns false.
387 inline bool WhileEachInst(const std::function<bool(Instruction*)>& f,
388 bool run_on_debug_line_insts = false);
389 inline bool WhileEachInst(const std::function<bool(const Instruction*)>& f,
390 bool run_on_debug_line_insts = false) const;
391
392 // Runs the given function |f| on all operand ids.
393 //
394 // |f| should not transform an ID into 0, as 0 is an invalid ID.
395 inline void ForEachId(const std::function<void(uint32_t*)>& f);
396 inline void ForEachId(const std::function<void(const uint32_t*)>& f) const;
397
398 // Runs the given function |f| on all "in" operand ids.
399 inline void ForEachInId(const std::function<void(uint32_t*)>& f);
400 inline void ForEachInId(const std::function<void(const uint32_t*)>& f) const;
401
402 // Runs the given function |f| on all "in" operand ids. If |f| returns false,
403 // iteration is terminated and this function returns false.
404 inline bool WhileEachInId(const std::function<bool(uint32_t*)>& f);
405 inline bool WhileEachInId(
406 const std::function<bool(const uint32_t*)>& f) const;
407
408 // Runs the given function |f| on all "in" operands.
409 inline void ForEachInOperand(const std::function<void(uint32_t*)>& f);
410 inline void ForEachInOperand(
411 const std::function<void(const uint32_t*)>& f) const;
412
413 // Runs the given function |f| on all "in" operands. If |f| returns false,
414 // iteration is terminated and this function return false.
415 inline bool WhileEachInOperand(const std::function<bool(uint32_t*)>& f);
416 inline bool WhileEachInOperand(
417 const std::function<bool(const uint32_t*)>& f) const;
418
419 // Returns true if it's an OpBranchConditional instruction
420 // with branch weights.
421 bool HasBranchWeights() const;
422
423 // Returns true if any operands can be labels
424 inline bool HasLabels() const;
425
426 // Pushes the binary segments for this instruction into the back of *|binary|.
427 void ToBinaryWithoutAttachedDebugInsts(std::vector<uint32_t>* binary) const;
428
429 // Replaces the operands to the instruction with |new_operands|. The caller
430 // is responsible for building a complete and valid list of operands for
431 // this instruction.
432 void ReplaceOperands(const OperandList& new_operands);
433
434 // Returns true if the instruction annotates an id with a decoration.
435 inline bool IsDecoration() const;
436
437 // Returns true if the instruction is known to be a load from read-only
438 // memory.
439 bool IsReadOnlyLoad() const;
440
441 // Returns the instruction that gives the base address of an address
442 // calculation. The instruction must be a load, as defined by |IsLoad|,
443 // store, copy, or access chain instruction. In logical addressing mode, will
444 // return an OpVariable or OpFunctionParameter instruction. For relaxed
445 // logical addressing, it would also return a load of a pointer to an opaque
446 // object. For physical addressing mode, could return other types of
447 // instructions.
448 Instruction* GetBaseAddress() const;
449
450 // Returns true if the instruction loads from memory or samples an image, and
451 // stores the result into an id. It considers only core instructions.
452 // Memory-to-memory instructions are not considered loads.
453 inline bool IsLoad() const;
454
455 // Returns true if the instruction generates a pointer that is definitely
456 // read-only. This is determined by analysing the pointer type's storage
457 // class and decorations that target the pointer's id. It does not analyse
458 // other instructions that the pointer may be derived from. Thus if 'true' is
459 // returned, the pointer is definitely read-only, while if 'false' is returned
460 // it is possible that the pointer may actually be read-only if it is derived
461 // from another pointer that is decorated as read-only.
462 bool IsReadOnlyPointer() const;
463
464 // The following functions check for the various descriptor types defined in
465 // the Vulkan specification section 13.1.
466
467 // Returns true if the instruction defines a pointer type that points to a
468 // storage image.
469 bool IsVulkanStorageImage() const;
470
471 // Returns true if the instruction defines a pointer type that points to a
472 // sampled image.
473 bool IsVulkanSampledImage() const;
474
475 // Returns true if the instruction defines a pointer type that points to a
476 // storage texel buffer.
477 bool IsVulkanStorageTexelBuffer() const;
478
479 // Returns true if the instruction defines a pointer type that points to a
480 // storage buffer.
481 bool IsVulkanStorageBuffer() const;
482
483 // Returns true if the instruction defines a variable in StorageBuffer or
484 // Uniform storage class with a pointer type that points to a storage buffer.
485 bool IsVulkanStorageBufferVariable() const;
486
487 // Returns true if the instruction defines a pointer type that points to a
488 // uniform buffer.
489 bool IsVulkanUniformBuffer() const;
490
491 // Returns true if the instruction is an atom operation that uses original
492 // value.
493 inline bool IsAtomicWithLoad() const;
494
495 // Returns true if the instruction is an atom operation.
496 inline bool IsAtomicOp() const;
497
498 // Returns true if this instruction is a branch or switch instruction (either
499 // conditional or not).
IsBranch()500 bool IsBranch() const { return spvOpcodeIsBranch(opcode()); }
501
502 // Returns true if this instruction causes the function to finish execution
503 // and return to its caller
IsReturn()504 bool IsReturn() const { return spvOpcodeIsReturn(opcode()); }
505
506 // Returns true if this instruction exits this function or aborts execution.
IsReturnOrAbort()507 bool IsReturnOrAbort() const { return spvOpcodeIsReturnOrAbort(opcode()); }
508
509 // Returns true if this instruction is a basic block terminator.
IsBlockTerminator()510 bool IsBlockTerminator() const {
511 return spvOpcodeIsBlockTerminator(opcode());
512 }
513
514 // Returns true if |this| is an instruction that define an opaque type. Since
515 // runtime array have similar characteristics they are included as opaque
516 // types.
517 bool IsOpaqueType() const;
518
519 // Returns true if |this| is an instruction which could be folded into a
520 // constant value.
521 bool IsFoldable() const;
522
523 // Returns true if |this| is an instruction which could be folded into a
524 // constant value by |FoldScalar|.
525 bool IsFoldableByFoldScalar() const;
526
527 // Returns true if |this| is an instruction which could be folded into a
528 // constant value by |FoldVector|.
529 bool IsFoldableByFoldVector() const;
530
531 // Returns true if we are allowed to fold or otherwise manipulate the
532 // instruction that defines |id| in the given context. This includes not
533 // handling NaN values.
534 bool IsFloatingPointFoldingAllowed() const;
535
536 inline bool operator==(const Instruction&) const;
537 inline bool operator!=(const Instruction&) const;
538 inline bool operator<(const Instruction&) const;
539
540 // Takes ownership of the instruction owned by |i| and inserts it immediately
541 // before |this|. Returns the inserted instruction.
542 Instruction* InsertBefore(std::unique_ptr<Instruction>&& i);
543 // Takes ownership of the instructions in |list| and inserts them in order
544 // immediately before |this|. Returns the first inserted instruction.
545 // Assumes the list is non-empty.
546 Instruction* InsertBefore(std::vector<std::unique_ptr<Instruction>>&& list);
547 using utils::IntrusiveNodeBase<Instruction>::InsertBefore;
548
549 // Returns true if |this| is an instruction defining a constant, but not a
550 // Spec constant.
551 inline bool IsConstant() const;
552
553 // Returns true if |this| is an instruction with an opcode safe to move
554 bool IsOpcodeCodeMotionSafe() const;
555
556 // Pretty-prints |inst|.
557 //
558 // Provides the disassembly of a specific instruction. Utilizes |inst|'s
559 // context to provide the correct interpretation of types, constants, etc.
560 //
561 // |options| are the disassembly options. SPV_BINARY_TO_TEXT_OPTION_NO_HEADER
562 // is always added to |options|.
563 std::string PrettyPrint(uint32_t options = 0u) const;
564
565 // Returns true if the result can be a vector and the result of each component
566 // depends on the corresponding component of any vector inputs.
567 bool IsScalarizable() const;
568
569 // Return true if the only effect of this instructions is the result.
570 bool IsOpcodeSafeToDelete() const;
571
572 // Returns true if it is valid to use the result of |inst| as the base
573 // pointer for a load or store. In this case, valid is defined by the relaxed
574 // logical addressing rules when using logical addressing. Normal validation
575 // rules for physical addressing.
576 bool IsValidBasePointer() const;
577
578 // Returns debug opcode of an OpenCL.100.DebugInfo instruction. If
579 // it is not an OpenCL.100.DebugInfo instruction, just returns
580 // OpenCLDebugInfo100InstructionsMax.
581 OpenCLDebugInfo100Instructions GetOpenCL100DebugOpcode() const;
582
583 // Returns debug opcode of an NonSemantic.Shader.DebugInfo.100 instruction. If
584 // it is not an NonSemantic.Shader.DebugInfo.100 instruction, just return
585 // NonSemanticShaderDebugInfo100InstructionsMax.
586 NonSemanticShaderDebugInfo100Instructions GetShader100DebugOpcode() const;
587
588 // Returns debug opcode of an OpenCL.100.DebugInfo or
589 // NonSemantic.Shader.DebugInfo.100 instruction. Since these overlap, we
590 // return the OpenCLDebugInfo code
591 CommonDebugInfoInstructions GetCommonDebugOpcode() const;
592
593 // Returns true if it is an OpenCL.DebugInfo.100 instruction.
IsOpenCL100DebugInstr()594 bool IsOpenCL100DebugInstr() const {
595 return GetOpenCL100DebugOpcode() != OpenCLDebugInfo100InstructionsMax;
596 }
597
598 // Returns true if it is an NonSemantic.Shader.DebugInfo.100 instruction.
IsShader100DebugInstr()599 bool IsShader100DebugInstr() const {
600 return GetShader100DebugOpcode() !=
601 NonSemanticShaderDebugInfo100InstructionsMax;
602 }
IsCommonDebugInstr()603 bool IsCommonDebugInstr() const {
604 return GetCommonDebugOpcode() != CommonDebugInfoInstructionsMax;
605 }
606
607 // Returns true if this instructions a non-semantic instruction.
608 bool IsNonSemanticInstruction() const;
609
610 // Dump this instruction on stderr. Useful when running interactive
611 // debuggers.
612 void Dump() const;
613
614 private:
615 // Returns the total count of result type id and result id.
TypeResultIdCount()616 uint32_t TypeResultIdCount() const {
617 if (has_type_id_ && has_result_id_) return 2;
618 if (has_type_id_ || has_result_id_) return 1;
619 return 0;
620 }
621
622 // Returns true if the instruction generates a read-only pointer, with the
623 // same caveats documented in the comment for IsReadOnlyPointer. The first
624 // version assumes the module is a shader module. The second assumes a
625 // kernel.
626 bool IsReadOnlyPointerShaders() const;
627 bool IsReadOnlyPointerKernel() const;
628
629 // Returns true if the result of |inst| can be used as the base image for an
630 // instruction that samples a image, reads an image, or writes to an image.
631 bool IsValidBaseImage() const;
632
633 IRContext* context_; // IR Context
634 spv::Op opcode_; // Opcode
635 bool has_type_id_; // True if the instruction has a type id
636 bool has_result_id_; // True if the instruction has a result id
637 uint32_t unique_id_; // Unique instruction id
638 // All logical operands, including result type id and result id.
639 OperandList operands_;
640 // Op[No]Line or Debug[No]Line instructions preceding this instruction. Note
641 // that for Instructions representing Op[No]Line or Debug[No]Line themselves,
642 // this field should be empty.
643 std::vector<Instruction> dbg_line_insts_;
644
645 // DebugScope that wraps this instruction.
646 DebugScope dbg_scope_;
647
648 friend InstructionList;
649 };
650
651 // Pretty-prints |inst| to |str| and returns |str|.
652 //
653 // Provides the disassembly of a specific instruction. Utilizes |inst|'s context
654 // to provide the correct interpretation of types, constants, etc.
655 //
656 // Disassembly uses raw ids (not pretty printed names).
657 std::ostream& operator<<(std::ostream& str, const Instruction& inst);
658
659 inline bool Instruction::operator==(const Instruction& other) const {
660 return unique_id() == other.unique_id();
661 }
662
663 inline bool Instruction::operator!=(const Instruction& other) const {
664 return !(*this == other);
665 }
666
667 inline bool Instruction::operator<(const Instruction& other) const {
668 return unique_id() < other.unique_id();
669 }
670
GetOperand(uint32_t index)671 inline Operand& Instruction::GetOperand(uint32_t index) {
672 assert(index < operands_.size() && "operand index out of bound");
673 return operands_[index];
674 }
675
GetOperand(uint32_t index)676 inline const Operand& Instruction::GetOperand(uint32_t index) const {
677 assert(index < operands_.size() && "operand index out of bound");
678 return operands_[index];
679 }
680
AddOperand(Operand && operand)681 inline void Instruction::AddOperand(Operand&& operand) {
682 operands_.push_back(std::move(operand));
683 }
684
AddOperand(const Operand & operand)685 inline void Instruction::AddOperand(const Operand& operand) {
686 operands_.push_back(operand);
687 }
688
SetInOperand(uint32_t index,Operand::OperandData && data)689 inline void Instruction::SetInOperand(uint32_t index,
690 Operand::OperandData&& data) {
691 SetOperand(index + TypeResultIdCount(), std::move(data));
692 }
693
SetOperand(uint32_t index,Operand::OperandData && data)694 inline void Instruction::SetOperand(uint32_t index,
695 Operand::OperandData&& data) {
696 assert(index < operands_.size() && "operand index out of bound");
697 assert(index >= TypeResultIdCount() && "operand is not a in-operand");
698 operands_[index].words = std::move(data);
699 }
700
SetInOperands(OperandList && new_operands)701 inline void Instruction::SetInOperands(OperandList&& new_operands) {
702 // Remove the old in operands.
703 operands_.erase(operands_.begin() + TypeResultIdCount(), operands_.end());
704 // Add the new in operands.
705 operands_.insert(operands_.end(), new_operands.begin(), new_operands.end());
706 }
707
SetResultId(uint32_t res_id)708 inline void Instruction::SetResultId(uint32_t res_id) {
709 // TODO(dsinclair): Allow setting a result id if there wasn't one
710 // previously. Need to make room in the operands_ array to place the result,
711 // and update the has_result_id_ flag.
712 assert(has_result_id_);
713
714 // TODO(dsinclair): Allow removing the result id. This needs to make sure,
715 // if there was a result id previously to remove it from the operands_ array
716 // and reset the has_result_id_ flag.
717 assert(res_id != 0);
718
719 auto ridx = has_type_id_ ? 1 : 0;
720 operands_[ridx].words = {res_id};
721 }
722
SetDebugScope(const DebugScope & scope)723 inline void Instruction::SetDebugScope(const DebugScope& scope) {
724 dbg_scope_ = scope;
725 for (auto& i : dbg_line_insts_) {
726 i.dbg_scope_ = scope;
727 }
728 }
729
SetResultType(uint32_t ty_id)730 inline void Instruction::SetResultType(uint32_t ty_id) {
731 // TODO(dsinclair): Allow setting a type id if there wasn't one
732 // previously. Need to make room in the operands_ array to place the result,
733 // and update the has_type_id_ flag.
734 assert(has_type_id_);
735
736 // TODO(dsinclair): Allow removing the type id. This needs to make sure,
737 // if there was a type id previously to remove it from the operands_ array
738 // and reset the has_type_id_ flag.
739 assert(ty_id != 0);
740
741 operands_.front().words = {ty_id};
742 }
743
IsNop()744 inline bool Instruction::IsNop() const {
745 return opcode_ == spv::Op::OpNop && !has_type_id_ && !has_result_id_ &&
746 operands_.empty();
747 }
748
ToNop()749 inline void Instruction::ToNop() {
750 opcode_ = spv::Op::OpNop;
751 has_type_id_ = false;
752 has_result_id_ = false;
753 operands_.clear();
754 }
755
WhileEachInst(const std::function<bool (Instruction *)> & f,bool run_on_debug_line_insts)756 inline bool Instruction::WhileEachInst(
757 const std::function<bool(Instruction*)>& f, bool run_on_debug_line_insts) {
758 if (run_on_debug_line_insts) {
759 for (auto& dbg_line : dbg_line_insts_) {
760 if (!f(&dbg_line)) return false;
761 }
762 }
763 return f(this);
764 }
765
WhileEachInst(const std::function<bool (const Instruction *)> & f,bool run_on_debug_line_insts)766 inline bool Instruction::WhileEachInst(
767 const std::function<bool(const Instruction*)>& f,
768 bool run_on_debug_line_insts) const {
769 if (run_on_debug_line_insts) {
770 for (auto& dbg_line : dbg_line_insts_) {
771 if (!f(&dbg_line)) return false;
772 }
773 }
774 return f(this);
775 }
776
ForEachInst(const std::function<void (Instruction *)> & f,bool run_on_debug_line_insts)777 inline void Instruction::ForEachInst(const std::function<void(Instruction*)>& f,
778 bool run_on_debug_line_insts) {
779 WhileEachInst(
780 [&f](Instruction* inst) {
781 f(inst);
782 return true;
783 },
784 run_on_debug_line_insts);
785 }
786
ForEachInst(const std::function<void (const Instruction *)> & f,bool run_on_debug_line_insts)787 inline void Instruction::ForEachInst(
788 const std::function<void(const Instruction*)>& f,
789 bool run_on_debug_line_insts) const {
790 WhileEachInst(
791 [&f](const Instruction* inst) {
792 f(inst);
793 return true;
794 },
795 run_on_debug_line_insts);
796 }
797
ForEachId(const std::function<void (uint32_t *)> & f)798 inline void Instruction::ForEachId(const std::function<void(uint32_t*)>& f) {
799 for (auto& operand : operands_)
800 if (spvIsIdType(operand.type)) f(&operand.words[0]);
801 }
802
ForEachId(const std::function<void (const uint32_t *)> & f)803 inline void Instruction::ForEachId(
804 const std::function<void(const uint32_t*)>& f) const {
805 for (const auto& operand : operands_)
806 if (spvIsIdType(operand.type)) f(&operand.words[0]);
807 }
808
WhileEachInId(const std::function<bool (uint32_t *)> & f)809 inline bool Instruction::WhileEachInId(
810 const std::function<bool(uint32_t*)>& f) {
811 for (auto& operand : operands_) {
812 if (spvIsInIdType(operand.type) && !f(&operand.words[0])) {
813 return false;
814 }
815 }
816 return true;
817 }
818
WhileEachInId(const std::function<bool (const uint32_t *)> & f)819 inline bool Instruction::WhileEachInId(
820 const std::function<bool(const uint32_t*)>& f) const {
821 for (const auto& operand : operands_) {
822 if (spvIsInIdType(operand.type) && !f(&operand.words[0])) {
823 return false;
824 }
825 }
826 return true;
827 }
828
ForEachInId(const std::function<void (uint32_t *)> & f)829 inline void Instruction::ForEachInId(const std::function<void(uint32_t*)>& f) {
830 WhileEachInId([&f](uint32_t* id) {
831 f(id);
832 return true;
833 });
834 }
835
ForEachInId(const std::function<void (const uint32_t *)> & f)836 inline void Instruction::ForEachInId(
837 const std::function<void(const uint32_t*)>& f) const {
838 WhileEachInId([&f](const uint32_t* id) {
839 f(id);
840 return true;
841 });
842 }
843
WhileEachInOperand(const std::function<bool (uint32_t *)> & f)844 inline bool Instruction::WhileEachInOperand(
845 const std::function<bool(uint32_t*)>& f) {
846 for (auto& operand : operands_) {
847 switch (operand.type) {
848 case SPV_OPERAND_TYPE_RESULT_ID:
849 case SPV_OPERAND_TYPE_TYPE_ID:
850 break;
851 default:
852 if (!f(&operand.words[0])) return false;
853 break;
854 }
855 }
856 return true;
857 }
858
WhileEachInOperand(const std::function<bool (const uint32_t *)> & f)859 inline bool Instruction::WhileEachInOperand(
860 const std::function<bool(const uint32_t*)>& f) const {
861 for (const auto& operand : operands_) {
862 switch (operand.type) {
863 case SPV_OPERAND_TYPE_RESULT_ID:
864 case SPV_OPERAND_TYPE_TYPE_ID:
865 break;
866 default:
867 if (!f(&operand.words[0])) return false;
868 break;
869 }
870 }
871 return true;
872 }
873
ForEachInOperand(const std::function<void (uint32_t *)> & f)874 inline void Instruction::ForEachInOperand(
875 const std::function<void(uint32_t*)>& f) {
876 WhileEachInOperand([&f](uint32_t* operand) {
877 f(operand);
878 return true;
879 });
880 }
881
ForEachInOperand(const std::function<void (const uint32_t *)> & f)882 inline void Instruction::ForEachInOperand(
883 const std::function<void(const uint32_t*)>& f) const {
884 WhileEachInOperand([&f](const uint32_t* operand) {
885 f(operand);
886 return true;
887 });
888 }
889
HasLabels()890 inline bool Instruction::HasLabels() const {
891 switch (opcode_) {
892 case spv::Op::OpSelectionMerge:
893 case spv::Op::OpBranch:
894 case spv::Op::OpLoopMerge:
895 case spv::Op::OpBranchConditional:
896 case spv::Op::OpSwitch:
897 case spv::Op::OpPhi:
898 return true;
899 break;
900 default:
901 break;
902 }
903 return false;
904 }
905
IsDecoration()906 bool Instruction::IsDecoration() const {
907 return spvOpcodeIsDecoration(opcode());
908 }
909
IsLoad()910 bool Instruction::IsLoad() const { return spvOpcodeIsLoad(opcode()); }
911
IsAtomicWithLoad()912 bool Instruction::IsAtomicWithLoad() const {
913 return spvOpcodeIsAtomicWithLoad(opcode());
914 }
915
IsAtomicOp()916 bool Instruction::IsAtomicOp() const { return spvOpcodeIsAtomicOp(opcode()); }
917
IsConstant()918 bool Instruction::IsConstant() const {
919 return IsConstantInst(opcode()) && !IsSpecConstantInst(opcode());
920 }
921 } // namespace opt
922 } // namespace spvtools
923
924 #endif // SOURCE_OPT_INSTRUCTION_H_
925