1 // Copyright (c) 2017 The Khronos Group Inc.
2 // Copyright (c) 2017 Valve Corporation
3 // Copyright (c) 2017 LunarG Inc.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16
17 #include "source/opt/mem_pass.h"
18
19 #include <memory>
20 #include <set>
21 #include <vector>
22
23 #include "source/cfa.h"
24 #include "source/opt/basic_block.h"
25 #include "source/opt/ir_context.h"
26
27 namespace spvtools {
28 namespace opt {
29 namespace {
30 constexpr uint32_t kCopyObjectOperandInIdx = 0;
31 constexpr uint32_t kTypePointerStorageClassInIdx = 0;
32 constexpr uint32_t kTypePointerTypeIdInIdx = 1;
33 } // namespace
34
IsBaseTargetType(const Instruction * typeInst) const35 bool MemPass::IsBaseTargetType(const Instruction* typeInst) const {
36 switch (typeInst->opcode()) {
37 case spv::Op::OpTypeInt:
38 case spv::Op::OpTypeFloat:
39 case spv::Op::OpTypeBool:
40 case spv::Op::OpTypeVector:
41 case spv::Op::OpTypeMatrix:
42 case spv::Op::OpTypeImage:
43 case spv::Op::OpTypeSampler:
44 case spv::Op::OpTypeSampledImage:
45 case spv::Op::OpTypePointer:
46 case spv::Op::OpTypeCooperativeMatrixNV:
47 case spv::Op::OpTypeCooperativeMatrixKHR:
48 return true;
49 default:
50 break;
51 }
52 return false;
53 }
54
IsTargetType(const Instruction * typeInst) const55 bool MemPass::IsTargetType(const Instruction* typeInst) const {
56 if (IsBaseTargetType(typeInst)) return true;
57 if (typeInst->opcode() == spv::Op::OpTypeArray) {
58 if (!IsTargetType(
59 get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
60 return false;
61 }
62 return true;
63 }
64 if (typeInst->opcode() != spv::Op::OpTypeStruct) return false;
65 // All struct members must be math type
66 return typeInst->WhileEachInId([this](const uint32_t* tid) {
67 Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
68 if (!IsTargetType(compTypeInst)) return false;
69 return true;
70 });
71 }
72
IsNonPtrAccessChain(const spv::Op opcode) const73 bool MemPass::IsNonPtrAccessChain(const spv::Op opcode) const {
74 return opcode == spv::Op::OpAccessChain ||
75 opcode == spv::Op::OpInBoundsAccessChain;
76 }
77
IsPtr(uint32_t ptrId)78 bool MemPass::IsPtr(uint32_t ptrId) {
79 uint32_t varId = ptrId;
80 Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
81 if (ptrInst->opcode() == spv::Op::OpFunction) {
82 // A function is not a pointer, but it's return type could be, which will
83 // erroneously lead to this function returning true later on
84 return false;
85 }
86 while (ptrInst->opcode() == spv::Op::OpCopyObject) {
87 varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
88 ptrInst = get_def_use_mgr()->GetDef(varId);
89 }
90 const spv::Op op = ptrInst->opcode();
91 if (op == spv::Op::OpVariable || IsNonPtrAccessChain(op)) return true;
92 const uint32_t varTypeId = ptrInst->type_id();
93 if (varTypeId == 0) return false;
94 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
95 return varTypeInst->opcode() == spv::Op::OpTypePointer;
96 }
97
GetPtr(uint32_t ptrId,uint32_t * varId)98 Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
99 *varId = ptrId;
100 Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
101 Instruction* varInst;
102
103 if (ptrInst->opcode() == spv::Op::OpConstantNull) {
104 *varId = 0;
105 return ptrInst;
106 }
107
108 if (ptrInst->opcode() != spv::Op::OpVariable &&
109 ptrInst->opcode() != spv::Op::OpFunctionParameter) {
110 varInst = ptrInst->GetBaseAddress();
111 } else {
112 varInst = ptrInst;
113 }
114 if (varInst->opcode() == spv::Op::OpVariable) {
115 *varId = varInst->result_id();
116 } else {
117 *varId = 0;
118 }
119
120 while (ptrInst->opcode() == spv::Op::OpCopyObject) {
121 uint32_t temp = ptrInst->GetSingleWordInOperand(0);
122 ptrInst = get_def_use_mgr()->GetDef(temp);
123 }
124
125 return ptrInst;
126 }
127
GetPtr(Instruction * ip,uint32_t * varId)128 Instruction* MemPass::GetPtr(Instruction* ip, uint32_t* varId) {
129 assert(ip->opcode() == spv::Op::OpStore || ip->opcode() == spv::Op::OpLoad ||
130 ip->opcode() == spv::Op::OpImageTexelPointer ||
131 ip->IsAtomicWithLoad());
132
133 // All of these opcode place the pointer in position 0.
134 const uint32_t ptrId = ip->GetSingleWordInOperand(0);
135 return GetPtr(ptrId, varId);
136 }
137
HasOnlyNamesAndDecorates(uint32_t id) const138 bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
139 return get_def_use_mgr()->WhileEachUser(id, [this](Instruction* user) {
140 spv::Op op = user->opcode();
141 if (op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
142 return false;
143 }
144 return true;
145 });
146 }
147
KillAllInsts(BasicBlock * bp,bool killLabel)148 void MemPass::KillAllInsts(BasicBlock* bp, bool killLabel) {
149 bp->KillAllInsts(killLabel);
150 }
151
HasLoads(uint32_t varId) const152 bool MemPass::HasLoads(uint32_t varId) const {
153 return !get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
154 spv::Op op = user->opcode();
155 // TODO(): The following is slightly conservative. Could be
156 // better handling of non-store/name.
157 if (IsNonPtrAccessChain(op) || op == spv::Op::OpCopyObject) {
158 if (HasLoads(user->result_id())) {
159 return false;
160 }
161 } else if (op != spv::Op::OpStore && op != spv::Op::OpName &&
162 !IsNonTypeDecorate(op)) {
163 return false;
164 }
165 return true;
166 });
167 }
168
IsLiveVar(uint32_t varId) const169 bool MemPass::IsLiveVar(uint32_t varId) const {
170 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
171 // assume live if not a variable eg. function parameter
172 if (varInst->opcode() != spv::Op::OpVariable) return true;
173 // non-function scope vars are live
174 const uint32_t varTypeId = varInst->type_id();
175 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
176 if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
177 kTypePointerStorageClassInIdx)) != spv::StorageClass::Function)
178 return true;
179 // test if variable is loaded from
180 return HasLoads(varId);
181 }
182
AddStores(uint32_t ptr_id,std::queue<Instruction * > * insts)183 void MemPass::AddStores(uint32_t ptr_id, std::queue<Instruction*>* insts) {
184 get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](Instruction* user) {
185 spv::Op op = user->opcode();
186 if (IsNonPtrAccessChain(op)) {
187 AddStores(user->result_id(), insts);
188 } else if (op == spv::Op::OpStore) {
189 insts->push(user);
190 }
191 });
192 }
193
DCEInst(Instruction * inst,const std::function<void (Instruction *)> & call_back)194 void MemPass::DCEInst(Instruction* inst,
195 const std::function<void(Instruction*)>& call_back) {
196 std::queue<Instruction*> deadInsts;
197 deadInsts.push(inst);
198 while (!deadInsts.empty()) {
199 Instruction* di = deadInsts.front();
200 // Don't delete labels
201 if (di->opcode() == spv::Op::OpLabel) {
202 deadInsts.pop();
203 continue;
204 }
205 // Remember operands
206 std::set<uint32_t> ids;
207 di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
208 uint32_t varId = 0;
209 // Remember variable if dead load
210 if (di->opcode() == spv::Op::OpLoad) (void)GetPtr(di, &varId);
211 if (call_back) {
212 call_back(di);
213 }
214 context()->KillInst(di);
215 // For all operands with no remaining uses, add their instruction
216 // to the dead instruction queue.
217 for (auto id : ids)
218 if (HasOnlyNamesAndDecorates(id)) {
219 Instruction* odi = get_def_use_mgr()->GetDef(id);
220 if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
221 }
222 // if a load was deleted and it was the variable's
223 // last load, add all its stores to dead queue
224 if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
225 deadInsts.pop();
226 }
227 }
228
MemPass()229 MemPass::MemPass() {}
230
HasOnlySupportedRefs(uint32_t varId)231 bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
232 return get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
233 auto dbg_op = user->GetCommonDebugOpcode();
234 if (dbg_op == CommonDebugInfoDebugDeclare ||
235 dbg_op == CommonDebugInfoDebugValue) {
236 return true;
237 }
238 spv::Op op = user->opcode();
239 if (op != spv::Op::OpStore && op != spv::Op::OpLoad &&
240 op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
241 return false;
242 }
243 return true;
244 });
245 }
246
Type2Undef(uint32_t type_id)247 uint32_t MemPass::Type2Undef(uint32_t type_id) {
248 const auto uitr = type2undefs_.find(type_id);
249 if (uitr != type2undefs_.end()) return uitr->second;
250 const uint32_t undefId = TakeNextId();
251 if (undefId == 0) {
252 return 0;
253 }
254
255 std::unique_ptr<Instruction> undef_inst(
256 new Instruction(context(), spv::Op::OpUndef, type_id, undefId, {}));
257 get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
258 get_module()->AddGlobalValue(std::move(undef_inst));
259 type2undefs_[type_id] = undefId;
260 return undefId;
261 }
262
IsTargetVar(uint32_t varId)263 bool MemPass::IsTargetVar(uint32_t varId) {
264 if (varId == 0) {
265 return false;
266 }
267
268 if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
269 return false;
270 if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
271 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
272 if (varInst->opcode() != spv::Op::OpVariable) return false;
273 const uint32_t varTypeId = varInst->type_id();
274 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
275 if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
276 kTypePointerStorageClassInIdx)) != spv::StorageClass::Function) {
277 seen_non_target_vars_.insert(varId);
278 return false;
279 }
280 const uint32_t varPteTypeId =
281 varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
282 Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
283 if (!IsTargetType(varPteTypeInst)) {
284 seen_non_target_vars_.insert(varId);
285 return false;
286 }
287 seen_target_vars_.insert(varId);
288 return true;
289 }
290
291 // Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
292 // |reachable_blocks|). There are two types of removal that this function can
293 // perform:
294 //
295 // 1- Any operand that comes directly from an unreachable block is completely
296 // removed. Since the block is unreachable, the edge between the unreachable
297 // block and the block holding |phi| has been removed.
298 //
299 // 2- Any operand that comes via a live block and was defined at an unreachable
300 // block gets its value replaced with an OpUndef value. Since the argument
301 // was generated in an unreachable block, it no longer exists, so it cannot
302 // be referenced. However, since the value does not reach |phi| directly
303 // from the unreachable block, the operand cannot be removed from |phi|.
304 // Therefore, we replace the argument value with OpUndef.
305 //
306 // For example, in the switch() below, assume that we want to remove the
307 // argument with value %11 coming from block %41.
308 //
309 // [ ... ]
310 // %41 = OpLabel <--- Unreachable block
311 // %11 = OpLoad %int %y
312 // [ ... ]
313 // OpSelectionMerge %16 None
314 // OpSwitch %12 %16 10 %13 13 %14 18 %15
315 // %13 = OpLabel
316 // OpBranch %16
317 // %14 = OpLabel
318 // OpStore %outparm %int_14
319 // OpBranch %16
320 // %15 = OpLabel
321 // OpStore %outparm %int_15
322 // OpBranch %16
323 // %16 = OpLabel
324 // %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
325 //
326 // Since %41 is now an unreachable block, the first operand of |phi| needs to
327 // be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
328 // removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
329 // in those arguments, we replace all references to %11 with an OpUndef value.
330 // This results in |phi| looking like:
331 //
332 // %50 = OpUndef %int
333 // [ ... ]
334 // %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
RemovePhiOperands(Instruction * phi,const std::unordered_set<BasicBlock * > & reachable_blocks)335 void MemPass::RemovePhiOperands(
336 Instruction* phi, const std::unordered_set<BasicBlock*>& reachable_blocks) {
337 std::vector<Operand> keep_operands;
338 uint32_t type_id = 0;
339 // The id of an undefined value we've generated.
340 uint32_t undef_id = 0;
341
342 // Traverse all the operands in |phi|. Build the new operand vector by adding
343 // all the original operands from |phi| except the unwanted ones.
344 for (uint32_t i = 0; i < phi->NumOperands();) {
345 if (i < 2) {
346 // The first two arguments are always preserved.
347 keep_operands.push_back(phi->GetOperand(i));
348 ++i;
349 continue;
350 }
351
352 // The remaining Phi arguments come in pairs. Index 'i' contains the
353 // variable id, index 'i + 1' is the originating block id.
354 assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
355 "malformed Phi arguments");
356
357 BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
358 if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
359 // If the incoming block is unreachable, remove both operands as this
360 // means that the |phi| has lost an incoming edge.
361 i += 2;
362 continue;
363 }
364
365 // In all other cases, the operand must be kept but may need to be changed.
366 uint32_t arg_id = phi->GetSingleWordOperand(i);
367 Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
368 BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
369 if (def_block &&
370 reachable_blocks.find(def_block) == reachable_blocks.end()) {
371 // If the current |phi| argument was defined in an unreachable block, it
372 // means that this |phi| argument is no longer defined. Replace it with
373 // |undef_id|.
374 if (!undef_id) {
375 type_id = arg_def_instr->type_id();
376 undef_id = Type2Undef(type_id);
377 }
378 keep_operands.push_back(
379 Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
380 } else {
381 // Otherwise, the argument comes from a reachable block or from no block
382 // at all (meaning that it was defined in the global section of the
383 // program). In both cases, keep the argument intact.
384 keep_operands.push_back(phi->GetOperand(i));
385 }
386
387 keep_operands.push_back(phi->GetOperand(i + 1));
388
389 i += 2;
390 }
391
392 context()->ForgetUses(phi);
393 phi->ReplaceOperands(keep_operands);
394 context()->AnalyzeUses(phi);
395 }
396
RemoveBlock(Function::iterator * bi)397 void MemPass::RemoveBlock(Function::iterator* bi) {
398 auto& rm_block = **bi;
399
400 // Remove instructions from the block.
401 rm_block.ForEachInst([&rm_block, this](Instruction* inst) {
402 // Note that we do not kill the block label instruction here. The label
403 // instruction is needed to identify the block, which is needed by the
404 // removal of phi operands.
405 if (inst != rm_block.GetLabelInst()) {
406 context()->KillInst(inst);
407 }
408 });
409
410 // Remove the label instruction last.
411 auto label = rm_block.GetLabelInst();
412 context()->KillInst(label);
413
414 *bi = bi->Erase();
415 }
416
RemoveUnreachableBlocks(Function * func)417 bool MemPass::RemoveUnreachableBlocks(Function* func) {
418 if (func->IsDeclaration()) return false;
419 bool modified = false;
420
421 // Mark reachable all blocks reachable from the function's entry block.
422 std::unordered_set<BasicBlock*> reachable_blocks;
423 std::unordered_set<BasicBlock*> visited_blocks;
424 std::queue<BasicBlock*> worklist;
425 reachable_blocks.insert(func->entry().get());
426
427 // Initially mark the function entry point as reachable.
428 worklist.push(func->entry().get());
429
430 auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
431 this](uint32_t label_id) {
432 auto successor = cfg()->block(label_id);
433 if (visited_blocks.count(successor) == 0) {
434 reachable_blocks.insert(successor);
435 worklist.push(successor);
436 visited_blocks.insert(successor);
437 }
438 };
439
440 // Transitively mark all blocks reachable from the entry as reachable.
441 while (!worklist.empty()) {
442 BasicBlock* block = worklist.front();
443 worklist.pop();
444
445 // All the successors of a live block are also live.
446 static_cast<const BasicBlock*>(block)->ForEachSuccessorLabel(
447 mark_reachable);
448
449 // All the Merge and ContinueTarget blocks of a live block are also live.
450 block->ForMergeAndContinueLabel(mark_reachable);
451 }
452
453 // Update operands of Phi nodes that reference unreachable blocks.
454 for (auto& block : *func) {
455 // If the block is about to be removed, don't bother updating its
456 // Phi instructions.
457 if (reachable_blocks.count(&block) == 0) {
458 continue;
459 }
460
461 // If the block is reachable and has Phi instructions, remove all
462 // operands from its Phi instructions that reference unreachable blocks.
463 // If the block has no Phi instructions, this is a no-op.
464 block.ForEachPhiInst([&reachable_blocks, this](Instruction* phi) {
465 RemovePhiOperands(phi, reachable_blocks);
466 });
467 }
468
469 // Erase unreachable blocks.
470 for (auto ebi = func->begin(); ebi != func->end();) {
471 if (reachable_blocks.count(&*ebi) == 0) {
472 RemoveBlock(&ebi);
473 modified = true;
474 } else {
475 ++ebi;
476 }
477 }
478
479 return modified;
480 }
481
CFGCleanup(Function * func)482 bool MemPass::CFGCleanup(Function* func) {
483 bool modified = false;
484 modified |= RemoveUnreachableBlocks(func);
485 return modified;
486 }
487
CollectTargetVars(Function * func)488 void MemPass::CollectTargetVars(Function* func) {
489 seen_target_vars_.clear();
490 seen_non_target_vars_.clear();
491 type2undefs_.clear();
492
493 // Collect target (and non-) variable sets. Remove variables with
494 // non-load/store refs from target variable set
495 for (auto& blk : *func) {
496 for (auto& inst : blk) {
497 switch (inst.opcode()) {
498 case spv::Op::OpStore:
499 case spv::Op::OpLoad: {
500 uint32_t varId;
501 (void)GetPtr(&inst, &varId);
502 if (!IsTargetVar(varId)) break;
503 if (HasOnlySupportedRefs(varId)) break;
504 seen_non_target_vars_.insert(varId);
505 seen_target_vars_.erase(varId);
506 } break;
507 default:
508 break;
509 }
510 }
511 }
512 }
513
514 } // namespace opt
515 } // namespace spvtools
516