1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #if defined(EIGEN_TEST_PART_7)
12
13 #ifndef EIGEN_NO_STATIC_ASSERT
14 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
15 #endif
16
17 // ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway:
18 // TODO do the same for MSVC?
19 #if defined(__clang__)
20 # if (__clang_major__ * 100 + __clang_minor__) >= 308
21 # pragma clang diagnostic ignored "-Wdouble-promotion"
22 # endif
23 #elif defined(__GNUC__)
24 // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this.
25 # pragma GCC diagnostic ignored "-Wdouble-promotion"
26 #endif
27
28 #endif
29
30
31
32 #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)
33
34 #ifndef EIGEN_DONT_VECTORIZE
35 #define EIGEN_DONT_VECTORIZE
36 #endif
37
38 #endif
39
40 static bool g_called;
41 #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }
42
43 #include "main.h"
44
45 using namespace std;
46
47 #define VERIFY_MIX_SCALAR(XPR,REF) \
48 g_called = false; \
49 VERIFY_IS_APPROX(XPR,REF); \
50 VERIFY( g_called && #XPR" not properly optimized");
51
52 template<int SizeAtCompileType>
raise_assertion(Index size=SizeAtCompileType)53 void raise_assertion(Index size = SizeAtCompileType)
54 {
55 // VERIFY_RAISES_ASSERT(mf+md); // does not even compile
56 Matrix<float, SizeAtCompileType, 1> vf; vf.setRandom(size);
57 Matrix<double, SizeAtCompileType, 1> vd; vd.setRandom(size);
58 VERIFY_RAISES_ASSERT(vf=vd);
59 VERIFY_RAISES_ASSERT(vf+=vd);
60 VERIFY_RAISES_ASSERT(vf-=vd);
61 VERIFY_RAISES_ASSERT(vd=vf);
62 VERIFY_RAISES_ASSERT(vd+=vf);
63 VERIFY_RAISES_ASSERT(vd-=vf);
64
65 // vd.asDiagonal() * mf; // does not even compile
66 // vcd.asDiagonal() * mf; // does not even compile
67
68 #if 0 // we get other compilation errors here than just static asserts
69 VERIFY_RAISES_ASSERT(vd.dot(vf));
70 #endif
71 }
72
73
mixingtypes(int size=SizeAtCompileType)74 template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
75 {
76 typedef std::complex<float> CF;
77 typedef std::complex<double> CD;
78 typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
79 typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
80 typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
81 typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
82 typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
83 typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
84 typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
85 typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
86
87 Mat_f mf = Mat_f::Random(size,size);
88 Mat_d md = mf.template cast<double>();
89 //Mat_d rd = md;
90 Mat_cf mcf = Mat_cf::Random(size,size);
91 Mat_cd mcd = mcf.template cast<complex<double> >();
92 Mat_cd rcd = mcd;
93 Vec_f vf = Vec_f::Random(size,1);
94 Vec_d vd = vf.template cast<double>();
95 Vec_cf vcf = Vec_cf::Random(size,1);
96 Vec_cd vcd = vcf.template cast<complex<double> >();
97 float sf = internal::random<float>();
98 double sd = internal::random<double>();
99 complex<float> scf = internal::random<complex<float> >();
100 complex<double> scd = internal::random<complex<double> >();
101
102 mf+mf;
103
104 float epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ());
105 double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ());
106
107 while(std::abs(sf )<epsf) sf = internal::random<float>();
108 while(std::abs(sd )<epsd) sd = internal::random<double>();
109 while(std::abs(scf)<epsf) scf = internal::random<CF>();
110 while(std::abs(scd)<epsd) scd = internal::random<CD>();
111
112 // check scalar products
113 VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf));
114 VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd);
115 VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf);
116 VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >());
117
118 VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2));
119 VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1));
120 VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2));
121 VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1));
122
123 // check scalar quotients
124 VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf));
125 VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf);
126 VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast<complex<float> >().array() / scf);
127 VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array());
128
129 // check scalar increment
130 VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf));
131 VERIFY_MIX_SCALAR(sd + vcd.array(), complex<double>(sd) + vcd.array());
132 VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast<complex<float> >().array() + scf);
133 VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array());
134
135 // check scalar subtractions
136 VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf));
137 VERIFY_MIX_SCALAR(sd - vcd.array(), complex<double>(sd) - vcd.array());
138 VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast<complex<float> >().array() - scf);
139 VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array());
140
141 // check scalar powers
142 VERIFY_MIX_SCALAR( pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex<float>(sf)) );
143 VERIFY_MIX_SCALAR( vcf.array().pow(sf) , Eigen::pow(vcf.array(), complex<float>(sf)) );
144 VERIFY_MIX_SCALAR( pow(sd, vcd.array()), Eigen::pow(complex<double>(sd), vcd.array()) );
145 VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
146 VERIFY_MIX_SCALAR( vf.array().pow(scf) , Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
147 VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) );
148
149 // check dot product
150 vf.dot(vf);
151 VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
152
153 // check diagonal product
154 VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
155 VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
156 VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
157 VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
158
159 // check inner product
160 VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
161
162 // check outer product
163 VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
164
165 // coeff wise product
166
167 VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
168
169 Mat_cd mcd2 = mcd;
170 VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
171
172 // check matrix-matrix products
173 VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
174 VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
175 VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
176 VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
177
178 VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
179 VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
180 VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
181 VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
182
183 VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
184 VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
185 VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
186 VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
187 VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
188 VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());
189
190 VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
191 VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
192 VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
193 VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
194 VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
195 VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());
196
197 VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
198 VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
199 VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
200 VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
201
202 VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval());
203 VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
204 VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf);
205 VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
206
207 VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
208 VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
209 VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
210 VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
211
212 VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval());
213 VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
214 VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd);
215 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
216
217 VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
218 VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
219 VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(), sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
220 VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
221 VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
222 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
223 VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
224 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());
225
226 // Not supported yet: trmm
227 // VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());
228 // VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>());
229 // VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(), sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>());
230 // VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());
231
232 // Not supported yet: symv
233 // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
234 // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
235 // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>());
236 // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
237
238 // Not supported yet: symm
239 // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
240 // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
241 // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
242 // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
243
244 rcd.setZero();
245 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
246 Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
247 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
248 Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
249 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
250 Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
251 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
252 Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
253
254
255 VERIFY_IS_APPROX( md.array() * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() );
256 VERIFY_IS_APPROX( mcd.array() * md.array(), mcd.array() * md.template cast<CD>().eval().array() );
257
258 VERIFY_IS_APPROX( md.array() + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() );
259 VERIFY_IS_APPROX( mcd.array() + md.array(), mcd.array() + md.template cast<CD>().eval().array() );
260
261 VERIFY_IS_APPROX( md.array() - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() );
262 VERIFY_IS_APPROX( mcd.array() - md.array(), mcd.array() - md.template cast<CD>().eval().array() );
263
264 if(mcd.array().abs().minCoeff()>epsd)
265 {
266 VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() );
267 }
268 if(md.array().abs().minCoeff()>epsd)
269 {
270 VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() );
271 }
272
273 if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd)
274 {
275 VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
276 VERIFY_IS_APPROX( mcd.array().pow(md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) );
277
278 VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
279 VERIFY_IS_APPROX( pow(mcd.array(),md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) );
280 }
281
282 rcd = mcd;
283 VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() );
284 rcd = mcd;
285 VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() );
286 rcd = mcd;
287 VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() );
288 rcd = mcd;
289 VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() );
290 rcd = mcd;
291 if(md.array().abs().minCoeff()>epsd)
292 {
293 VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() );
294 }
295
296 rcd = mcd;
297 VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval()));
298
299 VERIFY_IS_APPROX( rcd.noalias() = md*md, ((md*md).eval().template cast<CD>()) );
300 rcd = mcd;
301 VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) );
302 rcd = mcd;
303 VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) );
304
305 VERIFY_IS_APPROX( rcd.noalias() = mcd + md*md, mcd + ((md*md).eval().template cast<CD>()) );
306 rcd = mcd;
307 VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) );
308 rcd = mcd;
309 VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md, - ((md*md).eval().template cast<CD>()) );
310 }
311
EIGEN_DECLARE_TEST(mixingtypes)312 EIGEN_DECLARE_TEST(mixingtypes)
313 {
314 g_called = false; // Silence -Wunneeded-internal-declaration.
315 for(int i = 0; i < g_repeat; i++) {
316 CALL_SUBTEST_1(mixingtypes<3>());
317 CALL_SUBTEST_2(mixingtypes<4>());
318 CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
319
320 CALL_SUBTEST_4(mixingtypes<3>());
321 CALL_SUBTEST_5(mixingtypes<4>());
322 CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
323 CALL_SUBTEST_7(raise_assertion<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
324 }
325 CALL_SUBTEST_7(raise_assertion<0>());
326 CALL_SUBTEST_7(raise_assertion<3>());
327 CALL_SUBTEST_7(raise_assertion<4>());
328 CALL_SUBTEST_7(raise_assertion<Dynamic>(0));
329 }
330