• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #if defined(EIGEN_TEST_PART_7)
12 
13 #ifndef EIGEN_NO_STATIC_ASSERT
14 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
15 #endif
16 
17 // ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway:
18 // TODO do the same for MSVC?
19 #if defined(__clang__)
20 #  if (__clang_major__ * 100 + __clang_minor__) >= 308
21 #    pragma clang diagnostic ignored "-Wdouble-promotion"
22 #  endif
23 #elif defined(__GNUC__)
24   // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this.
25 #  pragma GCC diagnostic ignored "-Wdouble-promotion"
26 #endif
27 
28 #endif
29 
30 
31 
32 #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)
33 
34 #ifndef EIGEN_DONT_VECTORIZE
35 #define EIGEN_DONT_VECTORIZE
36 #endif
37 
38 #endif
39 
40 static bool g_called;
41 #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }
42 
43 #include "main.h"
44 
45 using namespace std;
46 
47 #define VERIFY_MIX_SCALAR(XPR,REF) \
48   g_called = false; \
49   VERIFY_IS_APPROX(XPR,REF); \
50   VERIFY( g_called && #XPR" not properly optimized");
51 
52 template<int SizeAtCompileType>
raise_assertion(Index size=SizeAtCompileType)53 void raise_assertion(Index size = SizeAtCompileType)
54 {
55   // VERIFY_RAISES_ASSERT(mf+md); // does not even compile
56   Matrix<float, SizeAtCompileType, 1> vf; vf.setRandom(size);
57   Matrix<double, SizeAtCompileType, 1> vd; vd.setRandom(size);
58   VERIFY_RAISES_ASSERT(vf=vd);
59   VERIFY_RAISES_ASSERT(vf+=vd);
60   VERIFY_RAISES_ASSERT(vf-=vd);
61   VERIFY_RAISES_ASSERT(vd=vf);
62   VERIFY_RAISES_ASSERT(vd+=vf);
63   VERIFY_RAISES_ASSERT(vd-=vf);
64 
65   //   vd.asDiagonal() * mf;    // does not even compile
66   //   vcd.asDiagonal() * mf;   // does not even compile
67 
68 #if 0 // we get other compilation errors here than just static asserts
69   VERIFY_RAISES_ASSERT(vd.dot(vf));
70 #endif
71 }
72 
73 
mixingtypes(int size=SizeAtCompileType)74 template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
75 {
76   typedef std::complex<float>   CF;
77   typedef std::complex<double>  CD;
78   typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
79   typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
80   typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
81   typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
82   typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
83   typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
84   typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
85   typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
86 
87   Mat_f mf    = Mat_f::Random(size,size);
88   Mat_d md    = mf.template cast<double>();
89   //Mat_d rd    = md;
90   Mat_cf mcf  = Mat_cf::Random(size,size);
91   Mat_cd mcd  = mcf.template cast<complex<double> >();
92   Mat_cd rcd = mcd;
93   Vec_f vf    = Vec_f::Random(size,1);
94   Vec_d vd    = vf.template cast<double>();
95   Vec_cf vcf  = Vec_cf::Random(size,1);
96   Vec_cd vcd  = vcf.template cast<complex<double> >();
97   float           sf  = internal::random<float>();
98   double          sd  = internal::random<double>();
99   complex<float>  scf = internal::random<complex<float> >();
100   complex<double> scd = internal::random<complex<double> >();
101 
102   mf+mf;
103 
104   float  epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ());
105   double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ());
106 
107   while(std::abs(sf )<epsf) sf  = internal::random<float>();
108   while(std::abs(sd )<epsd) sd  = internal::random<double>();
109   while(std::abs(scf)<epsf) scf = internal::random<CF>();
110   while(std::abs(scd)<epsd) scd = internal::random<CD>();
111 
112   // check scalar products
113   VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf));
114   VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd);
115   VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf);
116   VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >());
117 
118   VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2));
119   VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1));
120   VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2));
121   VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1));
122 
123   // check scalar quotients
124   VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf));
125   VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf);
126   VERIFY_MIX_SCALAR(vf.array()  / scf, vf.template cast<complex<float> >().array() / scf);
127   VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array());
128 
129   // check scalar increment
130   VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf));
131   VERIFY_MIX_SCALAR(sd  + vcd.array(), complex<double>(sd) + vcd.array());
132   VERIFY_MIX_SCALAR(vf.array()  + scf, vf.template cast<complex<float> >().array() + scf);
133   VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array());
134 
135   // check scalar subtractions
136   VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf));
137   VERIFY_MIX_SCALAR(sd  - vcd.array(), complex<double>(sd) - vcd.array());
138   VERIFY_MIX_SCALAR(vf.array()  - scf, vf.template cast<complex<float> >().array() - scf);
139   VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array());
140 
141   // check scalar powers
142   VERIFY_MIX_SCALAR( pow(vcf.array(), sf),        Eigen::pow(vcf.array(), complex<float>(sf)) );
143   VERIFY_MIX_SCALAR( vcf.array().pow(sf) ,        Eigen::pow(vcf.array(), complex<float>(sf)) );
144   VERIFY_MIX_SCALAR( pow(sd, vcd.array()),        Eigen::pow(complex<double>(sd), vcd.array()) );
145   VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
146   VERIFY_MIX_SCALAR( vf.array().pow(scf) ,        Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
147   VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) );
148 
149   // check dot product
150   vf.dot(vf);
151   VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
152 
153   // check diagonal product
154   VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
155   VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
156   VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
157   VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
158 
159   // check inner product
160   VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
161 
162   // check outer product
163   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
164 
165   // coeff wise product
166 
167   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
168 
169   Mat_cd mcd2 = mcd;
170   VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
171 
172   // check matrix-matrix products
173   VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
174   VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
175   VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
176   VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
177 
178   VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
179   VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
180   VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
181   VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
182 
183   VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
184   VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
185   VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
186   VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
187   VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
188   VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());
189 
190   VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
191   VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
192   VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
193   VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
194   VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
195   VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());
196 
197   VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
198   VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
199   VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
200   VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
201 
202   VERIFY_IS_APPROX(sf*vcf.adjoint()*mf,  sf*vcf.adjoint()*mf.template cast<CF>().eval());
203   VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
204   VERIFY_IS_APPROX(sf*vf.adjoint()*mcf,  sf*vf.adjoint().template cast<CF>().eval()*mcf);
205   VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
206 
207   VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
208   VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
209   VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
210   VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
211 
212   VERIFY_IS_APPROX(sd*vcd.adjoint()*md,  sd*vcd.adjoint()*md.template cast<CD>().eval());
213   VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
214   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd,  sd*vd.adjoint().template cast<CD>().eval()*mcd);
215   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
216 
217   VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
218   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
219   VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(),  sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
220   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
221   VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
222   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
223   VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
224   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());
225 
226   // Not supported yet: trmm
227 //   VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(),  sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());
228 //   VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>());
229 //   VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(),  sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>());
230 //   VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());
231 
232   // Not supported yet: symv
233 //   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
234 //   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
235 //   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>());
236 //   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
237 
238   // Not supported yet: symm
239 //   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
240 //   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
241 //   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
242 //   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
243 
244   rcd.setZero();
245   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
246                    Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
247   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
248                    Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
249   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
250                    Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
251   VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
252                    Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
253 
254 
255   VERIFY_IS_APPROX( md.array()  * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() );
256   VERIFY_IS_APPROX( mcd.array() * md.array(),  mcd.array() * md.template cast<CD>().eval().array() );
257 
258   VERIFY_IS_APPROX( md.array()  + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() );
259   VERIFY_IS_APPROX( mcd.array() + md.array(),  mcd.array() + md.template cast<CD>().eval().array() );
260 
261   VERIFY_IS_APPROX( md.array()  - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() );
262   VERIFY_IS_APPROX( mcd.array() - md.array(),  mcd.array() - md.template cast<CD>().eval().array() );
263 
264   if(mcd.array().abs().minCoeff()>epsd)
265   {
266     VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() );
267   }
268   if(md.array().abs().minCoeff()>epsd)
269   {
270     VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() );
271   }
272 
273   if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd)
274   {
275     VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
276     VERIFY_IS_APPROX( mcd.array().pow(md.array()),  mcd.array().pow(md.template cast<CD>().eval().array()) );
277 
278     VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
279     VERIFY_IS_APPROX( pow(mcd.array(),md.array()),  mcd.array().pow(md.template cast<CD>().eval().array()) );
280   }
281 
282   rcd = mcd;
283   VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() );
284   rcd = mcd;
285   VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() );
286   rcd = mcd;
287   VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() );
288   rcd = mcd;
289   VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() );
290   rcd = mcd;
291   if(md.array().abs().minCoeff()>epsd)
292   {
293     VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() );
294   }
295 
296   rcd = mcd;
297   VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval()));
298 
299   VERIFY_IS_APPROX( rcd.noalias()  = md*md,       ((md*md).eval().template cast<CD>()) );
300   rcd = mcd;
301   VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) );
302   rcd = mcd;
303   VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) );
304 
305   VERIFY_IS_APPROX( rcd.noalias()  = mcd + md*md,       mcd + ((md*md).eval().template cast<CD>()) );
306   rcd = mcd;
307   VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) );
308   rcd = mcd;
309   VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md,           - ((md*md).eval().template cast<CD>()) );
310 }
311 
EIGEN_DECLARE_TEST(mixingtypes)312 EIGEN_DECLARE_TEST(mixingtypes)
313 {
314   g_called = false; // Silence -Wunneeded-internal-declaration.
315   for(int i = 0; i < g_repeat; i++) {
316     CALL_SUBTEST_1(mixingtypes<3>());
317     CALL_SUBTEST_2(mixingtypes<4>());
318     CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
319 
320     CALL_SUBTEST_4(mixingtypes<3>());
321     CALL_SUBTEST_5(mixingtypes<4>());
322     CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
323     CALL_SUBTEST_7(raise_assertion<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
324   }
325   CALL_SUBTEST_7(raise_assertion<0>());
326   CALL_SUBTEST_7(raise_assertion<3>());
327   CALL_SUBTEST_7(raise_assertion<4>());
328   CALL_SUBTEST_7(raise_assertion<Dynamic>(0));
329 }
330