1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H 11 #define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H 12 13 14 namespace Eigen { 15 16 /** \internal 17 * 18 * \class TensorIntDiv 19 * \ingroup CXX11_Tensor_Module 20 * 21 * \brief Fast integer division by a constant. 22 * 23 * See the paper from Granlund and Montgomery for explanation. 24 * (at https://doi.org/10.1145/773473.178249) 25 * 26 * \sa Tensor 27 */ 28 29 namespace internal { 30 31 namespace { 32 33 // Note: result is undefined if val == 0 34 template <typename T> 35 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE count_leading_zeros(const T val)36 typename internal::enable_if<sizeof(T)==4,int>::type count_leading_zeros(const T val) 37 { 38 #ifdef EIGEN_GPU_COMPILE_PHASE 39 return __clz(val); 40 #elif defined(SYCL_DEVICE_ONLY) 41 return cl::sycl::clz(val); 42 #elif EIGEN_COMP_MSVC 43 unsigned long index; 44 _BitScanReverse(&index, val); 45 return 31 - index; 46 #else 47 EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE); 48 return __builtin_clz(static_cast<uint32_t>(val)); 49 #endif 50 } 51 52 template <typename T> 53 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE count_leading_zeros(const T val)54 typename internal::enable_if<sizeof(T)==8,int>::type count_leading_zeros(const T val) 55 { 56 #ifdef EIGEN_GPU_COMPILE_PHASE 57 return __clzll(val); 58 #elif defined(SYCL_DEVICE_ONLY) 59 return static_cast<int>(cl::sycl::clz(val)); 60 #elif EIGEN_COMP_MSVC && EIGEN_ARCH_x86_64 61 unsigned long index; 62 _BitScanReverse64(&index, val); 63 return 63 - index; 64 #elif EIGEN_COMP_MSVC 65 // MSVC's _BitScanReverse64 is not available for 32bits builds. 66 unsigned int lo = (unsigned int)(val&0xffffffff); 67 unsigned int hi = (unsigned int)((val>>32)&0xffffffff); 68 int n; 69 if(hi==0) 70 n = 32 + count_leading_zeros<unsigned int>(lo); 71 else 72 n = count_leading_zeros<unsigned int>(hi); 73 return n; 74 #else 75 EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE); 76 return __builtin_clzll(static_cast<uint64_t>(val)); 77 #endif 78 } 79 80 template <typename T> 81 struct UnsignedTraits { 82 typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type; 83 }; 84 85 template <typename T> 86 struct DividerTraits { 87 typedef typename UnsignedTraits<T>::type type; 88 static const int N = sizeof(T) * 8; 89 }; 90 91 template <typename T> muluh(const uint32_t a,const T b)92 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t muluh(const uint32_t a, const T b) { 93 #if defined(EIGEN_GPU_COMPILE_PHASE) 94 return __umulhi(a, b); 95 #elif defined(SYCL_DEVICE_ONLY) 96 return cl::sycl::mul_hi(a, static_cast<uint32_t>(b)); 97 #else 98 return (static_cast<uint64_t>(a) * b) >> 32; 99 #endif 100 } 101 102 template <typename T> muluh(const uint64_t a,const T b)103 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) { 104 #if defined(EIGEN_GPU_COMPILE_PHASE) 105 return __umul64hi(a, b); 106 #elif defined(SYCL_DEVICE_ONLY) 107 return cl::sycl::mul_hi(a, static_cast<uint64_t>(b)); 108 #elif EIGEN_HAS_BUILTIN_INT128 109 __uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b); 110 return static_cast<uint64_t>(v >> 64); 111 #else 112 return (TensorUInt128<static_val<0>, uint64_t>(a) * TensorUInt128<static_val<0>, uint64_t>(b)).upper(); 113 #endif 114 } 115 116 template <int N, typename T> 117 struct DividerHelper { computeMultiplierDividerHelper118 static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier(const int log_div, const T divider) { 119 EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE); 120 return static_cast<uint32_t>((static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1); 121 } 122 }; 123 124 template <typename T> 125 struct DividerHelper<64, T> { 126 static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) { 127 #if EIGEN_HAS_BUILTIN_INT128 && !defined(EIGEN_GPU_COMPILE_PHASE) && !defined(SYCL_DEVICE_ONLY) 128 return static_cast<uint64_t>((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1); 129 #else 130 const uint64_t shift = 1ULL << log_div; 131 TensorUInt128<uint64_t, uint64_t> result = TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) 132 - TensorUInt128<static_val<1>, static_val<0> >(1, 0) 133 + TensorUInt128<static_val<0>, static_val<1> >(1); 134 return static_cast<uint64_t>(result); 135 #endif 136 } 137 }; 138 } 139 140 141 template <typename T, bool div_gt_one = false> 142 struct TensorIntDivisor { 143 public: 144 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { 145 multiplier = 0; 146 shift1 = 0; 147 shift2 = 0; 148 } 149 150 // Must have 0 < divider < 2^31. This is relaxed to 151 // 0 < divider < 2^63 when using 64-bit indices on platforms that support 152 // the __uint128_t type. 153 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) { 154 const int N = DividerTraits<T>::N; 155 eigen_assert(static_cast<typename UnsignedTraits<T>::type>(divider) < NumTraits<UnsignedType>::highest()/2); 156 eigen_assert(divider > 0); 157 158 // fast ln2 159 const int leading_zeros = count_leading_zeros(static_cast<UnsignedType>(divider)); 160 int log_div = N - leading_zeros; 161 // if divider is a power of two then log_div is 1 more than it should be. 162 if ((static_cast<typename UnsignedTraits<T>::type>(1) << (log_div-1)) == static_cast<typename UnsignedTraits<T>::type>(divider)) 163 log_div--; 164 165 multiplier = DividerHelper<N, T>::computeMultiplier(log_div, divider); 166 shift1 = log_div > 1 ? 1 : log_div; 167 shift2 = log_div > 1 ? log_div-1 : 0; 168 } 169 170 // Must have 0 <= numerator. On platforms that don't support the __uint128_t 171 // type numerator should also be less than 2^32-1. 172 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const { 173 eigen_assert(static_cast<typename UnsignedTraits<T>::type>(numerator) < NumTraits<UnsignedType>::highest()/2); 174 //eigen_assert(numerator >= 0); // this is implicitly asserted by the line above 175 176 UnsignedType t1 = muluh(multiplier, numerator); 177 UnsignedType t = (static_cast<UnsignedType>(numerator) - t1) >> shift1; 178 return (t1 + t) >> shift2; 179 } 180 181 private: 182 typedef typename DividerTraits<T>::type UnsignedType; 183 UnsignedType multiplier; 184 int32_t shift1; 185 int32_t shift2; 186 }; 187 188 189 // Optimized version for signed 32 bit integers. 190 // Derived from Hacker's Delight. 191 // Only works for divisors strictly greater than one 192 template <> 193 class TensorIntDivisor<int32_t, true> { 194 public: 195 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { 196 magic = 0; 197 shift = 0; 198 } 199 // Must have 2 <= divider 200 EIGEN_DEVICE_FUNC TensorIntDivisor(int32_t divider) { 201 eigen_assert(divider >= 2); 202 calcMagic(divider); 203 } 204 205 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int32_t n) const { 206 #ifdef EIGEN_GPU_COMPILE_PHASE 207 return (__umulhi(magic, n) >> shift); 208 #elif defined(SYCL_DEVICE_ONLY) 209 return (cl::sycl::mul_hi(magic, static_cast<uint32_t>(n)) >> shift); 210 #else 211 uint64_t v = static_cast<uint64_t>(magic) * static_cast<uint64_t>(n); 212 return (static_cast<uint32_t>(v >> 32) >> shift); 213 #endif 214 } 215 216 private: 217 // Compute the magic numbers. See Hacker's Delight section 10 for an in 218 // depth explanation. 219 EIGEN_DEVICE_FUNC void calcMagic(int32_t d) { 220 const unsigned two31 = 0x80000000; // 2**31. 221 unsigned ad = d; 222 unsigned t = two31 + (ad >> 31); 223 unsigned anc = t - 1 - t%ad; // Absolute value of nc. 224 int p = 31; // Init. p. 225 unsigned q1 = two31/anc; // Init. q1 = 2**p/|nc|. 226 unsigned r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|). 227 unsigned q2 = two31/ad; // Init. q2 = 2**p/|d|. 228 unsigned r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|). 229 unsigned delta = 0; 230 do { 231 p = p + 1; 232 q1 = 2*q1; // Update q1 = 2**p/|nc|. 233 r1 = 2*r1; // Update r1 = rem(2**p, |nc|). 234 if (r1 >= anc) { // (Must be an unsigned 235 q1 = q1 + 1; // comparison here). 236 r1 = r1 - anc;} 237 q2 = 2*q2; // Update q2 = 2**p/|d|. 238 r2 = 2*r2; // Update r2 = rem(2**p, |d|). 239 if (r2 >= ad) { // (Must be an unsigned 240 q2 = q2 + 1; // comparison here). 241 r2 = r2 - ad;} 242 delta = ad - r2; 243 } while (q1 < delta || (q1 == delta && r1 == 0)); 244 245 magic = (unsigned)(q2 + 1); 246 shift = p - 32; 247 } 248 249 uint32_t magic; 250 int32_t shift; 251 }; 252 253 254 template <typename T, bool div_gt_one> 255 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor<T, div_gt_one>& divisor) { 256 return divisor.divide(numerator); 257 } 258 259 260 } // end namespace internal 261 } // end namespace Eigen 262 263 #endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H 264