• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# -*- coding: utf-8 -*-
2# Copyright (c) Meta Platforms, Inc. and affiliates.
3# All rights reserved.
4#
5# This source code is licensed under the BSD-style license found in the
6# LICENSE file in the root directory of this source tree.
7
8"""
9Template Tutorial
10=================
11
12**Author:** `FirstName LastName <https://github.com/username>`_
13
14.. grid:: 2
15
16    .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn
17
18      * Item 1
19      * Item 2
20      * Item 3
21
22    .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites
23
24      * PyTorch v2.0.0
25      * GPU ???
26      * Other items 3
27
28If you have a video, add it here like this:
29
30.. raw:: html
31
32   <div style="margin-top:10px; margin-bottom:10px;">
33     <iframe width="560" height="315" src="https://www.youtube.com/embed/IC0_FRiX-sw" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
34   </div>
35
36To test your tutorial locally, you can do one of the following:
37
38*  You can control specific files that generate the results by using
39   ``GALLERY_PATTERN`` environment variable. The GALLERY_PATTERN variable
40   respects regular expressions.
41   For example to run only ``neural_style_transfer_tutorial.py``,
42   use the following command:
43
44   .. code-block:: sh
45
46      GALLERY_PATTERN="neural_style_transfer_tutorial.py" make html
47
48   or
49
50   .. code-block:: sh
51
52      GALLERY_PATTERN="neural_style_transfer_tutorial.py" sphinx-build . _build
53
54* Make a copy of this repository and add only your
55  tutorial to the `beginner_source` directory removing all other tutorials.
56  Then run ``make html``.
57
58Verify that all outputs were generated correctly in the created HTML.
59"""
60
61#########################################################################
62# Overview
63# --------
64#
65# Describe Why is this topic important? Add Links to relevant research papers.
66#
67# This tutorial walks you through the process of....
68#
69# Steps
70# -----
71#
72# Example code (the output below is generated automatically):
73#
74
75import torch
76
77x = torch.rand(5, 3)
78print(x)
79
80######################################################################
81# (Optional) Additional Exercises
82# -------------------------------
83#
84# Add additional practice exercises for users to test their knowledge.
85# Example: `NLP from Scratch <https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html#exercises>`__.
86#
87
88######################################################################
89# Conclusion
90# ----------
91#
92
93# Summarize the steps and concepts covered. Highlight key takeaways.
94#
95# Further Reading
96# ---------------
97#
98# * Link1
99# * Link2
100