1// Copyright 2017, The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Package cmp determines equality of values. 6// 7// This package is intended to be a more powerful and safer alternative to 8// [reflect.DeepEqual] for comparing whether two values are semantically equal. 9// It is intended to only be used in tests, as performance is not a goal and 10// it may panic if it cannot compare the values. Its propensity towards 11// panicking means that its unsuitable for production environments where a 12// spurious panic may be fatal. 13// 14// The primary features of cmp are: 15// 16// - When the default behavior of equality does not suit the test's needs, 17// custom equality functions can override the equality operation. 18// For example, an equality function may report floats as equal so long as 19// they are within some tolerance of each other. 20// 21// - Types with an Equal method (e.g., [time.Time.Equal]) may use that method 22// to determine equality. This allows package authors to determine 23// the equality operation for the types that they define. 24// 25// - If no custom equality functions are used and no Equal method is defined, 26// equality is determined by recursively comparing the primitive kinds on 27// both values, much like [reflect.DeepEqual]. Unlike [reflect.DeepEqual], 28// unexported fields are not compared by default; they result in panics 29// unless suppressed by using an [Ignore] option 30// (see [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported]) 31// or explicitly compared using the [Exporter] option. 32package cmp 33 34import ( 35 "fmt" 36 "reflect" 37 "strings" 38 39 "github.com/google/go-cmp/cmp/internal/diff" 40 "github.com/google/go-cmp/cmp/internal/function" 41 "github.com/google/go-cmp/cmp/internal/value" 42) 43 44// TODO(≥go1.18): Use any instead of interface{}. 45 46// Equal reports whether x and y are equal by recursively applying the 47// following rules in the given order to x and y and all of their sub-values: 48// 49// - Let S be the set of all [Ignore], [Transformer], and [Comparer] options that 50// remain after applying all path filters, value filters, and type filters. 51// If at least one [Ignore] exists in S, then the comparison is ignored. 52// If the number of [Transformer] and [Comparer] options in S is non-zero, 53// then Equal panics because it is ambiguous which option to use. 54// If S contains a single [Transformer], then use that to transform 55// the current values and recursively call Equal on the output values. 56// If S contains a single [Comparer], then use that to compare the current values. 57// Otherwise, evaluation proceeds to the next rule. 58// 59// - If the values have an Equal method of the form "(T) Equal(T) bool" or 60// "(T) Equal(I) bool" where T is assignable to I, then use the result of 61// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and 62// evaluation proceeds to the next rule. 63// 64// - Lastly, try to compare x and y based on their basic kinds. 65// Simple kinds like booleans, integers, floats, complex numbers, strings, 66// and channels are compared using the equivalent of the == operator in Go. 67// Functions are only equal if they are both nil, otherwise they are unequal. 68// 69// Structs are equal if recursively calling Equal on all fields report equal. 70// If a struct contains unexported fields, Equal panics unless an [Ignore] option 71// (e.g., [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported]) ignores that field 72// or the [Exporter] option explicitly permits comparing the unexported field. 73// 74// Slices are equal if they are both nil or both non-nil, where recursively 75// calling Equal on all non-ignored slice or array elements report equal. 76// Empty non-nil slices and nil slices are not equal; to equate empty slices, 77// consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty]. 78// 79// Maps are equal if they are both nil or both non-nil, where recursively 80// calling Equal on all non-ignored map entries report equal. 81// Map keys are equal according to the == operator. 82// To use custom comparisons for map keys, consider using 83// [github.com/google/go-cmp/cmp/cmpopts.SortMaps]. 84// Empty non-nil maps and nil maps are not equal; to equate empty maps, 85// consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty]. 86// 87// Pointers and interfaces are equal if they are both nil or both non-nil, 88// where they have the same underlying concrete type and recursively 89// calling Equal on the underlying values reports equal. 90// 91// Before recursing into a pointer, slice element, or map, the current path 92// is checked to detect whether the address has already been visited. 93// If there is a cycle, then the pointed at values are considered equal 94// only if both addresses were previously visited in the same path step. 95func Equal(x, y interface{}, opts ...Option) bool { 96 s := newState(opts) 97 s.compareAny(rootStep(x, y)) 98 return s.result.Equal() 99} 100 101// Diff returns a human-readable report of the differences between two values: 102// y - x. It returns an empty string if and only if Equal returns true for the 103// same input values and options. 104// 105// The output is displayed as a literal in pseudo-Go syntax. 106// At the start of each line, a "-" prefix indicates an element removed from x, 107// a "+" prefix to indicates an element added from y, and the lack of a prefix 108// indicates an element common to both x and y. If possible, the output 109// uses fmt.Stringer.String or error.Error methods to produce more humanly 110// readable outputs. In such cases, the string is prefixed with either an 111// 's' or 'e' character, respectively, to indicate that the method was called. 112// 113// Do not depend on this output being stable. If you need the ability to 114// programmatically interpret the difference, consider using a custom Reporter. 115func Diff(x, y interface{}, opts ...Option) string { 116 s := newState(opts) 117 118 // Optimization: If there are no other reporters, we can optimize for the 119 // common case where the result is equal (and thus no reported difference). 120 // This avoids the expensive construction of a difference tree. 121 if len(s.reporters) == 0 { 122 s.compareAny(rootStep(x, y)) 123 if s.result.Equal() { 124 return "" 125 } 126 s.result = diff.Result{} // Reset results 127 } 128 129 r := new(defaultReporter) 130 s.reporters = append(s.reporters, reporter{r}) 131 s.compareAny(rootStep(x, y)) 132 d := r.String() 133 if (d == "") != s.result.Equal() { 134 panic("inconsistent difference and equality results") 135 } 136 return d 137} 138 139// rootStep constructs the first path step. If x and y have differing types, 140// then they are stored within an empty interface type. 141func rootStep(x, y interface{}) PathStep { 142 vx := reflect.ValueOf(x) 143 vy := reflect.ValueOf(y) 144 145 // If the inputs are different types, auto-wrap them in an empty interface 146 // so that they have the same parent type. 147 var t reflect.Type 148 if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() { 149 t = anyType 150 if vx.IsValid() { 151 vvx := reflect.New(t).Elem() 152 vvx.Set(vx) 153 vx = vvx 154 } 155 if vy.IsValid() { 156 vvy := reflect.New(t).Elem() 157 vvy.Set(vy) 158 vy = vvy 159 } 160 } else { 161 t = vx.Type() 162 } 163 164 return &pathStep{t, vx, vy} 165} 166 167type state struct { 168 // These fields represent the "comparison state". 169 // Calling statelessCompare must not result in observable changes to these. 170 result diff.Result // The current result of comparison 171 curPath Path // The current path in the value tree 172 curPtrs pointerPath // The current set of visited pointers 173 reporters []reporter // Optional reporters 174 175 // recChecker checks for infinite cycles applying the same set of 176 // transformers upon the output of itself. 177 recChecker recChecker 178 179 // dynChecker triggers pseudo-random checks for option correctness. 180 // It is safe for statelessCompare to mutate this value. 181 dynChecker dynChecker 182 183 // These fields, once set by processOption, will not change. 184 exporters []exporter // List of exporters for structs with unexported fields 185 opts Options // List of all fundamental and filter options 186} 187 188func newState(opts []Option) *state { 189 // Always ensure a validator option exists to validate the inputs. 190 s := &state{opts: Options{validator{}}} 191 s.curPtrs.Init() 192 s.processOption(Options(opts)) 193 return s 194} 195 196func (s *state) processOption(opt Option) { 197 switch opt := opt.(type) { 198 case nil: 199 case Options: 200 for _, o := range opt { 201 s.processOption(o) 202 } 203 case coreOption: 204 type filtered interface { 205 isFiltered() bool 206 } 207 if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() { 208 panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt)) 209 } 210 s.opts = append(s.opts, opt) 211 case exporter: 212 s.exporters = append(s.exporters, opt) 213 case reporter: 214 s.reporters = append(s.reporters, opt) 215 default: 216 panic(fmt.Sprintf("unknown option %T", opt)) 217 } 218} 219 220// statelessCompare compares two values and returns the result. 221// This function is stateless in that it does not alter the current result, 222// or output to any registered reporters. 223func (s *state) statelessCompare(step PathStep) diff.Result { 224 // We do not save and restore curPath and curPtrs because all of the 225 // compareX methods should properly push and pop from them. 226 // It is an implementation bug if the contents of the paths differ from 227 // when calling this function to when returning from it. 228 229 oldResult, oldReporters := s.result, s.reporters 230 s.result = diff.Result{} // Reset result 231 s.reporters = nil // Remove reporters to avoid spurious printouts 232 s.compareAny(step) 233 res := s.result 234 s.result, s.reporters = oldResult, oldReporters 235 return res 236} 237 238func (s *state) compareAny(step PathStep) { 239 // Update the path stack. 240 s.curPath.push(step) 241 defer s.curPath.pop() 242 for _, r := range s.reporters { 243 r.PushStep(step) 244 defer r.PopStep() 245 } 246 s.recChecker.Check(s.curPath) 247 248 // Cycle-detection for slice elements (see NOTE in compareSlice). 249 t := step.Type() 250 vx, vy := step.Values() 251 if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() { 252 px, py := vx.Addr(), vy.Addr() 253 if eq, visited := s.curPtrs.Push(px, py); visited { 254 s.report(eq, reportByCycle) 255 return 256 } 257 defer s.curPtrs.Pop(px, py) 258 } 259 260 // Rule 1: Check whether an option applies on this node in the value tree. 261 if s.tryOptions(t, vx, vy) { 262 return 263 } 264 265 // Rule 2: Check whether the type has a valid Equal method. 266 if s.tryMethod(t, vx, vy) { 267 return 268 } 269 270 // Rule 3: Compare based on the underlying kind. 271 switch t.Kind() { 272 case reflect.Bool: 273 s.report(vx.Bool() == vy.Bool(), 0) 274 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 275 s.report(vx.Int() == vy.Int(), 0) 276 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 277 s.report(vx.Uint() == vy.Uint(), 0) 278 case reflect.Float32, reflect.Float64: 279 s.report(vx.Float() == vy.Float(), 0) 280 case reflect.Complex64, reflect.Complex128: 281 s.report(vx.Complex() == vy.Complex(), 0) 282 case reflect.String: 283 s.report(vx.String() == vy.String(), 0) 284 case reflect.Chan, reflect.UnsafePointer: 285 s.report(vx.Pointer() == vy.Pointer(), 0) 286 case reflect.Func: 287 s.report(vx.IsNil() && vy.IsNil(), 0) 288 case reflect.Struct: 289 s.compareStruct(t, vx, vy) 290 case reflect.Slice, reflect.Array: 291 s.compareSlice(t, vx, vy) 292 case reflect.Map: 293 s.compareMap(t, vx, vy) 294 case reflect.Ptr: 295 s.comparePtr(t, vx, vy) 296 case reflect.Interface: 297 s.compareInterface(t, vx, vy) 298 default: 299 panic(fmt.Sprintf("%v kind not handled", t.Kind())) 300 } 301} 302 303func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool { 304 // Evaluate all filters and apply the remaining options. 305 if opt := s.opts.filter(s, t, vx, vy); opt != nil { 306 opt.apply(s, vx, vy) 307 return true 308 } 309 return false 310} 311 312func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool { 313 // Check if this type even has an Equal method. 314 m, ok := t.MethodByName("Equal") 315 if !ok || !function.IsType(m.Type, function.EqualAssignable) { 316 return false 317 } 318 319 eq := s.callTTBFunc(m.Func, vx, vy) 320 s.report(eq, reportByMethod) 321 return true 322} 323 324func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value { 325 if !s.dynChecker.Next() { 326 return f.Call([]reflect.Value{v})[0] 327 } 328 329 // Run the function twice and ensure that we get the same results back. 330 // We run in goroutines so that the race detector (if enabled) can detect 331 // unsafe mutations to the input. 332 c := make(chan reflect.Value) 333 go detectRaces(c, f, v) 334 got := <-c 335 want := f.Call([]reflect.Value{v})[0] 336 if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() { 337 // To avoid false-positives with non-reflexive equality operations, 338 // we sanity check whether a value is equal to itself. 339 if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() { 340 return want 341 } 342 panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f))) 343 } 344 return want 345} 346 347func (s *state) callTTBFunc(f, x, y reflect.Value) bool { 348 if !s.dynChecker.Next() { 349 return f.Call([]reflect.Value{x, y})[0].Bool() 350 } 351 352 // Swapping the input arguments is sufficient to check that 353 // f is symmetric and deterministic. 354 // We run in goroutines so that the race detector (if enabled) can detect 355 // unsafe mutations to the input. 356 c := make(chan reflect.Value) 357 go detectRaces(c, f, y, x) 358 got := <-c 359 want := f.Call([]reflect.Value{x, y})[0].Bool() 360 if !got.IsValid() || got.Bool() != want { 361 panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f))) 362 } 363 return want 364} 365 366func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) { 367 var ret reflect.Value 368 defer func() { 369 recover() // Ignore panics, let the other call to f panic instead 370 c <- ret 371 }() 372 ret = f.Call(vs)[0] 373} 374 375func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) { 376 var addr bool 377 var vax, vay reflect.Value // Addressable versions of vx and vy 378 379 var mayForce, mayForceInit bool 380 step := StructField{&structField{}} 381 for i := 0; i < t.NumField(); i++ { 382 step.typ = t.Field(i).Type 383 step.vx = vx.Field(i) 384 step.vy = vy.Field(i) 385 step.name = t.Field(i).Name 386 step.idx = i 387 step.unexported = !isExported(step.name) 388 if step.unexported { 389 if step.name == "_" { 390 continue 391 } 392 // Defer checking of unexported fields until later to give an 393 // Ignore a chance to ignore the field. 394 if !vax.IsValid() || !vay.IsValid() { 395 // For retrieveUnexportedField to work, the parent struct must 396 // be addressable. Create a new copy of the values if 397 // necessary to make them addressable. 398 addr = vx.CanAddr() || vy.CanAddr() 399 vax = makeAddressable(vx) 400 vay = makeAddressable(vy) 401 } 402 if !mayForceInit { 403 for _, xf := range s.exporters { 404 mayForce = mayForce || xf(t) 405 } 406 mayForceInit = true 407 } 408 step.mayForce = mayForce 409 step.paddr = addr 410 step.pvx = vax 411 step.pvy = vay 412 step.field = t.Field(i) 413 } 414 s.compareAny(step) 415 } 416} 417 418func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) { 419 isSlice := t.Kind() == reflect.Slice 420 if isSlice && (vx.IsNil() || vy.IsNil()) { 421 s.report(vx.IsNil() && vy.IsNil(), 0) 422 return 423 } 424 425 // NOTE: It is incorrect to call curPtrs.Push on the slice header pointer 426 // since slices represents a list of pointers, rather than a single pointer. 427 // The pointer checking logic must be handled on a per-element basis 428 // in compareAny. 429 // 430 // A slice header (see reflect.SliceHeader) in Go is a tuple of a starting 431 // pointer P, a length N, and a capacity C. Supposing each slice element has 432 // a memory size of M, then the slice is equivalent to the list of pointers: 433 // [P+i*M for i in range(N)] 434 // 435 // For example, v[:0] and v[:1] are slices with the same starting pointer, 436 // but they are clearly different values. Using the slice pointer alone 437 // violates the assumption that equal pointers implies equal values. 438 439 step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}} 440 withIndexes := func(ix, iy int) SliceIndex { 441 if ix >= 0 { 442 step.vx, step.xkey = vx.Index(ix), ix 443 } else { 444 step.vx, step.xkey = reflect.Value{}, -1 445 } 446 if iy >= 0 { 447 step.vy, step.ykey = vy.Index(iy), iy 448 } else { 449 step.vy, step.ykey = reflect.Value{}, -1 450 } 451 return step 452 } 453 454 // Ignore options are able to ignore missing elements in a slice. 455 // However, detecting these reliably requires an optimal differencing 456 // algorithm, for which diff.Difference is not. 457 // 458 // Instead, we first iterate through both slices to detect which elements 459 // would be ignored if standing alone. The index of non-discarded elements 460 // are stored in a separate slice, which diffing is then performed on. 461 var indexesX, indexesY []int 462 var ignoredX, ignoredY []bool 463 for ix := 0; ix < vx.Len(); ix++ { 464 ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0 465 if !ignored { 466 indexesX = append(indexesX, ix) 467 } 468 ignoredX = append(ignoredX, ignored) 469 } 470 for iy := 0; iy < vy.Len(); iy++ { 471 ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0 472 if !ignored { 473 indexesY = append(indexesY, iy) 474 } 475 ignoredY = append(ignoredY, ignored) 476 } 477 478 // Compute an edit-script for slices vx and vy (excluding ignored elements). 479 edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result { 480 return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy])) 481 }) 482 483 // Replay the ignore-scripts and the edit-script. 484 var ix, iy int 485 for ix < vx.Len() || iy < vy.Len() { 486 var e diff.EditType 487 switch { 488 case ix < len(ignoredX) && ignoredX[ix]: 489 e = diff.UniqueX 490 case iy < len(ignoredY) && ignoredY[iy]: 491 e = diff.UniqueY 492 default: 493 e, edits = edits[0], edits[1:] 494 } 495 switch e { 496 case diff.UniqueX: 497 s.compareAny(withIndexes(ix, -1)) 498 ix++ 499 case diff.UniqueY: 500 s.compareAny(withIndexes(-1, iy)) 501 iy++ 502 default: 503 s.compareAny(withIndexes(ix, iy)) 504 ix++ 505 iy++ 506 } 507 } 508} 509 510func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) { 511 if vx.IsNil() || vy.IsNil() { 512 s.report(vx.IsNil() && vy.IsNil(), 0) 513 return 514 } 515 516 // Cycle-detection for maps. 517 if eq, visited := s.curPtrs.Push(vx, vy); visited { 518 s.report(eq, reportByCycle) 519 return 520 } 521 defer s.curPtrs.Pop(vx, vy) 522 523 // We combine and sort the two map keys so that we can perform the 524 // comparisons in a deterministic order. 525 step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}} 526 for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) { 527 step.vx = vx.MapIndex(k) 528 step.vy = vy.MapIndex(k) 529 step.key = k 530 if !step.vx.IsValid() && !step.vy.IsValid() { 531 // It is possible for both vx and vy to be invalid if the 532 // key contained a NaN value in it. 533 // 534 // Even with the ability to retrieve NaN keys in Go 1.12, 535 // there still isn't a sensible way to compare the values since 536 // a NaN key may map to multiple unordered values. 537 // The most reasonable way to compare NaNs would be to compare the 538 // set of values. However, this is impossible to do efficiently 539 // since set equality is provably an O(n^2) operation given only 540 // an Equal function. If we had a Less function or Hash function, 541 // this could be done in O(n*log(n)) or O(n), respectively. 542 // 543 // Rather than adding complex logic to deal with NaNs, make it 544 // the user's responsibility to compare such obscure maps. 545 const help = "consider providing a Comparer to compare the map" 546 panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help)) 547 } 548 s.compareAny(step) 549 } 550} 551 552func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) { 553 if vx.IsNil() || vy.IsNil() { 554 s.report(vx.IsNil() && vy.IsNil(), 0) 555 return 556 } 557 558 // Cycle-detection for pointers. 559 if eq, visited := s.curPtrs.Push(vx, vy); visited { 560 s.report(eq, reportByCycle) 561 return 562 } 563 defer s.curPtrs.Pop(vx, vy) 564 565 vx, vy = vx.Elem(), vy.Elem() 566 s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}}) 567} 568 569func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) { 570 if vx.IsNil() || vy.IsNil() { 571 s.report(vx.IsNil() && vy.IsNil(), 0) 572 return 573 } 574 vx, vy = vx.Elem(), vy.Elem() 575 if vx.Type() != vy.Type() { 576 s.report(false, 0) 577 return 578 } 579 s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}}) 580} 581 582func (s *state) report(eq bool, rf resultFlags) { 583 if rf&reportByIgnore == 0 { 584 if eq { 585 s.result.NumSame++ 586 rf |= reportEqual 587 } else { 588 s.result.NumDiff++ 589 rf |= reportUnequal 590 } 591 } 592 for _, r := range s.reporters { 593 r.Report(Result{flags: rf}) 594 } 595} 596 597// recChecker tracks the state needed to periodically perform checks that 598// user provided transformers are not stuck in an infinitely recursive cycle. 599type recChecker struct{ next int } 600 601// Check scans the Path for any recursive transformers and panics when any 602// recursive transformers are detected. Note that the presence of a 603// recursive Transformer does not necessarily imply an infinite cycle. 604// As such, this check only activates after some minimal number of path steps. 605func (rc *recChecker) Check(p Path) { 606 const minLen = 1 << 16 607 if rc.next == 0 { 608 rc.next = minLen 609 } 610 if len(p) < rc.next { 611 return 612 } 613 rc.next <<= 1 614 615 // Check whether the same transformer has appeared at least twice. 616 var ss []string 617 m := map[Option]int{} 618 for _, ps := range p { 619 if t, ok := ps.(Transform); ok { 620 t := t.Option() 621 if m[t] == 1 { // Transformer was used exactly once before 622 tf := t.(*transformer).fnc.Type() 623 ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0))) 624 } 625 m[t]++ 626 } 627 } 628 if len(ss) > 0 { 629 const warning = "recursive set of Transformers detected" 630 const help = "consider using cmpopts.AcyclicTransformer" 631 set := strings.Join(ss, "\n\t") 632 panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help)) 633 } 634} 635 636// dynChecker tracks the state needed to periodically perform checks that 637// user provided functions are symmetric and deterministic. 638// The zero value is safe for immediate use. 639type dynChecker struct{ curr, next int } 640 641// Next increments the state and reports whether a check should be performed. 642// 643// Checks occur every Nth function call, where N is a triangular number: 644// 645// 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ... 646// 647// See https://en.wikipedia.org/wiki/Triangular_number 648// 649// This sequence ensures that the cost of checks drops significantly as 650// the number of functions calls grows larger. 651func (dc *dynChecker) Next() bool { 652 ok := dc.curr == dc.next 653 if ok { 654 dc.curr = 0 655 dc.next++ 656 } 657 dc.curr++ 658 return ok 659} 660 661// makeAddressable returns a value that is always addressable. 662// It returns the input verbatim if it is already addressable, 663// otherwise it creates a new value and returns an addressable copy. 664func makeAddressable(v reflect.Value) reflect.Value { 665 if v.CanAddr() { 666 return v 667 } 668 vc := reflect.New(v.Type()).Elem() 669 vc.Set(v) 670 return vc 671} 672