1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 2012-2015, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 *******************************************************************************
8 * collationkeys.cpp
9 *
10 * created on: 2012sep02
11 * created by: Markus W. Scherer
12 */
13
14 #include "unicode/utypes.h"
15
16 #if !UCONFIG_NO_COLLATION
17
18 #include "unicode/bytestream.h"
19 #include "collation.h"
20 #include "collationiterator.h"
21 #include "collationkeys.h"
22 #include "collationsettings.h"
23 #include "uassert.h"
24
25 U_NAMESPACE_BEGIN
26
~SortKeyByteSink()27 SortKeyByteSink::~SortKeyByteSink() {}
28
29 void
Append(const char * bytes,int32_t n)30 SortKeyByteSink::Append(const char *bytes, int32_t n) {
31 if (n <= 0 || bytes == nullptr) {
32 return;
33 }
34 if (ignore_ > 0) {
35 int32_t ignoreRest = ignore_ - n;
36 if (ignoreRest >= 0) {
37 ignore_ = ignoreRest;
38 return;
39 } else {
40 bytes += ignore_;
41 n = -ignoreRest;
42 ignore_ = 0;
43 }
44 }
45 int32_t length = appended_;
46 appended_ += n;
47 if ((buffer_ + length) == bytes) {
48 return; // the caller used GetAppendBuffer() and wrote the bytes already
49 }
50 int32_t available = capacity_ - length;
51 if (n <= available) {
52 uprv_memcpy(buffer_ + length, bytes, n);
53 } else {
54 AppendBeyondCapacity(bytes, n, length);
55 }
56 }
57
58 char *
GetAppendBuffer(int32_t min_capacity,int32_t desired_capacity_hint,char * scratch,int32_t scratch_capacity,int32_t * result_capacity)59 SortKeyByteSink::GetAppendBuffer(int32_t min_capacity,
60 int32_t desired_capacity_hint,
61 char *scratch,
62 int32_t scratch_capacity,
63 int32_t *result_capacity) {
64 if (min_capacity < 1 || scratch_capacity < min_capacity) {
65 *result_capacity = 0;
66 return nullptr;
67 }
68 if (ignore_ > 0) {
69 // Do not write ignored bytes right at the end of the buffer.
70 *result_capacity = scratch_capacity;
71 return scratch;
72 }
73 int32_t available = capacity_ - appended_;
74 if (available >= min_capacity) {
75 *result_capacity = available;
76 return buffer_ + appended_;
77 } else if (Resize(desired_capacity_hint, appended_)) {
78 *result_capacity = capacity_ - appended_;
79 return buffer_ + appended_;
80 } else {
81 *result_capacity = scratch_capacity;
82 return scratch;
83 }
84 }
85
86 namespace {
87
88 /**
89 * uint8_t byte buffer, similar to CharString but simpler.
90 */
91 class SortKeyLevel : public UMemory {
92 public:
SortKeyLevel()93 SortKeyLevel() : len(0), ok(true) {}
~SortKeyLevel()94 ~SortKeyLevel() {}
95
96 /** @return false if memory allocation failed */
isOk() const97 UBool isOk() const { return ok; }
isEmpty() const98 UBool isEmpty() const { return len == 0; }
length() const99 int32_t length() const { return len; }
data() const100 const uint8_t *data() const { return buffer.getAlias(); }
operator [](int32_t index) const101 uint8_t operator[](int32_t index) const { return buffer[index]; }
102
data()103 uint8_t *data() { return buffer.getAlias(); }
104
105 void appendByte(uint32_t b);
106 void appendWeight16(uint32_t w);
107 void appendWeight32(uint32_t w);
108 void appendReverseWeight16(uint32_t w);
109
110 /** Appends all but the last byte to the sink. The last byte should be the 01 terminator. */
appendTo(ByteSink & sink) const111 void appendTo(ByteSink &sink) const {
112 U_ASSERT(len > 0 && buffer[len - 1] == 1);
113 sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len - 1);
114 }
115
116 private:
117 MaybeStackArray<uint8_t, 40> buffer;
118 int32_t len;
119 UBool ok;
120
121 UBool ensureCapacity(int32_t appendCapacity);
122
123 SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class
124 SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class
125 };
126
appendByte(uint32_t b)127 void SortKeyLevel::appendByte(uint32_t b) {
128 if(len < buffer.getCapacity() || ensureCapacity(1)) {
129 buffer[len++] = static_cast<uint8_t>(b);
130 }
131 }
132
133 void
appendWeight16(uint32_t w)134 SortKeyLevel::appendWeight16(uint32_t w) {
135 U_ASSERT((w & 0xffff) != 0);
136 uint8_t b0 = static_cast<uint8_t>(w >> 8);
137 uint8_t b1 = static_cast<uint8_t>(w);
138 int32_t appendLength = (b1 == 0) ? 1 : 2;
139 if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
140 buffer[len++] = b0;
141 if(b1 != 0) {
142 buffer[len++] = b1;
143 }
144 }
145 }
146
147 void
appendWeight32(uint32_t w)148 SortKeyLevel::appendWeight32(uint32_t w) {
149 U_ASSERT(w != 0);
150 uint8_t bytes[4] = {
151 static_cast<uint8_t>(w >> 24),
152 static_cast<uint8_t>(w >> 16),
153 static_cast<uint8_t>(w >> 8),
154 static_cast<uint8_t>(w)
155 };
156 int32_t appendLength = (bytes[1] == 0) ? 1 : (bytes[2] == 0) ? 2 : (bytes[3] == 0) ? 3 : 4;
157 if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
158 buffer[len++] = bytes[0];
159 if(bytes[1] != 0) {
160 buffer[len++] = bytes[1];
161 if(bytes[2] != 0) {
162 buffer[len++] = bytes[2];
163 if(bytes[3] != 0) {
164 buffer[len++] = bytes[3];
165 }
166 }
167 }
168 }
169 }
170
171 void
appendReverseWeight16(uint32_t w)172 SortKeyLevel::appendReverseWeight16(uint32_t w) {
173 U_ASSERT((w & 0xffff) != 0);
174 uint8_t b0 = static_cast<uint8_t>(w >> 8);
175 uint8_t b1 = static_cast<uint8_t>(w);
176 int32_t appendLength = (b1 == 0) ? 1 : 2;
177 if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
178 if(b1 == 0) {
179 buffer[len++] = b0;
180 } else {
181 buffer[len] = b1;
182 buffer[len + 1] = b0;
183 len += 2;
184 }
185 }
186 }
187
ensureCapacity(int32_t appendCapacity)188 UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) {
189 if(!ok) {
190 return false;
191 }
192 int32_t newCapacity = 2 * buffer.getCapacity();
193 int32_t altCapacity = len + 2 * appendCapacity;
194 if (newCapacity < altCapacity) {
195 newCapacity = altCapacity;
196 }
197 if (newCapacity < 200) {
198 newCapacity = 200;
199 }
200 if(buffer.resize(newCapacity, len)==nullptr) {
201 return ok = false;
202 }
203 return true;
204 }
205
206 } // namespace
207
~LevelCallback()208 CollationKeys::LevelCallback::~LevelCallback() {}
209
210 UBool
needToWrite(Collation::Level)211 CollationKeys::LevelCallback::needToWrite(Collation::Level /*level*/) { return true; }
212
213 /**
214 * Map from collation strength (UColAttributeValue)
215 * to a mask of Collation::Level bits up to that strength,
216 * excluding the CASE_LEVEL which is independent of the strength,
217 * and excluding IDENTICAL_LEVEL which this function does not write.
218 */
219 static const uint32_t levelMasks[UCOL_STRENGTH_LIMIT] = {
220 2, // UCOL_PRIMARY -> PRIMARY_LEVEL
221 6, // UCOL_SECONDARY -> up to SECONDARY_LEVEL
222 0x16, // UCOL_TERTIARY -> up to TERTIARY_LEVEL
223 0x36, // UCOL_QUATERNARY -> up to QUATERNARY_LEVEL
224 0, 0, 0, 0,
225 0, 0, 0, 0,
226 0, 0, 0,
227 0x36 // UCOL_IDENTICAL -> up to QUATERNARY_LEVEL
228 };
229
230 void
writeSortKeyUpToQuaternary(CollationIterator & iter,const UBool * compressibleBytes,const CollationSettings & settings,SortKeyByteSink & sink,Collation::Level minLevel,LevelCallback & callback,UBool preflight,UErrorCode & errorCode)231 CollationKeys::writeSortKeyUpToQuaternary(CollationIterator &iter,
232 const UBool *compressibleBytes,
233 const CollationSettings &settings,
234 SortKeyByteSink &sink,
235 Collation::Level minLevel, LevelCallback &callback,
236 UBool preflight, UErrorCode &errorCode) {
237 if(U_FAILURE(errorCode)) { return; }
238
239 int32_t options = settings.options;
240 // Set of levels to process and write.
241 uint32_t levels = levelMasks[CollationSettings::getStrength(options)];
242 if((options & CollationSettings::CASE_LEVEL) != 0) {
243 levels |= Collation::CASE_LEVEL_FLAG;
244 }
245 // Minus the levels below minLevel.
246 levels &= ~((static_cast<uint32_t>(1) << minLevel) - 1);
247 if(levels == 0) { return; }
248
249 uint32_t variableTop;
250 if((options & CollationSettings::ALTERNATE_MASK) == 0) {
251 variableTop = 0;
252 } else {
253 // +1 so that we can use "<" and primary ignorables test out early.
254 variableTop = settings.variableTop + 1;
255 }
256
257 uint32_t tertiaryMask = CollationSettings::getTertiaryMask(options);
258
259 SortKeyLevel cases;
260 SortKeyLevel secondaries;
261 SortKeyLevel tertiaries;
262 SortKeyLevel quaternaries;
263
264 uint32_t prevReorderedPrimary = 0; // 0==no compression
265 int32_t commonCases = 0;
266 int32_t commonSecondaries = 0;
267 int32_t commonTertiaries = 0;
268 int32_t commonQuaternaries = 0;
269
270 uint32_t prevSecondary = 0;
271 int32_t secSegmentStart = 0;
272
273 for(;;) {
274 // No need to keep all CEs in the buffer when we write a sort key.
275 iter.clearCEsIfNoneRemaining();
276 int64_t ce = iter.nextCE(errorCode);
277 uint32_t p = static_cast<uint32_t>(ce >> 32);
278 if(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY) {
279 // Variable CE, shift it to quaternary level.
280 // Ignore all following primary ignorables, and shift further variable CEs.
281 if(commonQuaternaries != 0) {
282 --commonQuaternaries;
283 while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
284 quaternaries.appendByte(QUAT_COMMON_MIDDLE);
285 commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
286 }
287 // Shifted primary weights are lower than the common weight.
288 quaternaries.appendByte(QUAT_COMMON_LOW + commonQuaternaries);
289 commonQuaternaries = 0;
290 }
291 do {
292 if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
293 if(settings.hasReordering()) {
294 p = settings.reorder(p);
295 }
296 if((p >> 24) >= QUAT_SHIFTED_LIMIT_BYTE) {
297 // Prevent shifted primary lead bytes from
298 // overlapping with the common compression range.
299 quaternaries.appendByte(QUAT_SHIFTED_LIMIT_BYTE);
300 }
301 quaternaries.appendWeight32(p);
302 }
303 do {
304 ce = iter.nextCE(errorCode);
305 p = static_cast<uint32_t>(ce >> 32);
306 } while(p == 0);
307 } while(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY);
308 }
309 // ce could be primary ignorable, or NO_CE, or the merge separator,
310 // or a regular primary CE, but it is not variable.
311 // If ce==NO_CE, then write nothing for the primary level but
312 // terminate compression on all levels and then exit the loop.
313 if(p > Collation::NO_CE_PRIMARY && (levels & Collation::PRIMARY_LEVEL_FLAG) != 0) {
314 // Test the un-reordered primary for compressibility.
315 UBool isCompressible = compressibleBytes[p >> 24];
316 if(settings.hasReordering()) {
317 p = settings.reorder(p);
318 }
319 uint32_t p1 = p >> 24;
320 if(!isCompressible || p1 != (prevReorderedPrimary >> 24)) {
321 if(prevReorderedPrimary != 0) {
322 if(p < prevReorderedPrimary) {
323 // No primary compression terminator
324 // at the end of the level or merged segment.
325 if(p1 > Collation::MERGE_SEPARATOR_BYTE) {
326 sink.Append(Collation::PRIMARY_COMPRESSION_LOW_BYTE);
327 }
328 } else {
329 sink.Append(Collation::PRIMARY_COMPRESSION_HIGH_BYTE);
330 }
331 }
332 sink.Append(p1);
333 if(isCompressible) {
334 prevReorderedPrimary = p;
335 } else {
336 prevReorderedPrimary = 0;
337 }
338 }
339 char p2 = static_cast<char>(p >> 16);
340 if(p2 != 0) {
341 char buffer[3] = {p2, static_cast<char>(p >> 8), static_cast<char>(p)};
342 sink.Append(buffer, (buffer[1] == 0) ? 1 : (buffer[2] == 0) ? 2 : 3);
343 }
344 // Optimization for internalNextSortKeyPart():
345 // When the primary level overflows we can stop because we need not
346 // calculate (preflight) the whole sort key length.
347 if(!preflight && sink.Overflowed()) {
348 if(U_SUCCESS(errorCode) && !sink.IsOk()) {
349 errorCode = U_MEMORY_ALLOCATION_ERROR;
350 }
351 return;
352 }
353 }
354
355 uint32_t lower32 = static_cast<uint32_t>(ce);
356 if(lower32 == 0) { continue; } // completely ignorable, no secondary/case/tertiary/quaternary
357
358 if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
359 uint32_t s = lower32 >> 16;
360 if(s == 0) {
361 // secondary ignorable
362 } else if(s == Collation::COMMON_WEIGHT16 &&
363 ((options & CollationSettings::BACKWARD_SECONDARY) == 0 ||
364 p != Collation::MERGE_SEPARATOR_PRIMARY)) {
365 // s is a common secondary weight, and
366 // backwards-secondary is off or the ce is not the merge separator.
367 ++commonSecondaries;
368 } else if((options & CollationSettings::BACKWARD_SECONDARY) == 0) {
369 if(commonSecondaries != 0) {
370 --commonSecondaries;
371 while(commonSecondaries >= SEC_COMMON_MAX_COUNT) {
372 secondaries.appendByte(SEC_COMMON_MIDDLE);
373 commonSecondaries -= SEC_COMMON_MAX_COUNT;
374 }
375 uint32_t b;
376 if(s < Collation::COMMON_WEIGHT16) {
377 b = SEC_COMMON_LOW + commonSecondaries;
378 } else {
379 b = SEC_COMMON_HIGH - commonSecondaries;
380 }
381 secondaries.appendByte(b);
382 commonSecondaries = 0;
383 }
384 secondaries.appendWeight16(s);
385 } else {
386 if(commonSecondaries != 0) {
387 --commonSecondaries;
388 // Append reverse weights. The level will be re-reversed later.
389 int32_t remainder = commonSecondaries % SEC_COMMON_MAX_COUNT;
390 uint32_t b;
391 if(prevSecondary < Collation::COMMON_WEIGHT16) {
392 b = SEC_COMMON_LOW + remainder;
393 } else {
394 b = SEC_COMMON_HIGH - remainder;
395 }
396 secondaries.appendByte(b);
397 commonSecondaries -= remainder;
398 // commonSecondaries is now a multiple of SEC_COMMON_MAX_COUNT.
399 while(commonSecondaries > 0) { // same as >= SEC_COMMON_MAX_COUNT
400 secondaries.appendByte(SEC_COMMON_MIDDLE);
401 commonSecondaries -= SEC_COMMON_MAX_COUNT;
402 }
403 // commonSecondaries == 0
404 }
405 if(0 < p && p <= Collation::MERGE_SEPARATOR_PRIMARY) {
406 // The backwards secondary level compares secondary weights backwards
407 // within segments separated by the merge separator (U+FFFE).
408 uint8_t *secs = secondaries.data();
409 int32_t last = secondaries.length() - 1;
410 if(secSegmentStart < last) {
411 uint8_t *q = secs + secSegmentStart;
412 uint8_t *r = secs + last;
413 do {
414 uint8_t b = *q;
415 *q++ = *r;
416 *r-- = b;
417 } while(q < r);
418 }
419 secondaries.appendByte(p == Collation::NO_CE_PRIMARY ?
420 Collation::LEVEL_SEPARATOR_BYTE : Collation::MERGE_SEPARATOR_BYTE);
421 prevSecondary = 0;
422 secSegmentStart = secondaries.length();
423 } else {
424 secondaries.appendReverseWeight16(s);
425 prevSecondary = s;
426 }
427 }
428 }
429
430 if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
431 if((CollationSettings::getStrength(options) == UCOL_PRIMARY) ?
432 p == 0 : lower32 <= 0xffff) {
433 // Primary+caseLevel: Ignore case level weights of primary ignorables.
434 // Otherwise: Ignore case level weights of secondary ignorables.
435 // For details see the comments in the CollationCompare class.
436 } else {
437 uint32_t c = (lower32 >> 8) & 0xff; // case bits & tertiary lead byte
438 U_ASSERT((c & 0xc0) != 0xc0);
439 if((c & 0xc0) == 0 && c > Collation::LEVEL_SEPARATOR_BYTE) {
440 ++commonCases;
441 } else {
442 if((options & CollationSettings::UPPER_FIRST) == 0) {
443 // lowerFirst: Compress common weights to nibbles 1..7..13, mixed=14, upper=15.
444 // If there are only common (=lowest) weights in the whole level,
445 // then we need not write anything.
446 // Level length differences are handled already on the next-higher level.
447 if(commonCases != 0 &&
448 (c > Collation::LEVEL_SEPARATOR_BYTE || !cases.isEmpty())) {
449 --commonCases;
450 while(commonCases >= CASE_LOWER_FIRST_COMMON_MAX_COUNT) {
451 cases.appendByte(CASE_LOWER_FIRST_COMMON_MIDDLE << 4);
452 commonCases -= CASE_LOWER_FIRST_COMMON_MAX_COUNT;
453 }
454 uint32_t b;
455 if(c <= Collation::LEVEL_SEPARATOR_BYTE) {
456 b = CASE_LOWER_FIRST_COMMON_LOW + commonCases;
457 } else {
458 b = CASE_LOWER_FIRST_COMMON_HIGH - commonCases;
459 }
460 cases.appendByte(b << 4);
461 commonCases = 0;
462 }
463 if(c > Collation::LEVEL_SEPARATOR_BYTE) {
464 c = (CASE_LOWER_FIRST_COMMON_HIGH + (c >> 6)) << 4; // 14 or 15
465 }
466 } else {
467 // upperFirst: Compress common weights to nibbles 3..15, mixed=2, upper=1.
468 // The compressed common case weights only go up from the "low" value
469 // because with upperFirst the common weight is the highest one.
470 if(commonCases != 0) {
471 --commonCases;
472 while(commonCases >= CASE_UPPER_FIRST_COMMON_MAX_COUNT) {
473 cases.appendByte(CASE_UPPER_FIRST_COMMON_LOW << 4);
474 commonCases -= CASE_UPPER_FIRST_COMMON_MAX_COUNT;
475 }
476 cases.appendByte((CASE_UPPER_FIRST_COMMON_LOW + commonCases) << 4);
477 commonCases = 0;
478 }
479 if(c > Collation::LEVEL_SEPARATOR_BYTE) {
480 c = (CASE_UPPER_FIRST_COMMON_LOW - (c >> 6)) << 4; // 2 or 1
481 }
482 }
483 // c is a separator byte 01,
484 // or a left-shifted nibble 0x10, 0x20, ... 0xf0.
485 cases.appendByte(c);
486 }
487 }
488 }
489
490 if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
491 uint32_t t = lower32 & tertiaryMask;
492 U_ASSERT((lower32 & 0xc000) != 0xc000);
493 if(t == Collation::COMMON_WEIGHT16) {
494 ++commonTertiaries;
495 } else if((tertiaryMask & 0x8000) == 0) {
496 // Tertiary weights without case bits.
497 // Move lead bytes 06..3F to C6..FF for a large common-weight range.
498 if(commonTertiaries != 0) {
499 --commonTertiaries;
500 while(commonTertiaries >= TER_ONLY_COMMON_MAX_COUNT) {
501 tertiaries.appendByte(TER_ONLY_COMMON_MIDDLE);
502 commonTertiaries -= TER_ONLY_COMMON_MAX_COUNT;
503 }
504 uint32_t b;
505 if(t < Collation::COMMON_WEIGHT16) {
506 b = TER_ONLY_COMMON_LOW + commonTertiaries;
507 } else {
508 b = TER_ONLY_COMMON_HIGH - commonTertiaries;
509 }
510 tertiaries.appendByte(b);
511 commonTertiaries = 0;
512 }
513 if(t > Collation::COMMON_WEIGHT16) { t += 0xc000; }
514 tertiaries.appendWeight16(t);
515 } else if((options & CollationSettings::UPPER_FIRST) == 0) {
516 // Tertiary weights with caseFirst=lowerFirst.
517 // Move lead bytes 06..BF to 46..FF for the common-weight range.
518 if(commonTertiaries != 0) {
519 --commonTertiaries;
520 while(commonTertiaries >= TER_LOWER_FIRST_COMMON_MAX_COUNT) {
521 tertiaries.appendByte(TER_LOWER_FIRST_COMMON_MIDDLE);
522 commonTertiaries -= TER_LOWER_FIRST_COMMON_MAX_COUNT;
523 }
524 uint32_t b;
525 if(t < Collation::COMMON_WEIGHT16) {
526 b = TER_LOWER_FIRST_COMMON_LOW + commonTertiaries;
527 } else {
528 b = TER_LOWER_FIRST_COMMON_HIGH - commonTertiaries;
529 }
530 tertiaries.appendByte(b);
531 commonTertiaries = 0;
532 }
533 if(t > Collation::COMMON_WEIGHT16) { t += 0x4000; }
534 tertiaries.appendWeight16(t);
535 } else {
536 // Tertiary weights with caseFirst=upperFirst.
537 // Do not change the artificial uppercase weight of a tertiary CE (0.0.ut),
538 // to keep tertiary CEs well-formed.
539 // Their case+tertiary weights must be greater than those of
540 // primary and secondary CEs.
541 //
542 // Separator 01 -> 01 (unchanged)
543 // Lowercase 02..04 -> 82..84 (includes uncased)
544 // Common weight 05 -> 85..C5 (common-weight compression range)
545 // Lowercase 06..3F -> C6..FF
546 // Mixed case 42..7F -> 42..7F
547 // Uppercase 82..BF -> 02..3F
548 // Tertiary CE 86..BF -> C6..FF
549 if(t <= Collation::NO_CE_WEIGHT16) {
550 // Keep separators unchanged.
551 } else if(lower32 > 0xffff) {
552 // Invert case bits of primary & secondary CEs.
553 t ^= 0xc000;
554 if(t < (TER_UPPER_FIRST_COMMON_HIGH << 8)) {
555 t -= 0x4000;
556 }
557 } else {
558 // Keep uppercase bits of tertiary CEs.
559 U_ASSERT(0x8600 <= t && t <= 0xbfff);
560 t += 0x4000;
561 }
562 if(commonTertiaries != 0) {
563 --commonTertiaries;
564 while(commonTertiaries >= TER_UPPER_FIRST_COMMON_MAX_COUNT) {
565 tertiaries.appendByte(TER_UPPER_FIRST_COMMON_MIDDLE);
566 commonTertiaries -= TER_UPPER_FIRST_COMMON_MAX_COUNT;
567 }
568 uint32_t b;
569 if(t < (TER_UPPER_FIRST_COMMON_LOW << 8)) {
570 b = TER_UPPER_FIRST_COMMON_LOW + commonTertiaries;
571 } else {
572 b = TER_UPPER_FIRST_COMMON_HIGH - commonTertiaries;
573 }
574 tertiaries.appendByte(b);
575 commonTertiaries = 0;
576 }
577 tertiaries.appendWeight16(t);
578 }
579 }
580
581 if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
582 uint32_t q = lower32 & 0xffff;
583 if((q & 0xc0) == 0 && q > Collation::NO_CE_WEIGHT16) {
584 ++commonQuaternaries;
585 } else if(q == Collation::NO_CE_WEIGHT16 &&
586 (options & CollationSettings::ALTERNATE_MASK) == 0 &&
587 quaternaries.isEmpty()) {
588 // If alternate=non-ignorable and there are only common quaternary weights,
589 // then we need not write anything.
590 // The only weights greater than the merge separator and less than the common weight
591 // are shifted primary weights, which are not generated for alternate=non-ignorable.
592 // There are also exactly as many quaternary weights as tertiary weights,
593 // so level length differences are handled already on tertiary level.
594 // Any above-common quaternary weight will compare greater regardless.
595 quaternaries.appendByte(Collation::LEVEL_SEPARATOR_BYTE);
596 } else {
597 if(q == Collation::NO_CE_WEIGHT16) {
598 q = Collation::LEVEL_SEPARATOR_BYTE;
599 } else {
600 q = 0xfc + ((q >> 6) & 3);
601 }
602 if(commonQuaternaries != 0) {
603 --commonQuaternaries;
604 while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
605 quaternaries.appendByte(QUAT_COMMON_MIDDLE);
606 commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
607 }
608 uint32_t b;
609 if(q < QUAT_COMMON_LOW) {
610 b = QUAT_COMMON_LOW + commonQuaternaries;
611 } else {
612 b = QUAT_COMMON_HIGH - commonQuaternaries;
613 }
614 quaternaries.appendByte(b);
615 commonQuaternaries = 0;
616 }
617 quaternaries.appendByte(q);
618 }
619 }
620
621 if((lower32 >> 24) == Collation::LEVEL_SEPARATOR_BYTE) { break; } // ce == NO_CE
622 }
623
624 if(U_FAILURE(errorCode)) { return; }
625
626 // Append the beyond-primary levels.
627 UBool ok = true;
628 if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
629 if(!callback.needToWrite(Collation::SECONDARY_LEVEL)) { return; }
630 ok &= secondaries.isOk();
631 sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
632 secondaries.appendTo(sink);
633 }
634
635 if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
636 if(!callback.needToWrite(Collation::CASE_LEVEL)) { return; }
637 ok &= cases.isOk();
638 sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
639 // Write pairs of nibbles as bytes, except separator bytes as themselves.
640 int32_t length = cases.length() - 1; // Ignore the trailing NO_CE.
641 uint8_t b = 0;
642 for(int32_t i = 0; i < length; ++i) {
643 uint8_t c = cases[i];
644 U_ASSERT((c & 0xf) == 0 && c != 0);
645 if(b == 0) {
646 b = c;
647 } else {
648 sink.Append(b | (c >> 4));
649 b = 0;
650 }
651 }
652 if(b != 0) {
653 sink.Append(b);
654 }
655 }
656
657 if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
658 if(!callback.needToWrite(Collation::TERTIARY_LEVEL)) { return; }
659 ok &= tertiaries.isOk();
660 sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
661 tertiaries.appendTo(sink);
662 }
663
664 if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
665 if(!callback.needToWrite(Collation::QUATERNARY_LEVEL)) { return; }
666 ok &= quaternaries.isOk();
667 sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
668 quaternaries.appendTo(sink);
669 }
670
671 if(!ok || !sink.IsOk()) {
672 errorCode = U_MEMORY_ALLOCATION_ERROR;
673 }
674 }
675
676 U_NAMESPACE_END
677
678 #endif // !UCONFIG_NO_COLLATION
679