• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2000-2003, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 *
11 * File writejava.c
12 *
13 * Modification History:
14 *
15 *   Date        Name        Description
16 *   01/11/02    Ram        Creation.
17 *******************************************************************************
18 */
19 #include <stdbool.h>
20 #include "rle.h"
21 /**
22  * The ESCAPE character is used during run-length encoding.  It signals
23  * a run of identical chars.
24  */
25 static const uint16_t ESCAPE = 0xA5A5;
26 
27 /**
28  * The ESCAPE_BYTE character is used during run-length encoding.  It signals
29  * a run of identical bytes.
30  */
31 static const uint8_t ESCAPE_BYTE = (uint8_t)0xA5;
32 
33 /**
34  * Append a byte to the given StringBuffer, packing two bytes into each
35  * character.  The state parameter maintains intermediary data between
36  * calls.
37  * @param state A two-element array, with state[0] == 0 if this is the
38  * first byte of a pair, or state[0] != 0 if this is the second byte
39  * of a pair, in which case state[1] is the first byte.
40  */
41 static uint16_t*
appendEncodedByte(uint16_t * buffer,uint16_t * buffLimit,uint8_t value,uint8_t state[],UErrorCode * status)42 appendEncodedByte(uint16_t* buffer, uint16_t* buffLimit, uint8_t value, uint8_t state[],UErrorCode* status) {
43     if(!status || U_FAILURE(*status)){
44         return NULL;
45     }
46     if (state[0] != 0) {
47         uint16_t c = (uint16_t) ((state[1] << 8) | (((int32_t) value) & 0xFF));
48         if(buffer < buffLimit){
49             *buffer++ = c;
50         }else{
51             *status = U_BUFFER_OVERFLOW_ERROR;
52         }
53         state[0] = 0;
54         return buffer;
55     }
56     else {
57         state[0] = 1;
58         state[1] = value;
59         return buffer;
60     }
61 }
62 /**
63  * Encode a run, possibly a degenerate run (of < 4 values).
64  * @param length The length of the run; must be > 0 && <= 0xFF.
65  */
66 static uint16_t*
encodeRunByte(uint16_t * buffer,uint16_t * bufLimit,uint8_t value,int32_t length,uint8_t state[],UErrorCode * status)67 encodeRunByte(uint16_t* buffer,uint16_t* bufLimit, uint8_t value, int32_t length, uint8_t state[], UErrorCode* status) {
68     if(!status || U_FAILURE(*status)){
69         return NULL;
70     }
71     if (length < 4) {
72         int32_t j=0;
73         for (; j<length; ++j) {
74             if (value == ESCAPE_BYTE) {
75                 buffer = appendEncodedByte(buffer,bufLimit, ESCAPE_BYTE, state,status);
76             }
77             buffer = appendEncodedByte(buffer,bufLimit, value, state, status);
78         }
79     }
80     else {
81         if (length == ESCAPE_BYTE) {
82             if (value == ESCAPE_BYTE){
83                buffer =  appendEncodedByte(buffer, bufLimit,ESCAPE_BYTE, state,status);
84             }
85             buffer = appendEncodedByte(buffer,bufLimit, value, state, status);
86             --length;
87         }
88         buffer = appendEncodedByte(buffer,bufLimit, ESCAPE_BYTE, state,status);
89         buffer = appendEncodedByte(buffer,bufLimit, (char)length, state, status);
90         buffer = appendEncodedByte(buffer,bufLimit, value, state, status); /* Don't need to escape this value*/
91     }
92     return buffer;
93 }
94 
95 #define APPEND( buffer, bufLimit, value, status) UPRV_BLOCK_MACRO_BEGIN { \
96     if(buffer<bufLimit){                    \
97         *buffer++=(value);                  \
98     }else{                                  \
99         *status = U_BUFFER_OVERFLOW_ERROR;  \
100     }                                       \
101 } UPRV_BLOCK_MACRO_END
102 
103 /**
104  * Encode a run, possibly a degenerate run (of < 4 values).
105  * @param length The length of the run; must be > 0 && <= 0xFFFF.
106  */
107 static uint16_t*
encodeRunShort(uint16_t * buffer,uint16_t * bufLimit,uint16_t value,int32_t length,UErrorCode * status)108 encodeRunShort(uint16_t* buffer,uint16_t* bufLimit, uint16_t value, int32_t length,UErrorCode* status) {
109     if (length < 4) {
110         int j=0;
111         for (; j<length; ++j) {
112             if (value == (int32_t) ESCAPE){
113                 APPEND(buffer,bufLimit,ESCAPE, status);
114 
115             }
116             APPEND(buffer,bufLimit,value,status);
117         }
118     }
119     else {
120         if (length == (int32_t) ESCAPE) {
121             if (value == (int32_t) ESCAPE){
122                 APPEND(buffer,bufLimit,ESCAPE,status);
123 
124             }
125             APPEND(buffer,bufLimit,value,status);
126             --length;
127         }
128         APPEND(buffer,bufLimit,ESCAPE,status);
129         APPEND(buffer,bufLimit,(uint16_t) length,status);
130         APPEND(buffer,bufLimit,(uint16_t)value, status); /* Don't need to escape this value */
131     }
132     return buffer;
133 }
134 
135 /**
136  * Construct a string representing a char array.  Use run-length encoding.
137  * A character represents itself, unless it is the ESCAPE character.  Then
138  * the following notations are possible:
139  *   ESCAPE ESCAPE   ESCAPE literal
140  *   ESCAPE n c      n instances of character c
141  * Since an encoded run occupies 3 characters, we only encode runs of 4 or
142  * more characters.  Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF.
143  * If we encounter a run where n == ESCAPE, we represent this as:
144  *   c ESCAPE n-1 c
145  * The ESCAPE value is chosen so as not to collide with commonly
146  * seen values.
147  */
148 int32_t
usArrayToRLEString(const uint16_t * src,int32_t srcLen,uint16_t * buffer,int32_t bufLen,UErrorCode * status)149 usArrayToRLEString(const uint16_t* src,int32_t srcLen,uint16_t* buffer, int32_t bufLen,UErrorCode* status) {
150     uint16_t* bufLimit =  buffer+bufLen;
151     uint16_t* saveBuffer = buffer;
152     if(buffer < bufLimit){
153         *buffer++ =  (uint16_t)(srcLen>>16);
154         if(buffer<bufLimit){
155             uint16_t runValue = src[0];
156             int32_t runLength = 1;
157             int i=1;
158             *buffer++ = (uint16_t) srcLen;
159 
160             for (; i<srcLen; ++i) {
161                 uint16_t s = src[i];
162                 if (s == runValue && runLength < 0xFFFF){
163                     ++runLength;
164                 }else {
165                     buffer = encodeRunShort(buffer, bufLimit, runValue, runLength, status);
166                     runValue = s;
167                     runLength = 1;
168                 }
169             }
170             buffer = encodeRunShort(buffer, bufLimit, runValue, runLength, status);
171         }else{
172             *status = U_BUFFER_OVERFLOW_ERROR;
173         }
174     }else{
175         *status = U_BUFFER_OVERFLOW_ERROR;
176     }
177     return (int32_t)(buffer - saveBuffer);
178 }
179 
180 /**
181  * Construct a string representing a byte array.  Use run-length encoding.
182  * Two bytes are packed into a single char, with a single extra zero byte at
183  * the end if needed.  A byte represents itself, unless it is the
184  * ESCAPE_BYTE.  Then the following notations are possible:
185  *   ESCAPE_BYTE ESCAPE_BYTE   ESCAPE_BYTE literal
186  *   ESCAPE_BYTE n b           n instances of byte b
187  * Since an encoded run occupies 3 bytes, we only encode runs of 4 or
188  * more bytes.  Thus we have n > 0 and n != ESCAPE_BYTE and n <= 0xFF.
189  * If we encounter a run where n == ESCAPE_BYTE, we represent this as:
190  *   b ESCAPE_BYTE n-1 b
191  * The ESCAPE_BYTE value is chosen so as not to collide with commonly
192  * seen values.
193  */
194 int32_t
byteArrayToRLEString(const uint8_t * src,int32_t srcLen,uint16_t * buffer,int32_t bufLen,UErrorCode * status)195 byteArrayToRLEString(const uint8_t* src,int32_t srcLen, uint16_t* buffer,int32_t bufLen, UErrorCode* status) {
196     const uint16_t* saveBuf = buffer;
197     uint16_t* bufLimit =  buffer+bufLen;
198     if(buffer < bufLimit){
199         *buffer++ = ((uint16_t) (srcLen >> 16));
200 
201         if(buffer<bufLimit){
202             uint8_t runValue = src[0];
203             int runLength = 1;
204             uint8_t state[2]= {0};
205             int i=1;
206             *buffer++=((uint16_t) srcLen);
207             for (; i<srcLen; ++i) {
208                 uint8_t b = src[i];
209                 if (b == runValue && runLength < 0xFF){
210                     ++runLength;
211                 }
212                 else {
213                     buffer = encodeRunByte(buffer, bufLimit,runValue, runLength, state,status);
214                     runValue = b;
215                     runLength = 1;
216                 }
217             }
218             buffer = encodeRunByte(buffer,bufLimit, runValue, runLength, state, status);
219 
220             /* We must save the final byte, if there is one, by padding
221              * an extra zero.
222              */
223             if (state[0] != 0) {
224                 buffer = appendEncodedByte(buffer,bufLimit, 0, state ,status);
225             }
226         }else{
227             *status = U_BUFFER_OVERFLOW_ERROR;
228         }
229     }else{
230         *status = U_BUFFER_OVERFLOW_ERROR;
231     }
232     return (int32_t) (buffer - saveBuf);
233 }
234 
235 
236 /**
237  * Construct an array of shorts from a run-length encoded string.
238  */
239 int32_t
rleStringToUCharArray(uint16_t * src,int32_t srcLen,uint16_t * target,int32_t tgtLen,UErrorCode * status)240 rleStringToUCharArray(uint16_t* src, int32_t srcLen, uint16_t* target, int32_t tgtLen, UErrorCode* status) {
241     int32_t length = 0;
242     int32_t ai = 0;
243     int i=2;
244 
245     if(!status || U_FAILURE(*status)){
246         return 0;
247     }
248     /* the source is null terminated */
249     if(srcLen == -1){
250         srcLen = u_strlen(src);
251     }
252     if(srcLen <= 2){
253         return 2;
254     }
255     length = (((int32_t) src[0]) << 16) | ((int32_t) src[1]);
256 
257     if(target == NULL){
258         return length;
259     }
260     if(tgtLen < length){
261         *status = U_BUFFER_OVERFLOW_ERROR;
262         return length;
263     }
264 
265     for (; i<srcLen; ++i) {
266         uint16_t c = src[i];
267         if (c == ESCAPE) {
268             c = src[++i];
269             if (c == ESCAPE) {
270                 target[ai++] = c;
271             } else {
272                 int32_t runLength = (int32_t) c;
273                 uint16_t runValue = src[++i];
274                 int j=0;
275                 for (; j<runLength; ++j) {
276                     target[ai++] = runValue;
277                 }
278             }
279         }
280         else {
281             target[ai++] = c;
282         }
283     }
284 
285     if (ai != length){
286         *status = U_INTERNAL_PROGRAM_ERROR;
287     }
288 
289     return length;
290 }
291 
292 /**
293  * Construct an array of bytes from a run-length encoded string.
294  */
295 int32_t
rleStringToByteArray(uint16_t * src,int32_t srcLen,uint8_t * target,int32_t tgtLen,UErrorCode * status)296 rleStringToByteArray(uint16_t* src, int32_t srcLen, uint8_t* target, int32_t tgtLen, UErrorCode* status) {
297 
298     int32_t length = 0;
299     UBool nextChar = true;
300     uint16_t c = 0;
301     int32_t node = 0;
302     int32_t runLength = 0;
303     int32_t i = 2;
304     int32_t ai=0;
305 
306     if(!status || U_FAILURE(*status)){
307         return 0;
308     }
309     /* the source is null terminated */
310     if(srcLen == -1){
311         srcLen = u_strlen(src);
312     }
313     if(srcLen <= 2){
314         return 2;
315     }
316     length = (((int32_t) src[0]) << 16) | ((int32_t) src[1]);
317 
318     if(target == NULL){
319         return length;
320     }
321     if(tgtLen < length){
322         *status = U_BUFFER_OVERFLOW_ERROR;
323         return length;
324     }
325 
326     for (; ai<tgtLen; ) {
327        /* This part of the loop places the next byte into the local
328         * variable 'b' each time through the loop.  It keeps the
329         * current character in 'c' and uses the boolean 'nextChar'
330         * to see if we've taken both bytes out of 'c' yet.
331         */
332         uint8_t b;
333         if (nextChar) {
334             c = src[i++];
335             b = (uint8_t) (c >> 8);
336             nextChar = false;
337         }
338         else {
339             b = (uint8_t) (c & 0xFF);
340             nextChar = true;
341         }
342 
343        /* This part of the loop is a tiny state machine which handles
344         * the parsing of the run-length encoding.  This would be simpler
345         * if we could look ahead, but we can't, so we use 'node' to
346         * move between three nodes in the state machine.
347         */
348         switch (node) {
349         case 0:
350             /* Normal idle node */
351             if (b == ESCAPE_BYTE) {
352                 node = 1;
353             }
354             else {
355                 target[ai++] = b;
356             }
357             break;
358         case 1:
359            /* We have seen one ESCAPE_BYTE; we expect either a second
360             * one, or a run length and value.
361             */
362             if (b == ESCAPE_BYTE) {
363                 target[ai++] = ESCAPE_BYTE;
364                 node = 0;
365             }
366             else {
367                 runLength = b;
368                 node = 2;
369             }
370             break;
371         case 2:
372             {
373                 int j=0;
374                /* We have seen an ESCAPE_BYTE and length byte.  We interpret
375                 * the next byte as the value to be repeated.
376                 */
377                 for (; j<runLength; ++j){
378                     if(ai<tgtLen){
379                         target[ai++] = b;
380                     }else{
381                         *status = U_BUFFER_OVERFLOW_ERROR;
382                         return ai;
383                     }
384                 }
385                 node = 0;
386                 break;
387             }
388         }
389     }
390 
391     if (node != 0){
392         *status = U_INTERNAL_PROGRAM_ERROR;
393         /*("Bad run-length encoded byte array")*/
394         return 0;
395     }
396 
397 
398     if (i != srcLen){
399         /*("Excess data in RLE byte array string");*/
400         *status = U_INTERNAL_PROGRAM_ERROR;
401         return ai;
402     }
403 
404     return ai;
405 }
406 
407