• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5 
6 /*
7 ** Leap second handling from Bradley White.
8 ** POSIX-style TZ environment variable handling from Guy Harris.
9 */
10 
11 /*LINTLIBRARY*/
12 
13 #include <stdbool.h>
14 
15 #include "private.h"
16 #include "tzfile.h"
17 #include "fcntl.h"
18 
19 #ifndef TZ_ABBR_MAX_LEN
20 #define TZ_ABBR_MAX_LEN	16
21 #endif /* !defined TZ_ABBR_MAX_LEN */
22 
23 #ifndef TZ_ABBR_CHAR_SET
24 #define TZ_ABBR_CHAR_SET \
25 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
26 #endif /* !defined TZ_ABBR_CHAR_SET */
27 
28 #ifndef TZ_ABBR_ERR_CHAR
29 #define TZ_ABBR_ERR_CHAR	'_'
30 #endif /* !defined TZ_ABBR_ERR_CHAR */
31 
32 /*
33 ** SunOS 4.1.1 headers lack O_BINARY.
34 */
35 
36 #ifdef O_BINARY
37 #define OPEN_MODE	(O_RDONLY | O_BINARY)
38 #endif /* defined O_BINARY */
39 #ifndef O_BINARY
40 #define OPEN_MODE	O_RDONLY
41 #endif /* !defined O_BINARY */
42 
43 #ifndef WILDABBR
44 /*
45 ** Someone might make incorrect use of a time zone abbreviation:
46 **	1.	They might reference tzname[0] before calling tzset (explicitly
47 **		or implicitly).
48 **	2.	They might reference tzname[1] before calling tzset (explicitly
49 **		or implicitly).
50 **	3.	They might reference tzname[1] after setting to a time zone
51 **		in which Daylight Saving Time is never observed.
52 **	4.	They might reference tzname[0] after setting to a time zone
53 **		in which Standard Time is never observed.
54 **	5.	They might reference tm.TM_ZONE after calling offtime.
55 ** What's best to do in the above cases is open to debate;
56 ** for now, we just set things up so that in any of the five cases
57 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
58 ** string "tzname[0] used before set", and similarly for the other cases.
59 ** And another: initialize tzname[0] to "ERA", with an explanation in the
60 ** manual page of what this "time zone abbreviation" means (doing this so
61 ** that tzname[0] has the "normal" length of three characters).
62 */
63 #define WILDABBR	"   "
64 #endif /* !defined WILDABBR */
65 
66 static const char	wildabbr[] = WILDABBR;
67 
68 static const char	gmt[] = "GMT";
69 
70 /*
71 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
72 ** We default to US rules as of 1999-08-17.
73 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
74 ** implementation dependent; for historical reasons, US rules are a
75 ** common default.
76 */
77 #ifndef TZDEFRULESTRING
78 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
79 #endif /* !defined TZDEFDST */
80 
81 struct ttinfo {				/* time type information */
82 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
83 	int		tt_isdst;	/* used to set tm_isdst */
84 	int		tt_abbrind;	/* abbreviation list index */
85 	int		tt_ttisstd;	/* true if transition is std time */
86 	int		tt_ttisgmt;	/* true if transition is UT */
87 };
88 
89 struct lsinfo {				/* leap second information */
90 	time_t		ls_trans;	/* transition time */
91 	int_fast64_t	ls_corr;	/* correction to apply */
92 };
93 
94 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
95 
96 #ifdef TZNAME_MAX
97 #define MY_TZNAME_MAX	TZNAME_MAX
98 #endif /* defined TZNAME_MAX */
99 #ifndef TZNAME_MAX
100 #define MY_TZNAME_MAX	255
101 #endif /* !defined TZNAME_MAX */
102 
103 struct state {
104 	int		leapcnt;
105 	int		timecnt;
106 	int		typecnt;
107 	int		charcnt;
108 	int		goback;
109 	int		goahead;
110 	time_t		ats[TZ_MAX_TIMES];
111 	unsigned char	types[TZ_MAX_TIMES];
112 	struct ttinfo	ttis[TZ_MAX_TYPES];
113 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
114 				(2 * (MY_TZNAME_MAX + 1)))];
115 	struct lsinfo	lsis[TZ_MAX_LEAPS];
116 	int		defaulttype; /* for early times or if no transitions */
117 };
118 
119 struct rule {
120 	int		r_type;		/* type of rule--see below */
121 	int		r_day;		/* day number of rule */
122 	int		r_week;		/* week number of rule */
123 	int		r_mon;		/* month number of rule */
124 	int_fast32_t	r_time;		/* transition time of rule */
125 };
126 
127 #define JULIAN_DAY		0	/* Jn - Julian day */
128 #define DAY_OF_YEAR		1	/* n - day of year */
129 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
130 
131 /*
132 ** Prototypes for static functions.
133 */
134 
135 static int_fast32_t	detzcode(const char * codep);
136 static int_fast64_t	detzcode64(const char * codep);
137 static int		differ_by_repeat(time_t t1, time_t t0);
138 static const char *	getzname(const char * strp) ATTRIBUTE_PURE;
139 static const char *	getqzname(const char * strp, const int delim)
140   ATTRIBUTE_PURE;
141 static const char *	getnum(const char * strp, int * nump, int min,
142 				int max);
143 static const char *	getsecs(const char * strp, int_fast32_t * secsp);
144 static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
145 static const char *	getrule(const char * strp, struct rule * rulep);
146 static void		gmtload(struct state * sp);
147 static struct tm *	gmtsub(const time_t * timep, int_fast32_t offset,
148 				struct tm * tmp);
149 static struct tm *	localsub(const time_t * timep, int_fast32_t offset,
150 				struct tm * tmp);
151 static int		increment_overflow(int * number, int delta);
152 static int		leaps_thru_end_of(int y) ATTRIBUTE_PURE;
153 static int		increment_overflow32(int_fast32_t * number, int delta);
154 static int		increment_overflow_time(time_t *t, int_fast32_t delta);
155 static int		normalize_overflow32(int_fast32_t * tensptr,
156 				int * unitsptr, int base);
157 static int		normalize_overflow(int * tensptr, int * unitsptr,
158 				int base);
159 static void		settzname(void);
160 static time_t		time1(struct tm * tmp,
161 				struct tm * (*funcp)(const time_t *,
162 				int_fast32_t, struct tm *),
163 				int_fast32_t offset);
164 static time_t		time2(struct tm *tmp,
165 				struct tm * (*funcp)(const time_t *,
166 				int_fast32_t, struct tm*),
167 				int_fast32_t offset, int * okayp);
168 static time_t		time2sub(struct tm *tmp,
169 				struct tm * (*funcp)(const time_t *,
170 				int_fast32_t, struct tm*),
171 				int_fast32_t offset, int * okayp, int do_norm_secs);
172 static struct tm *	timesub(const time_t * timep, int_fast32_t offset,
173 				const struct state * sp, struct tm * tmp);
174 static int		tmcomp(const struct tm * atmp,
175 				const struct tm * btmp);
176 static int_fast32_t	transtime(int year, const struct rule * rulep,
177 				  int_fast32_t offset)
178   ATTRIBUTE_PURE;
179 static int		typesequiv(const struct state * sp, int a, int b);
180 static int		tzload(const char * name, struct state * sp,
181 				int doextend);
182 static int		tzparse(const char * name, struct state * sp,
183 				int lastditch);
184 
185 #ifdef ALL_STATE
186 static struct state *	lclptr;
187 static struct state *	gmtptr;
188 #endif /* defined ALL_STATE */
189 
190 #ifndef ALL_STATE
191 static struct state	lclmem;
192 static struct state	gmtmem;
193 #define lclptr		(&lclmem)
194 #define gmtptr		(&gmtmem)
195 #endif /* State Farm */
196 
197 #ifndef TZ_STRLEN_MAX
198 #define TZ_STRLEN_MAX 255
199 #endif /* !defined TZ_STRLEN_MAX */
200 
201 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
202 static int		lcl_is_set;
203 static int		gmt_is_set;
204 
205 char *			tzname[2] = {
206 	(char *) wildabbr,
207 	(char *) wildabbr
208 };
209 
210 /*
211 ** Section 4.12.3 of X3.159-1989 requires that
212 **	Except for the strftime function, these functions [asctime,
213 **	ctime, gmtime, localtime] return values in one of two static
214 **	objects: a broken-down time structure and an array of char.
215 ** Thanks to Paul Eggert for noting this.
216 */
217 
218 static struct tm	tm;
219 
220 #ifdef USG_COMPAT
221 long			timezone = 0;
222 int			daylight = 0;
223 #endif /* defined USG_COMPAT */
224 
225 #ifdef ALTZONE
226 long			altzone = 0;
227 #endif /* defined ALTZONE */
228 
229 static int_fast32_t
detzcode(const char * const codep)230 detzcode(const char *const codep)
231 {
232 	register int_fast32_t	result;
233 	register int		i;
234 
235 	result = (codep[0] & 0x80) ? -1 : 0;
236 	for (i = 0; i < 4; ++i)
237 		result = (result << 8) | (codep[i] & 0xff);
238 	return result;
239 }
240 
241 static int_fast64_t
detzcode64(const char * const codep)242 detzcode64(const char *const codep)
243 {
244 	register int_fast64_t result;
245 	register int	i;
246 
247 	result = (codep[0] & 0x80) ? -1 : 0;
248 	for (i = 0; i < 8; ++i)
249 		result = (result << 8) | (codep[i] & 0xff);
250 	return result;
251 }
252 
253 static void
settzname(void)254 settzname(void)
255 {
256 	register struct state * const	sp = lclptr;
257 	register int			i;
258 
259 	tzname[0] = tzname[1] = (char *) wildabbr;
260 #ifdef USG_COMPAT
261 	daylight = 0;
262 	timezone = 0;
263 #endif /* defined USG_COMPAT */
264 #ifdef ALTZONE
265 	altzone = 0;
266 #endif /* defined ALTZONE */
267 	if (sp == NULL) {
268 		tzname[0] = tzname[1] = (char *) gmt;
269 		return;
270 	}
271 	/*
272 	** And to get the latest zone names into tzname. . .
273 	*/
274 	for (i = 0; i < sp->typecnt; ++i) {
275 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
276 
277 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
278 	}
279 	for (i = 0; i < sp->timecnt; ++i) {
280 		register const struct ttinfo * const	ttisp =
281 							&sp->ttis[
282 								sp->types[i]];
283 
284 		tzname[ttisp->tt_isdst] =
285 			&sp->chars[ttisp->tt_abbrind];
286 #ifdef USG_COMPAT
287 		if (ttisp->tt_isdst)
288 			daylight = 1;
289 		if (!ttisp->tt_isdst)
290 			timezone = -(ttisp->tt_gmtoff);
291 #endif /* defined USG_COMPAT */
292 #ifdef ALTZONE
293 		if (ttisp->tt_isdst)
294 			altzone = -(ttisp->tt_gmtoff);
295 #endif /* defined ALTZONE */
296 	}
297 	/*
298 	** Finally, scrub the abbreviations.
299 	** First, replace bogus characters.
300 	*/
301 	for (i = 0; i < sp->charcnt; ++i)
302 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
303 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
304 	/*
305 	** Second, truncate long abbreviations.
306 	*/
307 	for (i = 0; i < sp->typecnt; ++i) {
308 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
309 		register char *				cp = &sp->chars[ttisp->tt_abbrind];
310 
311 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
312 			strcmp(cp, GRANDPARENTED) != 0)
313 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
314 	}
315 }
316 
317 static int
differ_by_repeat(const time_t t1,const time_t t0)318 differ_by_repeat(const time_t t1, const time_t t0)
319 {
320 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
321 		return 0;
322 	return t1 - t0 == SECSPERREPEAT;
323 }
324 
325 static int
tzload(register const char * name,register struct state * const sp,register const int doextend)326 tzload(register const char *name, register struct state *const sp,
327        register const int doextend)
328 {
329 	register const char *		p;
330 	register int			i;
331 	register int			fid;
332 	register int			stored;
333 	register int			nread;
334 	typedef union {
335 		struct tzhead	tzhead;
336 		char		buf[2 * sizeof(struct tzhead) +
337 					2 * sizeof *sp +
338 					4 * TZ_MAX_TIMES];
339 	} u_t;
340 #ifdef ALL_STATE
341 	register u_t * const		up = malloc(sizeof *up);
342 #else /* !defined ALL_STATE */
343 	u_t				u;
344 	register u_t * const		up = &u;
345 #endif /* !defined ALL_STATE */
346 
347 	sp->goback = sp->goahead = false;
348 
349 	if (up == NULL)
350 		return -1;
351 
352 	if (name == NULL && (name = TZDEFAULT) == NULL)
353 		goto oops;
354 	{
355 		register int	doaccess;
356 		/*
357 		** Section 4.9.1 of the C standard says that
358 		** "FILENAME_MAX expands to an integral constant expression
359 		** that is the size needed for an array of char large enough
360 		** to hold the longest file name string that the implementation
361 		** guarantees can be opened."
362 		*/
363 		char		fullname[FILENAME_MAX + 1];
364 
365 		if (name[0] == ':')
366 			++name;
367 		doaccess = name[0] == '/';
368 		if (!doaccess) {
369 			if ((p = TZDIR) == NULL)
370 				goto oops;
371 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
372 				goto oops;
373 			(void) strcpy(fullname, p);
374 			(void) strcat(fullname, "/");
375 			(void) strcat(fullname, name);
376 			/*
377 			** Set doaccess if '.' (as in "../") shows up in name.
378 			*/
379 			if (strchr(name, '.') != NULL)
380 				doaccess = true;
381 			name = fullname;
382 		}
383 		if (doaccess && access(name, R_OK) != 0)
384 			goto oops;
385 		if ((fid = open(name, OPEN_MODE)) == -1)
386 			goto oops;
387 	}
388 	nread = read(fid, up->buf, sizeof up->buf);
389 	if (close(fid) < 0 || nread <= 0)
390 		goto oops;
391 	for (stored = 4; stored <= 8; stored *= 2) {
392 		int		ttisstdcnt;
393 		int		ttisgmtcnt;
394 		int		timecnt;
395 
396 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
397 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
398 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
399 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
400 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
401 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
402 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
403 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
404 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
405 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
406 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
407 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
408 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
409 				goto oops;
410 		if (nread - (p - up->buf) <
411 			sp->timecnt * stored +		/* ats */
412 			sp->timecnt +			/* types */
413 			sp->typecnt * 6 +		/* ttinfos */
414 			sp->charcnt +			/* chars */
415 			sp->leapcnt * (stored + 4) +	/* lsinfos */
416 			ttisstdcnt +			/* ttisstds */
417 			ttisgmtcnt)			/* ttisgmts */
418 				goto oops;
419 		timecnt = 0;
420 		for (i = 0; i < sp->timecnt; ++i) {
421 			int_fast64_t at
422 			  = stored == 4 ? detzcode(p) : detzcode64(p);
423 			sp->types[i] = ((TYPE_SIGNED(time_t)
424 					 ? time_t_min <= at
425 					 : 0 <= at)
426 					&& at <= time_t_max);
427 			if (sp->types[i]) {
428 				if (i && !timecnt && at != time_t_min) {
429 					/*
430 					** Keep the earlier record, but tweak
431 					** it so that it starts with the
432 					** minimum time_t value.
433 					*/
434 					sp->types[i - 1] = 1;
435 					sp->ats[timecnt++] = time_t_min;
436 				}
437 				sp->ats[timecnt++] = at;
438 			}
439 			p += stored;
440 		}
441 		timecnt = 0;
442 		for (i = 0; i < sp->timecnt; ++i) {
443 			unsigned char typ = *p++;
444 			if (sp->typecnt <= typ)
445 				goto oops;
446 			if (sp->types[i])
447 				sp->types[timecnt++] = typ;
448 		}
449 		sp->timecnt = timecnt;
450 		for (i = 0; i < sp->typecnt; ++i) {
451 			register struct ttinfo *	ttisp;
452 
453 			ttisp = &sp->ttis[i];
454 			ttisp->tt_gmtoff = detzcode(p);
455 			p += 4;
456 			ttisp->tt_isdst = (unsigned char) *p++;
457 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
458 				goto oops;
459 			ttisp->tt_abbrind = (unsigned char) *p++;
460 			if (ttisp->tt_abbrind < 0 ||
461 				ttisp->tt_abbrind > sp->charcnt)
462 					goto oops;
463 		}
464 		for (i = 0; i < sp->charcnt; ++i)
465 			sp->chars[i] = *p++;
466 		sp->chars[i] = '\0';	/* ensure '\0' at end */
467 		for (i = 0; i < sp->leapcnt; ++i) {
468 			register struct lsinfo *	lsisp;
469 
470 			lsisp = &sp->lsis[i];
471 			lsisp->ls_trans = (stored == 4) ?
472 				detzcode(p) : detzcode64(p);
473 			p += stored;
474 			lsisp->ls_corr = detzcode(p);
475 			p += 4;
476 		}
477 		for (i = 0; i < sp->typecnt; ++i) {
478 			register struct ttinfo *	ttisp;
479 
480 			ttisp = &sp->ttis[i];
481 			if (ttisstdcnt == 0)
482 				ttisp->tt_ttisstd = false;
483 			else {
484 				ttisp->tt_ttisstd = *p++;
485 				if (ttisp->tt_ttisstd != true &&
486 					ttisp->tt_ttisstd != false)
487 						goto oops;
488 			}
489 		}
490 		for (i = 0; i < sp->typecnt; ++i) {
491 			register struct ttinfo *	ttisp;
492 
493 			ttisp = &sp->ttis[i];
494 			if (ttisgmtcnt == 0)
495 				ttisp->tt_ttisgmt = false;
496 			else {
497 				ttisp->tt_ttisgmt = *p++;
498 				if (ttisp->tt_ttisgmt != true &&
499 					ttisp->tt_ttisgmt != false)
500 						goto oops;
501 			}
502 		}
503 		/*
504 		** If this is an old file, we're done.
505 		*/
506 		if (up->tzhead.tzh_version[0] == '\0')
507 			break;
508 		nread -= p - up->buf;
509 		for (i = 0; i < nread; ++i)
510 			up->buf[i] = p[i];
511 		/*
512 		** If this is a signed narrow time_t system, we're done.
513 		*/
514 		if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
515 			break;
516 	}
517 	if (doextend && nread > 2 &&
518 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
519 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
520 			struct state	ts;
521 			register int	result;
522 
523 			up->buf[nread - 1] = '\0';
524 			result = tzparse(&up->buf[1], &ts, false);
525 			if (result == 0 && ts.typecnt == 2 &&
526 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
527 					for (i = 0; i < 2; ++i)
528 						ts.ttis[i].tt_abbrind +=
529 							sp->charcnt;
530 					for (i = 0; i < ts.charcnt; ++i)
531 						sp->chars[sp->charcnt++] =
532 							ts.chars[i];
533 					i = 0;
534 					while (i < ts.timecnt &&
535 						ts.ats[i] <=
536 						sp->ats[sp->timecnt - 1])
537 							++i;
538 					while (i < ts.timecnt &&
539 					    sp->timecnt < TZ_MAX_TIMES) {
540 						sp->ats[sp->timecnt] =
541 							ts.ats[i];
542 						sp->types[sp->timecnt] =
543 							sp->typecnt +
544 							ts.types[i];
545 						++sp->timecnt;
546 						++i;
547 					}
548 					sp->ttis[sp->typecnt++] = ts.ttis[0];
549 					sp->ttis[sp->typecnt++] = ts.ttis[1];
550 			}
551 	}
552 	if (sp->timecnt > 1) {
553 		for (i = 1; i < sp->timecnt; ++i)
554 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
555 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
556 					sp->goback = true;
557 					break;
558 				}
559 		for (i = sp->timecnt - 2; i >= 0; --i)
560 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
561 				sp->types[i]) &&
562 				differ_by_repeat(sp->ats[sp->timecnt - 1],
563 				sp->ats[i])) {
564 					sp->goahead = true;
565 					break;
566 		}
567 	}
568 	/*
569 	** If type 0 is unused in transitions,
570 	** it's the type to use for early times.
571 	*/
572 	for (i = 0; i < sp->typecnt; ++i)
573 		if (sp->types[i] == 0)
574 			break;
575 	i = (i >= sp->typecnt) ? 0 : -1;
576 	/*
577 	** Absent the above,
578 	** if there are transition times
579 	** and the first transition is to a daylight time
580 	** find the standard type less than and closest to
581 	** the type of the first transition.
582 	*/
583 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
584 		i = sp->types[0];
585 		while (--i >= 0)
586 			if (!sp->ttis[i].tt_isdst)
587 				break;
588 	}
589 	/*
590 	** If no result yet, find the first standard type.
591 	** If there is none, punt to type zero.
592 	*/
593 	if (i < 0) {
594 		i = 0;
595 		while (sp->ttis[i].tt_isdst)
596 			if (++i >= sp->typecnt) {
597 				i = 0;
598 				break;
599 			}
600 	}
601 	sp->defaulttype = i;
602 #ifdef ALL_STATE
603 	free(up);
604 #endif /* defined ALL_STATE */
605 	return 0;
606 oops:
607 #ifdef ALL_STATE
608 	free(up);
609 #endif /* defined ALL_STATE */
610 	return -1;
611 }
612 
613 static int
typesequiv(const struct state * const sp,const int a,const int b)614 typesequiv(const struct state *const sp, const int a, const int b)
615 {
616 	register int	result;
617 
618 	if (sp == NULL ||
619 		a < 0 || a >= sp->typecnt ||
620 		b < 0 || b >= sp->typecnt)
621 			result = false;
622 	else {
623 		register const struct ttinfo *	ap = &sp->ttis[a];
624 		register const struct ttinfo *	bp = &sp->ttis[b];
625 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
626 			ap->tt_isdst == bp->tt_isdst &&
627 			ap->tt_ttisstd == bp->tt_ttisstd &&
628 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
629 			strcmp(&sp->chars[ap->tt_abbrind],
630 			&sp->chars[bp->tt_abbrind]) == 0;
631 	}
632 	return result;
633 }
634 
635 static const int	mon_lengths[2][MONSPERYEAR] = {
636 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
637 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
638 };
639 
640 static const int	year_lengths[2] = {
641 	DAYSPERNYEAR, DAYSPERLYEAR
642 };
643 
644 /*
645 ** Given a pointer into a time zone string, scan until a character that is not
646 ** a valid character in a zone name is found. Return a pointer to that
647 ** character.
648 */
649 
650 static const char *
getzname(register const char * strp)651 getzname(register const char *strp)
652 {
653 	register char	c;
654 
655 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
656 		c != '+')
657 			++strp;
658 	return strp;
659 }
660 
661 /*
662 ** Given a pointer into an extended time zone string, scan until the ending
663 ** delimiter of the zone name is located. Return a pointer to the delimiter.
664 **
665 ** As with getzname above, the legal character set is actually quite
666 ** restricted, with other characters producing undefined results.
667 ** We don't do any checking here; checking is done later in common-case code.
668 */
669 
670 static const char *
getqzname(register const char * strp,const int delim)671 getqzname(register const char *strp, const int delim)
672 {
673 	register int	c;
674 
675 	while ((c = *strp) != '\0' && c != delim)
676 		++strp;
677 	return strp;
678 }
679 
680 /*
681 ** Given a pointer into a time zone string, extract a number from that string.
682 ** Check that the number is within a specified range; if it is not, return
683 ** NULL.
684 ** Otherwise, return a pointer to the first character not part of the number.
685 */
686 
687 static const char *
getnum(register const char * strp,int * const nump,const int min,const int max)688 getnum(register const char *strp, int *const nump, const int min, const int max)
689 {
690 	register char	c;
691 	register int	num;
692 
693 	if (strp == NULL || !is_digit(c = *strp))
694 		return NULL;
695 	num = 0;
696 	do {
697 		num = num * 10 + (c - '0');
698 		if (num > max)
699 			return NULL;	/* illegal value */
700 		c = *++strp;
701 	} while (is_digit(c));
702 	if (num < min)
703 		return NULL;		/* illegal value */
704 	*nump = num;
705 	return strp;
706 }
707 
708 /*
709 ** Given a pointer into a time zone string, extract a number of seconds,
710 ** in hh[:mm[:ss]] form, from the string.
711 ** If any error occurs, return NULL.
712 ** Otherwise, return a pointer to the first character not part of the number
713 ** of seconds.
714 */
715 
716 static const char *
getsecs(register const char * strp,int_fast32_t * const secsp)717 getsecs(register const char *strp, int_fast32_t *const secsp)
718 {
719 	int	num;
720 
721 	/*
722 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
723 	** "M10.4.6/26", which does not conform to Posix,
724 	** but which specifies the equivalent of
725 	** ``02:00 on the first Sunday on or after 23 Oct''.
726 	*/
727 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
728 	if (strp == NULL)
729 		return NULL;
730 	*secsp = num * (int_fast32_t) SECSPERHOUR;
731 	if (*strp == ':') {
732 		++strp;
733 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
734 		if (strp == NULL)
735 			return NULL;
736 		*secsp += num * SECSPERMIN;
737 		if (*strp == ':') {
738 			++strp;
739 			/* `SECSPERMIN' allows for leap seconds. */
740 			strp = getnum(strp, &num, 0, SECSPERMIN);
741 			if (strp == NULL)
742 				return NULL;
743 			*secsp += num;
744 		}
745 	}
746 	return strp;
747 }
748 
749 /*
750 ** Given a pointer into a time zone string, extract an offset, in
751 ** [+-]hh[:mm[:ss]] form, from the string.
752 ** If any error occurs, return NULL.
753 ** Otherwise, return a pointer to the first character not part of the time.
754 */
755 
756 static const char *
getoffset(register const char * strp,int_fast32_t * const offsetp)757 getoffset(register const char *strp, int_fast32_t *const offsetp)
758 {
759 	register int	neg = 0;
760 
761 	if (*strp == '-') {
762 		neg = 1;
763 		++strp;
764 	} else if (*strp == '+')
765 		++strp;
766 	strp = getsecs(strp, offsetp);
767 	if (strp == NULL)
768 		return NULL;		/* illegal time */
769 	if (neg)
770 		*offsetp = -*offsetp;
771 	return strp;
772 }
773 
774 /*
775 ** Given a pointer into a time zone string, extract a rule in the form
776 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
777 ** If a valid rule is not found, return NULL.
778 ** Otherwise, return a pointer to the first character not part of the rule.
779 */
780 
781 static const char *
getrule(const char * strp,register struct rule * const rulep)782 getrule(const char *strp, register struct rule *const rulep)
783 {
784 	if (*strp == 'J') {
785 		/*
786 		** Julian day.
787 		*/
788 		rulep->r_type = JULIAN_DAY;
789 		++strp;
790 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
791 	} else if (*strp == 'M') {
792 		/*
793 		** Month, week, day.
794 		*/
795 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
796 		++strp;
797 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
798 		if (strp == NULL)
799 			return NULL;
800 		if (*strp++ != '.')
801 			return NULL;
802 		strp = getnum(strp, &rulep->r_week, 1, 5);
803 		if (strp == NULL)
804 			return NULL;
805 		if (*strp++ != '.')
806 			return NULL;
807 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
808 	} else if (is_digit(*strp)) {
809 		/*
810 		** Day of year.
811 		*/
812 		rulep->r_type = DAY_OF_YEAR;
813 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
814 	} else	return NULL;		/* invalid format */
815 	if (strp == NULL)
816 		return NULL;
817 	if (*strp == '/') {
818 		/*
819 		** Time specified.
820 		*/
821 		++strp;
822 		strp = getoffset(strp, &rulep->r_time);
823 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
824 	return strp;
825 }
826 
827 /*
828 ** Given a year, a rule, and the offset from UT at the time that rule takes
829 ** effect, calculate the year-relative time that rule takes effect.
830 */
831 
832 static int_fast32_t
transtime(const int year,register const struct rule * const rulep,const int_fast32_t offset)833 transtime(const int year, register const struct rule *const rulep,
834 	  const int_fast32_t offset)
835 {
836 	register int	leapyear;
837 	register int_fast32_t value;
838 	register int	i;
839 	int		d, m1, yy0, yy1, yy2, dow;
840 
841 	INITIALIZE(value);
842 	leapyear = isleap(year);
843 	switch (rulep->r_type) {
844 
845 	case JULIAN_DAY:
846 		/*
847 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
848 		** years.
849 		** In non-leap years, or if the day number is 59 or less, just
850 		** add SECSPERDAY times the day number-1 to the time of
851 		** January 1, midnight, to get the day.
852 		*/
853 		value = (rulep->r_day - 1) * SECSPERDAY;
854 		if (leapyear && rulep->r_day >= 60)
855 			value += SECSPERDAY;
856 		break;
857 
858 	case DAY_OF_YEAR:
859 		/*
860 		** n - day of year.
861 		** Just add SECSPERDAY times the day number to the time of
862 		** January 1, midnight, to get the day.
863 		*/
864 		value = rulep->r_day * SECSPERDAY;
865 		break;
866 
867 	case MONTH_NTH_DAY_OF_WEEK:
868 		/*
869 		** Mm.n.d - nth "dth day" of month m.
870 		*/
871 
872 		/*
873 		** Use Zeller's Congruence to get day-of-week of first day of
874 		** month.
875 		*/
876 		m1 = (rulep->r_mon + 9) % 12 + 1;
877 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
878 		yy1 = yy0 / 100;
879 		yy2 = yy0 % 100;
880 		dow = ((26 * m1 - 2) / 10 +
881 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
882 		if (dow < 0)
883 			dow += DAYSPERWEEK;
884 
885 		/*
886 		** "dow" is the day-of-week of the first day of the month. Get
887 		** the day-of-month (zero-origin) of the first "dow" day of the
888 		** month.
889 		*/
890 		d = rulep->r_day - dow;
891 		if (d < 0)
892 			d += DAYSPERWEEK;
893 		for (i = 1; i < rulep->r_week; ++i) {
894 			if (d + DAYSPERWEEK >=
895 				mon_lengths[leapyear][rulep->r_mon - 1])
896 					break;
897 			d += DAYSPERWEEK;
898 		}
899 
900 		/*
901 		** "d" is the day-of-month (zero-origin) of the day we want.
902 		*/
903 		value = d * SECSPERDAY;
904 		for (i = 0; i < rulep->r_mon - 1; ++i)
905 			value += mon_lengths[leapyear][i] * SECSPERDAY;
906 		break;
907 	}
908 
909 	/*
910 	** "value" is the year-relative time of 00:00:00 UT on the day in
911 	** question. To get the year-relative time of the specified local
912 	** time on that day, add the transition time and the current offset
913 	** from UT.
914 	*/
915 	return value + rulep->r_time + offset;
916 }
917 
918 /*
919 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
920 ** appropriate.
921 */
922 
923 static int
tzparse(const char * name,register struct state * const sp,const int lastditch)924 tzparse(const char *name, register struct state *const sp,
925 	const int lastditch)
926 {
927 	const char *			stdname;
928 	const char *			dstname;
929 	size_t				stdlen;
930 	size_t				dstlen;
931 	int_fast32_t			stdoffset;
932 	int_fast32_t			dstoffset;
933 	register char *			cp;
934 	register int			load_result;
935 	static struct ttinfo		zttinfo;
936 
937 	INITIALIZE(dstname);
938 	stdname = name;
939 	if (lastditch) {
940 		stdlen = strlen(name);	/* length of standard zone name */
941 		name += stdlen;
942 		if (stdlen >= sizeof sp->chars)
943 			stdlen = (sizeof sp->chars) - 1;
944 		stdoffset = 0;
945 	} else {
946 		if (*name == '<') {
947 			name++;
948 			stdname = name;
949 			name = getqzname(name, '>');
950 			if (*name != '>')
951 				return (-1);
952 			stdlen = name - stdname;
953 			name++;
954 		} else {
955 			name = getzname(name);
956 			stdlen = name - stdname;
957 		}
958 		if (*name == '\0')
959 			return -1;
960 		name = getoffset(name, &stdoffset);
961 		if (name == NULL)
962 			return -1;
963 	}
964 	load_result = tzload(TZDEFRULES, sp, false);
965 	if (load_result != 0)
966 		sp->leapcnt = 0;		/* so, we're off a little */
967 	if (*name != '\0') {
968 		if (*name == '<') {
969 			dstname = ++name;
970 			name = getqzname(name, '>');
971 			if (*name != '>')
972 				return -1;
973 			dstlen = name - dstname;
974 			name++;
975 		} else {
976 			dstname = name;
977 			name = getzname(name);
978 			dstlen = name - dstname; /* length of DST zone name */
979 		}
980 		if (*name != '\0' && *name != ',' && *name != ';') {
981 			name = getoffset(name, &dstoffset);
982 			if (name == NULL)
983 				return -1;
984 		} else	dstoffset = stdoffset - SECSPERHOUR;
985 		if (*name == '\0' && load_result != 0)
986 			name = TZDEFRULESTRING;
987 		if (*name == ',' || *name == ';') {
988 			struct rule	start;
989 			struct rule	end;
990 			register int	year;
991 			register int	yearlim;
992 			register int	timecnt;
993 			time_t		janfirst;
994 
995 			++name;
996 			if ((name = getrule(name, &start)) == NULL)
997 				return -1;
998 			if (*name++ != ',')
999 				return -1;
1000 			if ((name = getrule(name, &end)) == NULL)
1001 				return -1;
1002 			if (*name != '\0')
1003 				return -1;
1004 			sp->typecnt = 2;	/* standard time and DST */
1005 			/*
1006 			** Two transitions per year, from EPOCH_YEAR forward.
1007 			*/
1008 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1009 			sp->ttis[0].tt_gmtoff = -dstoffset;
1010 			sp->ttis[0].tt_isdst = 1;
1011 			sp->ttis[0].tt_abbrind = stdlen + 1;
1012 			sp->ttis[1].tt_gmtoff = -stdoffset;
1013 			sp->ttis[1].tt_isdst = 0;
1014 			sp->ttis[1].tt_abbrind = 0;
1015 			sp->defaulttype = 0;
1016 			timecnt = 0;
1017 			janfirst = 0;
1018 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1019 			for (year = EPOCH_YEAR; year < yearlim; year++) {
1020 				int_fast32_t
1021 				  starttime = transtime(year, &start, stdoffset),
1022 				  endtime = transtime(year, &end, dstoffset);
1023 				int_fast32_t
1024 				  yearsecs = (year_lengths[isleap(year)]
1025 					      * SECSPERDAY);
1026 				int reversed = endtime < starttime;
1027 				if (reversed) {
1028 					int_fast32_t swap = starttime;
1029 					starttime = endtime;
1030 					endtime = swap;
1031 				}
1032 				if (reversed
1033 				    || (starttime < endtime
1034 					&& (endtime - starttime
1035 					    < (yearsecs
1036 					       + (stdoffset - dstoffset))))) {
1037 					if (TZ_MAX_TIMES - 2 < timecnt)
1038 						break;
1039 					yearlim = year + YEARSPERREPEAT + 1;
1040 					sp->ats[timecnt] = janfirst;
1041 					if (increment_overflow_time
1042 					    (&sp->ats[timecnt], starttime))
1043 						break;
1044 					sp->types[timecnt++] = reversed;
1045 					sp->ats[timecnt] = janfirst;
1046 					if (increment_overflow_time
1047 					    (&sp->ats[timecnt], endtime))
1048 						break;
1049 					sp->types[timecnt++] = !reversed;
1050 				}
1051 				if (increment_overflow_time(&janfirst, yearsecs))
1052 					break;
1053 			}
1054 			sp->timecnt = timecnt;
1055 			if (!timecnt)
1056 				sp->typecnt = 1;	/* Perpetual DST.  */
1057 		} else {
1058 			register int_fast32_t	theirstdoffset;
1059 			register int_fast32_t	theirdstoffset;
1060 			register int_fast32_t	theiroffset;
1061 			register int		isdst;
1062 			register int		i;
1063 			register int		j;
1064 
1065 			if (*name != '\0')
1066 				return -1;
1067 			/*
1068 			** Initial values of theirstdoffset and theirdstoffset.
1069 			*/
1070 			theirstdoffset = 0;
1071 			for (i = 0; i < sp->timecnt; ++i) {
1072 				j = sp->types[i];
1073 				if (!sp->ttis[j].tt_isdst) {
1074 					theirstdoffset =
1075 						-sp->ttis[j].tt_gmtoff;
1076 					break;
1077 				}
1078 			}
1079 			theirdstoffset = 0;
1080 			for (i = 0; i < sp->timecnt; ++i) {
1081 				j = sp->types[i];
1082 				if (sp->ttis[j].tt_isdst) {
1083 					theirdstoffset =
1084 						-sp->ttis[j].tt_gmtoff;
1085 					break;
1086 				}
1087 			}
1088 			/*
1089 			** Initially we're assumed to be in standard time.
1090 			*/
1091 			isdst = false;
1092 			theiroffset = theirstdoffset;
1093 			/*
1094 			** Now juggle transition times and types
1095 			** tracking offsets as you do.
1096 			*/
1097 			for (i = 0; i < sp->timecnt; ++i) {
1098 				j = sp->types[i];
1099 				sp->types[i] = sp->ttis[j].tt_isdst;
1100 				if (sp->ttis[j].tt_ttisgmt) {
1101 					/* No adjustment to transition time */
1102 				} else {
1103 					/*
1104 					** If summer time is in effect, and the
1105 					** transition time was not specified as
1106 					** standard time, add the summer time
1107 					** offset to the transition time;
1108 					** otherwise, add the standard time
1109 					** offset to the transition time.
1110 					*/
1111 					/*
1112 					** Transitions from DST to DDST
1113 					** will effectively disappear since
1114 					** POSIX provides for only one DST
1115 					** offset.
1116 					*/
1117 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1118 						sp->ats[i] += dstoffset -
1119 							theirdstoffset;
1120 					} else {
1121 						sp->ats[i] += stdoffset -
1122 							theirstdoffset;
1123 					}
1124 				}
1125 				theiroffset = -sp->ttis[j].tt_gmtoff;
1126 				if (sp->ttis[j].tt_isdst)
1127 					theirdstoffset = theiroffset;
1128 				else	theirstdoffset = theiroffset;
1129 			}
1130 			/*
1131 			** Finally, fill in ttis.
1132 			*/
1133 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1134 			sp->ttis[0].tt_gmtoff = -stdoffset;
1135 			sp->ttis[0].tt_isdst = false;
1136 			sp->ttis[0].tt_abbrind = 0;
1137 			sp->ttis[1].tt_gmtoff = -dstoffset;
1138 			sp->ttis[1].tt_isdst = true;
1139 			sp->ttis[1].tt_abbrind = stdlen + 1;
1140 			sp->typecnt = 2;
1141 			sp->defaulttype = 0;
1142 		}
1143 	} else {
1144 		dstlen = 0;
1145 		sp->typecnt = 1;		/* only standard time */
1146 		sp->timecnt = 0;
1147 		sp->ttis[0] = zttinfo;
1148 		sp->ttis[0].tt_gmtoff = -stdoffset;
1149 		sp->ttis[0].tt_isdst = 0;
1150 		sp->ttis[0].tt_abbrind = 0;
1151 		sp->defaulttype = 0;
1152 	}
1153 	sp->charcnt = stdlen + 1;
1154 	if (dstlen != 0)
1155 		sp->charcnt += dstlen + 1;
1156 	if ((size_t) sp->charcnt > sizeof sp->chars)
1157 		return -1;
1158 	cp = sp->chars;
1159 	(void) strncpy(cp, stdname, stdlen);
1160 	cp += stdlen;
1161 	*cp++ = '\0';
1162 	if (dstlen != 0) {
1163 		(void) strncpy(cp, dstname, dstlen);
1164 		*(cp + dstlen) = '\0';
1165 	}
1166 	return 0;
1167 }
1168 
1169 static void
gmtload(struct state * const sp)1170 gmtload(struct state *const sp)
1171 {
1172 	if (tzload(gmt, sp, true) != 0)
1173 		(void) tzparse(gmt, sp, true);
1174 }
1175 
1176 #ifndef STD_INSPIRED
1177 /*
1178 ** A non-static declaration of tzsetwall in a system header file
1179 ** may cause a warning about this upcoming static declaration...
1180 */
1181 static
1182 #endif /* !defined STD_INSPIRED */
1183 void
tzsetwall(void)1184 tzsetwall(void)
1185 {
1186 	if (lcl_is_set < 0)
1187 		return;
1188 	lcl_is_set = -1;
1189 
1190 #ifdef ALL_STATE
1191 	if (lclptr == NULL) {
1192 		lclptr = malloc(sizeof *lclptr);
1193 		if (lclptr == NULL) {
1194 			settzname();	/* all we can do */
1195 			return;
1196 		}
1197 	}
1198 #endif /* defined ALL_STATE */
1199 	if (tzload(NULL, lclptr, true) != 0)
1200 		gmtload(lclptr);
1201 	settzname();
1202 }
1203 
1204 void
tzset(void)1205 tzset(void)
1206 {
1207 	register const char *	name;
1208 
1209 	name = getenv("TZ");
1210 	if (name == NULL) {
1211 		tzsetwall();
1212 		return;
1213 	}
1214 
1215 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1216 		return;
1217 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1218 	if (lcl_is_set)
1219 		(void) strcpy(lcl_TZname, name);
1220 
1221 #ifdef ALL_STATE
1222 	if (lclptr == NULL) {
1223 		lclptr = malloc(sizeof *lclptr);
1224 		if (lclptr == NULL) {
1225 			settzname();	/* all we can do */
1226 			return;
1227 		}
1228 	}
1229 #endif /* defined ALL_STATE */
1230 	if (*name == '\0') {
1231 		/*
1232 		** User wants it fast rather than right.
1233 		*/
1234 		lclptr->leapcnt = 0;		/* so, we're off a little */
1235 		lclptr->timecnt = 0;
1236 		lclptr->typecnt = 0;
1237 		lclptr->ttis[0].tt_isdst = 0;
1238 		lclptr->ttis[0].tt_gmtoff = 0;
1239 		lclptr->ttis[0].tt_abbrind = 0;
1240 		(void) strcpy(lclptr->chars, gmt);
1241 	} else if (tzload(name, lclptr, true) != 0)
1242 		if (name[0] == ':' || tzparse(name, lclptr, false) != 0)
1243 			(void) gmtload(lclptr);
1244 	settzname();
1245 }
1246 
1247 /*
1248 ** The easy way to behave "as if no library function calls" localtime
1249 ** is to not call it--so we drop its guts into "localsub", which can be
1250 ** freely called. (And no, the PANS doesn't require the above behavior--
1251 ** but it *is* desirable.)
1252 **
1253 ** The unused offset argument is for the benefit of mktime variants.
1254 */
1255 
1256 /*ARGSUSED*/
1257 static struct tm *
localsub(const time_t * const timep,const int_fast32_t offset,struct tm * const tmp)1258 localsub(const time_t *const timep, const int_fast32_t offset,
1259 	 struct tm *const tmp)
1260 {
1261 	register struct state *		sp;
1262 	register const struct ttinfo *	ttisp;
1263 	register int			i;
1264 	register struct tm *		result;
1265 	const time_t			t = *timep;
1266 
1267 	sp = lclptr;
1268 	if (sp == NULL)
1269 		return gmtsub(timep, offset, tmp);
1270 	if ((sp->goback && t < sp->ats[0]) ||
1271 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1272 			time_t			newt = t;
1273 			register time_t		seconds;
1274 			register time_t		years;
1275 
1276 			if (t < sp->ats[0])
1277 				seconds = sp->ats[0] - t;
1278 			else	seconds = t - sp->ats[sp->timecnt - 1];
1279 			--seconds;
1280 			years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
1281 			seconds = years * AVGSECSPERYEAR;
1282 			if (t < sp->ats[0])
1283 				newt += seconds;
1284 			else	newt -= seconds;
1285 			if (newt < sp->ats[0] ||
1286 				newt > sp->ats[sp->timecnt - 1])
1287 					return NULL;	/* "cannot happen" */
1288 			result = localsub(&newt, offset, tmp);
1289 			if (result == tmp) {
1290 				register time_t	newy;
1291 
1292 				newy = tmp->tm_year;
1293 				if (t < sp->ats[0])
1294 					newy -= years;
1295 				else	newy += years;
1296 				tmp->tm_year = newy;
1297 				if (tmp->tm_year != newy)
1298 					return NULL;
1299 			}
1300 			return result;
1301 	}
1302 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1303 		i = sp->defaulttype;
1304 	} else {
1305 		register int	lo = 1;
1306 		register int	hi = sp->timecnt;
1307 
1308 		while (lo < hi) {
1309 			register int	mid = (lo + hi) >> 1;
1310 
1311 			if (t < sp->ats[mid])
1312 				hi = mid;
1313 			else	lo = mid + 1;
1314 		}
1315 		i = (int) sp->types[lo - 1];
1316 	}
1317 	ttisp = &sp->ttis[i];
1318 	/*
1319 	** To get (wrong) behavior that's compatible with System V Release 2.0
1320 	** you'd replace the statement below with
1321 	**	t += ttisp->tt_gmtoff;
1322 	**	timesub(&t, 0L, sp, tmp);
1323 	*/
1324 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1325 	tmp->tm_isdst = ttisp->tt_isdst;
1326 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1327 #ifdef TM_ZONE
1328 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1329 #endif /* defined TM_ZONE */
1330 	return result;
1331 }
1332 
1333 struct tm *
localtime(const time_t * const timep)1334 localtime(const time_t *const timep)
1335 {
1336 	tzset();
1337 	return localsub(timep, 0L, &tm);
1338 }
1339 
1340 /*
1341 ** Re-entrant version of localtime.
1342 */
1343 
1344 struct tm *
localtime_r(const time_t * const timep,struct tm * tmp)1345 localtime_r(const time_t *const timep, struct tm *tmp)
1346 {
1347 	return localsub(timep, 0L, tmp);
1348 }
1349 
1350 /*
1351 ** gmtsub is to gmtime as localsub is to localtime.
1352 */
1353 
1354 static struct tm *
gmtsub(const time_t * const timep,const int_fast32_t offset,struct tm * const tmp)1355 gmtsub(const time_t *const timep, const int_fast32_t offset,
1356        struct tm *const tmp)
1357 {
1358 	register struct tm *	result;
1359 
1360 	if (!gmt_is_set) {
1361 		gmt_is_set = true;
1362 #ifdef ALL_STATE
1363 		gmtptr = malloc(sizeof *gmtptr);
1364 #endif /* defined ALL_STATE */
1365 		if (gmtptr != NULL)
1366 			gmtload(gmtptr);
1367 	}
1368 	result = timesub(timep, offset, gmtptr, tmp);
1369 #ifdef TM_ZONE
1370 	/*
1371 	** Could get fancy here and deliver something such as
1372 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1373 	** but this is no time for a treasure hunt.
1374 	*/
1375 	tmp->TM_ZONE = offset ? wildabbr : gmtptr ? gmtptr->chars : gmt;
1376 #endif /* defined TM_ZONE */
1377 	return result;
1378 }
1379 
1380 struct tm *
gmtime(const time_t * const timep)1381 gmtime(const time_t *const timep)
1382 {
1383 	return gmtsub(timep, 0L, &tm);
1384 }
1385 
1386 /*
1387 * Re-entrant version of gmtime.
1388 */
1389 
1390 struct tm *
gmtime_r(const time_t * const timep,struct tm * tmp)1391 gmtime_r(const time_t *const timep, struct tm *tmp)
1392 {
1393 	return gmtsub(timep, 0L, tmp);
1394 }
1395 
1396 #ifdef STD_INSPIRED
1397 
1398 struct tm *
offtime(const time_t * const timep,const long offset)1399 offtime(const time_t *const timep, const long offset)
1400 {
1401 	return gmtsub(timep, offset, &tm);
1402 }
1403 
1404 #endif /* defined STD_INSPIRED */
1405 
1406 /*
1407 ** Return the number of leap years through the end of the given year
1408 ** where, to make the math easy, the answer for year zero is defined as zero.
1409 */
1410 
1411 static int
leaps_thru_end_of(register const int y)1412 leaps_thru_end_of(register const int y)
1413 {
1414 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1415 		-(leaps_thru_end_of(-(y + 1)) + 1);
1416 }
1417 
1418 static struct tm *
timesub(const time_t * const timep,const int_fast32_t offset,register const struct state * const sp,register struct tm * const tmp)1419 timesub(const time_t *const timep, const int_fast32_t offset,
1420 	register const struct state *const sp,
1421 	register struct tm *const tmp)
1422 {
1423 	register const struct lsinfo *	lp;
1424 	register time_t			tdays;
1425 	register int			idays;	/* unsigned would be so 2003 */
1426 	register int_fast64_t		rem;
1427 	int				y;
1428 	register const int *		ip;
1429 	register int_fast64_t		corr;
1430 	register int			hit;
1431 	register int			i;
1432 
1433 	corr = 0;
1434 	hit = 0;
1435 	i = (sp == NULL) ? 0 : sp->leapcnt;
1436 	while (--i >= 0) {
1437 		lp = &sp->lsis[i];
1438 		if (*timep >= lp->ls_trans) {
1439 			if (*timep == lp->ls_trans) {
1440 				hit = ((i == 0 && lp->ls_corr > 0) ||
1441 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1442 				if (hit)
1443 					while (i > 0 &&
1444 						sp->lsis[i].ls_trans ==
1445 						sp->lsis[i - 1].ls_trans + 1 &&
1446 						sp->lsis[i].ls_corr ==
1447 						sp->lsis[i - 1].ls_corr + 1) {
1448 							++hit;
1449 							--i;
1450 					}
1451 			}
1452 			corr = lp->ls_corr;
1453 			break;
1454 		}
1455 	}
1456 	y = EPOCH_YEAR;
1457 	tdays = *timep / SECSPERDAY;
1458 	rem = *timep - tdays * SECSPERDAY;
1459 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1460 		int		newy;
1461 		register time_t	tdelta;
1462 		register int	idelta;
1463 		register int	leapdays;
1464 
1465 		tdelta = tdays / DAYSPERLYEAR;
1466 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1467 		       && tdelta <= INT_MAX))
1468 			return NULL;
1469 		idelta = tdelta;
1470 		if (idelta == 0)
1471 			idelta = (tdays < 0) ? -1 : 1;
1472 		newy = y;
1473 		if (increment_overflow(&newy, idelta))
1474 			return NULL;
1475 		leapdays = leaps_thru_end_of(newy - 1) -
1476 			leaps_thru_end_of(y - 1);
1477 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1478 		tdays -= leapdays;
1479 		y = newy;
1480 	}
1481 	{
1482 		register int_fast32_t	seconds;
1483 
1484 		seconds = tdays * SECSPERDAY;
1485 		tdays = seconds / SECSPERDAY;
1486 		rem += seconds - tdays * SECSPERDAY;
1487 	}
1488 	/*
1489 	** Given the range, we can now fearlessly cast...
1490 	*/
1491 	idays = tdays;
1492 	rem += offset - corr;
1493 	while (rem < 0) {
1494 		rem += SECSPERDAY;
1495 		--idays;
1496 	}
1497 	while (rem >= SECSPERDAY) {
1498 		rem -= SECSPERDAY;
1499 		++idays;
1500 	}
1501 	while (idays < 0) {
1502 		if (increment_overflow(&y, -1))
1503 			return NULL;
1504 		idays += year_lengths[isleap(y)];
1505 	}
1506 	while (idays >= year_lengths[isleap(y)]) {
1507 		idays -= year_lengths[isleap(y)];
1508 		if (increment_overflow(&y, 1))
1509 			return NULL;
1510 	}
1511 	tmp->tm_year = y;
1512 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1513 		return NULL;
1514 	tmp->tm_yday = idays;
1515 	/*
1516 	** The "extra" mods below avoid overflow problems.
1517 	*/
1518 	tmp->tm_wday = EPOCH_WDAY +
1519 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1520 		(DAYSPERNYEAR % DAYSPERWEEK) +
1521 		leaps_thru_end_of(y - 1) -
1522 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1523 		idays;
1524 	tmp->tm_wday %= DAYSPERWEEK;
1525 	if (tmp->tm_wday < 0)
1526 		tmp->tm_wday += DAYSPERWEEK;
1527 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1528 	rem %= SECSPERHOUR;
1529 	tmp->tm_min = (int) (rem / SECSPERMIN);
1530 	/*
1531 	** A positive leap second requires a special
1532 	** representation. This uses "... ??:59:60" et seq.
1533 	*/
1534 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1535 	ip = mon_lengths[isleap(y)];
1536 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1537 		idays -= ip[tmp->tm_mon];
1538 	tmp->tm_mday = idays + 1;
1539 	tmp->tm_isdst = 0;
1540 #ifdef TM_GMTOFF
1541 	tmp->TM_GMTOFF = offset;
1542 #endif /* defined TM_GMTOFF */
1543 	return tmp;
1544 }
1545 
1546 char *
ctime(const time_t * const timep)1547 ctime(const time_t *const timep)
1548 {
1549 /*
1550 ** Section 4.12.3.2 of X3.159-1989 requires that
1551 **	The ctime function converts the calendar time pointed to by timer
1552 **	to local time in the form of a string. It is equivalent to
1553 **		asctime(localtime(timer))
1554 */
1555 	return asctime(localtime(timep));
1556 }
1557 
1558 char *
ctime_r(const time_t * const timep,char * buf)1559 ctime_r(const time_t *const timep, char *buf)
1560 {
1561 	struct tm	mytm;
1562 
1563 	return asctime_r(localtime_r(timep, &mytm), buf);
1564 }
1565 
1566 /*
1567 ** Adapted from code provided by Robert Elz, who writes:
1568 **	The "best" way to do mktime I think is based on an idea of Bob
1569 **	Kridle's (so its said...) from a long time ago.
1570 **	It does a binary search of the time_t space. Since time_t's are
1571 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1572 **	would still be very reasonable).
1573 */
1574 
1575 #ifndef WRONG
1576 #define WRONG	(-1)
1577 #endif /* !defined WRONG */
1578 
1579 /*
1580 ** Normalize logic courtesy Paul Eggert.
1581 */
1582 
1583 static int
increment_overflow(int * const ip,int j)1584 increment_overflow(int *const ip, int j)
1585 {
1586 	register int const	i = *ip;
1587 
1588 	/*
1589 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1590 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1591 	** If i < 0 there can only be overflow if i + j < INT_MIN
1592 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1593 	*/
1594 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1595 		return true;
1596 	*ip += j;
1597 	return false;
1598 }
1599 
1600 static int
increment_overflow32(int_fast32_t * const lp,int const m)1601 increment_overflow32(int_fast32_t *const lp, int const m)
1602 {
1603 	register int_fast32_t const	l = *lp;
1604 
1605 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1606 		return true;
1607 	*lp += m;
1608 	return false;
1609 }
1610 
1611 static int
increment_overflow_time(time_t * tp,int_fast32_t j)1612 increment_overflow_time(time_t *tp, int_fast32_t j)
1613 {
1614 	/*
1615 	** This is like
1616 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1617 	** except that it does the right thing even if *tp + j would overflow.
1618 	*/
1619 	if (! (j < 0
1620 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1621 	       : *tp <= time_t_max - j))
1622 		return true;
1623 	*tp += j;
1624 	return false;
1625 }
1626 
1627 static int
normalize_overflow(int * const tensptr,int * const unitsptr,const int base)1628 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1629 {
1630 	register int	tensdelta;
1631 
1632 	tensdelta = (*unitsptr >= 0) ?
1633 		(*unitsptr / base) :
1634 		(-1 - (-1 - *unitsptr) / base);
1635 	*unitsptr -= tensdelta * base;
1636 	return increment_overflow(tensptr, tensdelta);
1637 }
1638 
1639 static int
normalize_overflow32(int_fast32_t * const tensptr,int * const unitsptr,const int base)1640 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1641 		     const int base)
1642 {
1643 	register int	tensdelta;
1644 
1645 	tensdelta = (*unitsptr >= 0) ?
1646 		(*unitsptr / base) :
1647 		(-1 - (-1 - *unitsptr) / base);
1648 	*unitsptr -= tensdelta * base;
1649 	return increment_overflow32(tensptr, tensdelta);
1650 }
1651 
1652 static int
tmcomp(register const struct tm * const atmp,register const struct tm * const btmp)1653 tmcomp(register const struct tm *const atmp,
1654        register const struct tm *const btmp)
1655 {
1656 	register int	result;
1657 
1658 	if (atmp->tm_year != btmp->tm_year)
1659 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
1660 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1661 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1662 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1663 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1664 			result = atmp->tm_sec - btmp->tm_sec;
1665 	return result;
1666 }
1667 
1668 static time_t
time2sub(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *),const int_fast32_t offset,int * const okayp,const int do_norm_secs)1669 time2sub(struct tm *const tmp,
1670 	 struct tm *(*const funcp)(const time_t *, int_fast32_t, struct tm *),
1671 	 const int_fast32_t offset,
1672 	 int *const okayp,
1673 	 const int do_norm_secs)
1674 {
1675 	register const struct state *	sp;
1676 	register int			dir;
1677 	register int			i, j;
1678 	register int			saved_seconds;
1679 	register int_fast32_t			li;
1680 	register time_t			lo;
1681 	register time_t			hi;
1682 	int_fast32_t				y;
1683 	time_t				newt;
1684 	time_t				t;
1685 	struct tm			yourtm, mytm;
1686 
1687 	*okayp = false;
1688 	yourtm = *tmp;
1689 	if (do_norm_secs) {
1690 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1691 			SECSPERMIN))
1692 				return WRONG;
1693 	}
1694 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1695 		return WRONG;
1696 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1697 		return WRONG;
1698 	y = yourtm.tm_year;
1699 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1700 		return WRONG;
1701 	/*
1702 	** Turn y into an actual year number for now.
1703 	** It is converted back to an offset from TM_YEAR_BASE later.
1704 	*/
1705 	if (increment_overflow32(&y, TM_YEAR_BASE))
1706 		return WRONG;
1707 	while (yourtm.tm_mday <= 0) {
1708 		if (increment_overflow32(&y, -1))
1709 			return WRONG;
1710 		li = y + (1 < yourtm.tm_mon);
1711 		yourtm.tm_mday += year_lengths[isleap(li)];
1712 	}
1713 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1714 		li = y + (1 < yourtm.tm_mon);
1715 		yourtm.tm_mday -= year_lengths[isleap(li)];
1716 		if (increment_overflow32(&y, 1))
1717 			return WRONG;
1718 	}
1719 	for ( ; ; ) {
1720 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1721 		if (yourtm.tm_mday <= i)
1722 			break;
1723 		yourtm.tm_mday -= i;
1724 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1725 			yourtm.tm_mon = 0;
1726 			if (increment_overflow32(&y, 1))
1727 				return WRONG;
1728 		}
1729 	}
1730 	if (increment_overflow32(&y, -TM_YEAR_BASE))
1731 		return WRONG;
1732 	yourtm.tm_year = y;
1733 	if (yourtm.tm_year != y)
1734 		return WRONG;
1735 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1736 		saved_seconds = 0;
1737 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1738 		/*
1739 		** We can't set tm_sec to 0, because that might push the
1740 		** time below the minimum representable time.
1741 		** Set tm_sec to 59 instead.
1742 		** This assumes that the minimum representable time is
1743 		** not in the same minute that a leap second was deleted from,
1744 		** which is a safer assumption than using 58 would be.
1745 		*/
1746 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1747 			return WRONG;
1748 		saved_seconds = yourtm.tm_sec;
1749 		yourtm.tm_sec = SECSPERMIN - 1;
1750 	} else {
1751 		saved_seconds = yourtm.tm_sec;
1752 		yourtm.tm_sec = 0;
1753 	}
1754 	/*
1755 	** Do a binary search (this works whatever time_t's type is).
1756 	*/
1757 	if (!TYPE_SIGNED(time_t)) {
1758 		lo = 0;
1759 		hi = lo - 1;
1760 	} else {
1761 		lo = 1;
1762 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1763 			lo *= 2;
1764 		hi = -(lo + 1);
1765 	}
1766 	for ( ; ; ) {
1767 		t = lo / 2 + hi / 2;
1768 		if (t < lo)
1769 			t = lo;
1770 		else if (t > hi)
1771 			t = hi;
1772 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1773 			/*
1774 			** Assume that t is too extreme to be represented in
1775 			** a struct tm; arrange things so that it is less
1776 			** extreme on the next pass.
1777 			*/
1778 			dir = (t > 0) ? 1 : -1;
1779 		} else	dir = tmcomp(&mytm, &yourtm);
1780 		if (dir != 0) {
1781 			if (t == lo) {
1782 				if (t == time_t_max)
1783 					return WRONG;
1784 				++t;
1785 				++lo;
1786 			} else if (t == hi) {
1787 				if (t == time_t_min)
1788 					return WRONG;
1789 				--t;
1790 				--hi;
1791 			}
1792 			if (lo > hi)
1793 				return WRONG;
1794 			if (dir > 0)
1795 				hi = t;
1796 			else	lo = t;
1797 			continue;
1798 		}
1799 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1800 			break;
1801 		/*
1802 		** Right time, wrong type.
1803 		** Hunt for right time, right type.
1804 		** It's okay to guess wrong since the guess
1805 		** gets checked.
1806 		*/
1807 		sp = (const struct state *)
1808 			((funcp == localsub) ? lclptr : gmtptr);
1809 		if (sp == NULL)
1810 			return WRONG;
1811 		for (i = sp->typecnt - 1; i >= 0; --i) {
1812 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1813 				continue;
1814 			for (j = sp->typecnt - 1; j >= 0; --j) {
1815 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1816 					continue;
1817 				newt = t + sp->ttis[j].tt_gmtoff -
1818 					sp->ttis[i].tt_gmtoff;
1819 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1820 					continue;
1821 				if (tmcomp(&mytm, &yourtm) != 0)
1822 					continue;
1823 				if (mytm.tm_isdst != yourtm.tm_isdst)
1824 					continue;
1825 				/*
1826 				** We have a match.
1827 				*/
1828 				t = newt;
1829 				goto label;
1830 			}
1831 		}
1832 		return WRONG;
1833 	}
1834 label:
1835 	newt = t + saved_seconds;
1836 	if ((newt < t) != (saved_seconds < 0))
1837 		return WRONG;
1838 	t = newt;
1839 	if ((*funcp)(&t, offset, tmp))
1840 		*okayp = true;
1841 	return t;
1842 }
1843 
1844 static time_t
time2(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *),const int_fast32_t offset,int * const okayp)1845 time2(struct tm * const	tmp,
1846       struct tm * (*const funcp)(const time_t *, int_fast32_t, struct tm *),
1847       const int_fast32_t offset,
1848       int *const okayp)
1849 {
1850 	time_t	t;
1851 
1852 	/*
1853 	** First try without normalization of seconds
1854 	** (in case tm_sec contains a value associated with a leap second).
1855 	** If that fails, try with normalization of seconds.
1856 	*/
1857 	t = time2sub(tmp, funcp, offset, okayp, false);
1858 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, true);
1859 }
1860 
1861 static time_t
time1(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *),const int_fast32_t offset)1862 time1(struct tm *const tmp,
1863       struct tm *(*const funcp) (const time_t *, int_fast32_t, struct tm *),
1864       const int_fast32_t offset)
1865 {
1866 	register time_t			t;
1867 	register const struct state *	sp;
1868 	register int			samei, otheri;
1869 	register int			sameind, otherind;
1870 	register int			i;
1871 	register int			nseen;
1872 	int				seen[TZ_MAX_TYPES];
1873 	int				types[TZ_MAX_TYPES];
1874 	int				okay;
1875 
1876 	if (tmp == NULL) {
1877 		errno = EINVAL;
1878 		return WRONG;
1879 	}
1880 	if (tmp->tm_isdst > 1)
1881 		tmp->tm_isdst = 1;
1882 	t = time2(tmp, funcp, offset, &okay);
1883 	if (okay)
1884 		return t;
1885 	if (tmp->tm_isdst < 0)
1886 #ifdef PCTS
1887 		/*
1888 		** POSIX Conformance Test Suite code courtesy Grant Sullivan.
1889 		*/
1890 		tmp->tm_isdst = 0;	/* reset to std and try again */
1891 #else
1892 		return t;
1893 #endif /* !defined PCTS */
1894 	/*
1895 	** We're supposed to assume that somebody took a time of one type
1896 	** and did some math on it that yielded a "struct tm" that's bad.
1897 	** We try to divine the type they started from and adjust to the
1898 	** type they need.
1899 	*/
1900 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1901 	if (sp == NULL)
1902 		return WRONG;
1903 	for (i = 0; i < sp->typecnt; ++i)
1904 		seen[i] = false;
1905 	nseen = 0;
1906 	for (i = sp->timecnt - 1; i >= 0; --i)
1907 		if (!seen[sp->types[i]]) {
1908 			seen[sp->types[i]] = true;
1909 			types[nseen++] = sp->types[i];
1910 		}
1911 	for (sameind = 0; sameind < nseen; ++sameind) {
1912 		samei = types[sameind];
1913 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1914 			continue;
1915 		for (otherind = 0; otherind < nseen; ++otherind) {
1916 			otheri = types[otherind];
1917 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1918 				continue;
1919 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1920 					sp->ttis[samei].tt_gmtoff;
1921 			tmp->tm_isdst = !tmp->tm_isdst;
1922 			t = time2(tmp, funcp, offset, &okay);
1923 			if (okay)
1924 				return t;
1925 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1926 					sp->ttis[samei].tt_gmtoff;
1927 			tmp->tm_isdst = !tmp->tm_isdst;
1928 		}
1929 	}
1930 	return WRONG;
1931 }
1932 
1933 time_t
mktime(struct tm * const tmp)1934 mktime(struct tm *const tmp)
1935 {
1936 	tzset();
1937 	return time1(tmp, localsub, 0L);
1938 }
1939 
1940 #ifdef STD_INSPIRED
1941 
1942 time_t
timelocal(struct tm * const tmp)1943 timelocal(struct tm *const tmp)
1944 {
1945 	if (tmp != NULL)
1946 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1947 	return mktime(tmp);
1948 }
1949 
1950 time_t
timegm(struct tm * const tmp)1951 timegm(struct tm *const tmp)
1952 {
1953 	if (tmp != NULL)
1954 		tmp->tm_isdst = 0;
1955 	return time1(tmp, gmtsub, 0L);
1956 }
1957 
1958 time_t
timeoff(struct tm * const tmp,const long offset)1959 timeoff(struct tm *const tmp, const long offset)
1960 {
1961 	if (tmp != NULL)
1962 		tmp->tm_isdst = 0;
1963 	return time1(tmp, gmtsub, offset);
1964 }
1965 
1966 #endif /* defined STD_INSPIRED */
1967 
1968 #ifdef CMUCS
1969 
1970 /*
1971 ** The following is supplied for compatibility with
1972 ** previous versions of the CMUCS runtime library.
1973 */
1974 
1975 long
gtime(struct tm * const tmp)1976 gtime(struct tm *const tmp)
1977 {
1978 	const time_t	t = mktime(tmp);
1979 
1980 	if (t == WRONG)
1981 		return -1;
1982 	return t;
1983 }
1984 
1985 #endif /* defined CMUCS */
1986 
1987 /*
1988 ** XXX--is the below the right way to conditionalize??
1989 */
1990 
1991 #ifdef STD_INSPIRED
1992 
1993 /*
1994 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1995 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1996 ** is not the case if we are accounting for leap seconds.
1997 ** So, we provide the following conversion routines for use
1998 ** when exchanging timestamps with POSIX conforming systems.
1999 */
2000 
2001 static int_fast64_t
leapcorr(time_t * timep)2002 leapcorr(time_t *timep)
2003 {
2004 	register struct state *		sp;
2005 	register struct lsinfo *	lp;
2006 	register int			i;
2007 
2008 	sp = lclptr;
2009 	i = sp->leapcnt;
2010 	while (--i >= 0) {
2011 		lp = &sp->lsis[i];
2012 		if (*timep >= lp->ls_trans)
2013 			return lp->ls_corr;
2014 	}
2015 	return 0;
2016 }
2017 
2018 time_t
time2posix(time_t t)2019 time2posix(time_t t)
2020 {
2021 	tzset();
2022 	return t - leapcorr(&t);
2023 }
2024 
2025 time_t
posix2time(time_t t)2026 posix2time(time_t t)
2027 {
2028 	time_t	x;
2029 	time_t	y;
2030 
2031 	tzset();
2032 	/*
2033 	** For a positive leap second hit, the result
2034 	** is not unique. For a negative leap second
2035 	** hit, the corresponding time doesn't exist,
2036 	** so we return an adjacent second.
2037 	*/
2038 	x = t + leapcorr(&t);
2039 	y = x - leapcorr(&x);
2040 	if (y < t) {
2041 		do {
2042 			x++;
2043 			y = x - leapcorr(&x);
2044 		} while (y < t);
2045 		if (t != y)
2046 			return x - 1;
2047 	} else if (y > t) {
2048 		do {
2049 			--x;
2050 			y = x - leapcorr(&x);
2051 		} while (y > t);
2052 		if (t != y)
2053 			return x + 1;
2054 	}
2055 	return x;
2056 }
2057 
2058 #endif /* defined STD_INSPIRED */
2059