• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2023, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 #ifndef AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
12 #define AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
13 
14 #include <arm_neon.h>
15 #include <assert.h>
16 #include <stdbool.h>
17 
18 #include "aom_dsp/aom_dsp_common.h"
19 #include "aom_dsp/arm/mem_neon.h"
20 #include "aom_dsp/arm/sum_neon.h"
21 #include "aom_ports/mem.h"
22 #include "av1/common/scale.h"
23 #include "av1/common/warped_motion.h"
24 #include "config/av1_rtcd.h"
25 
26 static AOM_FORCE_INLINE int16x8_t
27 highbd_horizontal_filter_4x1_f4(int16x8_t rv0, int16x8_t rv1, int16x8_t rv2,
28                                 int16x8_t rv3, int bd, int sx, int alpha);
29 
30 static AOM_FORCE_INLINE int16x8_t highbd_horizontal_filter_8x1_f8(
31     int16x8_t rv0, int16x8_t rv1, int16x8_t rv2, int16x8_t rv3, int16x8_t rv4,
32     int16x8_t rv5, int16x8_t rv6, int16x8_t rv7, int bd, int sx, int alpha);
33 
34 static AOM_FORCE_INLINE int16x8_t highbd_horizontal_filter_4x1_f1(
35     int16x8_t rv0, int16x8_t rv1, int16x8_t rv2, int16x8_t rv3, int bd, int sx);
36 
37 static AOM_FORCE_INLINE int16x8_t highbd_horizontal_filter_8x1_f1(
38     int16x8_t rv0, int16x8_t rv1, int16x8_t rv2, int16x8_t rv3, int16x8_t rv4,
39     int16x8_t rv5, int16x8_t rv6, int16x8_t rv7, int bd, int sx);
40 
41 static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp,
42                                                          int sy);
43 
44 static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp,
45                                                            int sy);
46 
47 static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp,
48                                                          int sy, int gamma);
49 
50 static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp,
51                                                            int sy, int gamma);
52 
load_filters_1(int ofs)53 static AOM_FORCE_INLINE int16x8_t load_filters_1(int ofs) {
54   const int ofs0 = ROUND_POWER_OF_TWO(ofs, WARPEDDIFF_PREC_BITS);
55 
56   const int16_t *base = av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS];
57   return vld1q_s16(base + ofs0 * 8);
58 }
59 
load_filters_4(int16x8_t out[],int ofs,int stride)60 static AOM_FORCE_INLINE void load_filters_4(int16x8_t out[], int ofs,
61                                             int stride) {
62   const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
63   const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
64   const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
65   const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS);
66 
67   const int16_t *base = av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS];
68   out[0] = vld1q_s16(base + ofs0 * 8);
69   out[1] = vld1q_s16(base + ofs1 * 8);
70   out[2] = vld1q_s16(base + ofs2 * 8);
71   out[3] = vld1q_s16(base + ofs3 * 8);
72 }
73 
load_filters_8(int16x8_t out[],int ofs,int stride)74 static AOM_FORCE_INLINE void load_filters_8(int16x8_t out[], int ofs,
75                                             int stride) {
76   const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
77   const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
78   const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
79   const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS);
80   const int ofs4 = ROUND_POWER_OF_TWO(ofs + stride * 4, WARPEDDIFF_PREC_BITS);
81   const int ofs5 = ROUND_POWER_OF_TWO(ofs + stride * 5, WARPEDDIFF_PREC_BITS);
82   const int ofs6 = ROUND_POWER_OF_TWO(ofs + stride * 6, WARPEDDIFF_PREC_BITS);
83   const int ofs7 = ROUND_POWER_OF_TWO(ofs + stride * 7, WARPEDDIFF_PREC_BITS);
84 
85   const int16_t *base = av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS];
86   out[0] = vld1q_s16(base + ofs0 * 8);
87   out[1] = vld1q_s16(base + ofs1 * 8);
88   out[2] = vld1q_s16(base + ofs2 * 8);
89   out[3] = vld1q_s16(base + ofs3 * 8);
90   out[4] = vld1q_s16(base + ofs4 * 8);
91   out[5] = vld1q_s16(base + ofs5 * 8);
92   out[6] = vld1q_s16(base + ofs6 * 8);
93   out[7] = vld1q_s16(base + ofs7 * 8);
94 }
95 
clip_pixel_highbd_vec(int32x4_t val,int bd)96 static AOM_FORCE_INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val,
97                                                          int bd) {
98   const int limit = (1 << bd) - 1;
99   return vqmovun_s32(vminq_s32(val, vdupq_n_s32(limit)));
100 }
101 
clamp_horizontal(uint16x8x2_t src_1,int out_of_boundary_left,int out_of_boundary_right,const uint16_t * ref,int iy,int stride,int width,const uint16x8_t indx0,const uint16x8_t indx1)102 static AOM_FORCE_INLINE uint16x8x2_t clamp_horizontal(
103     uint16x8x2_t src_1, int out_of_boundary_left, int out_of_boundary_right,
104     const uint16_t *ref, int iy, int stride, int width, const uint16x8_t indx0,
105     const uint16x8_t indx1) {
106   if (out_of_boundary_left >= 0) {
107     uint16x8_t cmp_vec = vdupq_n_u16(out_of_boundary_left);
108     uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride]);
109     uint16x8_t mask0 = vcleq_u16(indx0, cmp_vec);
110     uint16x8_t mask1 = vcleq_u16(indx1, cmp_vec);
111     src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]);
112     src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]);
113   }
114   if (out_of_boundary_right >= 0) {
115     uint16x8_t cmp_vec = vdupq_n_u16(15 - out_of_boundary_right);
116     uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride + width - 1]);
117     uint16x8_t mask0 = vcgeq_u16(indx0, cmp_vec);
118     uint16x8_t mask1 = vcgeq_u16(indx1, cmp_vec);
119     src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]);
120     src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]);
121   }
122   return src_1;
123 }
124 
warp_affine_horizontal(const uint16_t * ref,int width,int height,int stride,int p_width,int16_t alpha,int16_t beta,int iy4,int sx4,int ix4,int16x8_t tmp[],int bd)125 static AOM_FORCE_INLINE void warp_affine_horizontal(const uint16_t *ref,
126                                                     int width, int height,
127                                                     int stride, int p_width,
128                                                     int16_t alpha, int16_t beta,
129                                                     int iy4, int sx4, int ix4,
130                                                     int16x8_t tmp[], int bd) {
131   const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
132 
133   if (ix4 <= -7) {
134     for (int k = 0; k < 15; ++k) {
135       int iy = clamp(iy4 + k - 7, 0, height - 1);
136       int32_t dup_val = (1 << (bd + FILTER_BITS - round0 - 1)) +
137                         ref[iy * stride] * (1 << (FILTER_BITS - round0));
138       tmp[k] = vdupq_n_s16(dup_val);
139     }
140     return;
141   } else if (ix4 >= width + 6) {
142     for (int k = 0; k < 15; ++k) {
143       int iy = clamp(iy4 + k - 7, 0, height - 1);
144       int32_t dup_val =
145           (1 << (bd + FILTER_BITS - round0 - 1)) +
146           ref[iy * stride + (width - 1)] * (1 << (FILTER_BITS - round0));
147       tmp[k] = vdupq_n_s16(dup_val);
148     }
149     return;
150   }
151 
152   static const uint16_t kIotaArr[] = { 0, 1, 2,  3,  4,  5,  6,  7,
153                                        8, 9, 10, 11, 12, 13, 14, 15 };
154   const uint16x8_t indx0 = vld1q_u16(kIotaArr);
155   const uint16x8_t indx1 = vld1q_u16(kIotaArr + 8);
156 
157   const int out_of_boundary_left = -(ix4 - 6);
158   const int out_of_boundary_right = (ix4 + 8) - width;
159 
160 #define APPLY_HORIZONTAL_SHIFT_4X1(fn, ...)                                \
161   do {                                                                     \
162     if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) {         \
163       for (int k = 0; k < 15; ++k) {                                       \
164         const int iy = clamp(iy4 + k - 7, 0, height - 1);                  \
165         const uint16_t *idx = ref + iy * stride + ix4 - 7;                 \
166         /* We don't use vld1q_u16_x2 here as LLVM generates an incorrect   \
167          * alignment hint for this intrinsic that causes a SIGBUS on Armv7 \
168          * targets when alignment checks are enabled.                      \
169          * (See bug: b/349455146) */                                       \
170         uint16x8x2_t src_1 = { { vld1q_u16(idx), vld1q_u16(idx + 8) } };   \
171         src_1 = clamp_horizontal(src_1, out_of_boundary_left,              \
172                                  out_of_boundary_right, ref, iy, stride,   \
173                                  width, indx0, indx1);                     \
174         int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),     \
175                                   vreinterpretq_s16_u16(src_1.val[1]), 0); \
176         int16x8_t rv1 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),     \
177                                   vreinterpretq_s16_u16(src_1.val[1]), 1); \
178         int16x8_t rv2 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),     \
179                                   vreinterpretq_s16_u16(src_1.val[1]), 2); \
180         int16x8_t rv3 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),     \
181                                   vreinterpretq_s16_u16(src_1.val[1]), 3); \
182         tmp[k] = (fn)(rv0, rv1, rv2, rv3, __VA_ARGS__);                    \
183       }                                                                    \
184     } else {                                                               \
185       for (int k = 0; k < 15; ++k) {                                       \
186         const int iy = clamp(iy4 + k - 7, 0, height - 1);                  \
187         const uint16_t *src = ref + iy * stride + ix4;                     \
188         int16x8_t rv0 = vreinterpretq_s16_u16(vld1q_u16(src - 7));         \
189         int16x8_t rv1 = vreinterpretq_s16_u16(vld1q_u16(src - 6));         \
190         int16x8_t rv2 = vreinterpretq_s16_u16(vld1q_u16(src - 5));         \
191         int16x8_t rv3 = vreinterpretq_s16_u16(vld1q_u16(src - 4));         \
192         tmp[k] = (fn)(rv0, rv1, rv2, rv3, __VA_ARGS__);                    \
193       }                                                                    \
194     }                                                                      \
195   } while (0)
196 
197 #define APPLY_HORIZONTAL_SHIFT_8X1(fn, ...)                                 \
198   do {                                                                      \
199     if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) {          \
200       for (int k = 0; k < 15; ++k) {                                        \
201         const int iy = clamp(iy4 + k - 7, 0, height - 1);                   \
202         const uint16_t *idx = ref + iy * stride + ix4 - 7;                  \
203         /* We don't use vld1q_u16_x2 here as LLVM generates an incorrect    \
204          * alignment hint for this intrinsic that causes a SIGBUS on Armv7  \
205          * targets when alignment checks are enabled.                       \
206          * (See bug: b/349455146) */                                        \
207         uint16x8x2_t src_1 = { { vld1q_u16(idx), vld1q_u16(idx + 8) } };    \
208         src_1 = clamp_horizontal(src_1, out_of_boundary_left,               \
209                                  out_of_boundary_right, ref, iy, stride,    \
210                                  width, indx0, indx1);                      \
211         int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
212                                   vreinterpretq_s16_u16(src_1.val[1]), 0);  \
213         int16x8_t rv1 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
214                                   vreinterpretq_s16_u16(src_1.val[1]), 1);  \
215         int16x8_t rv2 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
216                                   vreinterpretq_s16_u16(src_1.val[1]), 2);  \
217         int16x8_t rv3 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
218                                   vreinterpretq_s16_u16(src_1.val[1]), 3);  \
219         int16x8_t rv4 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
220                                   vreinterpretq_s16_u16(src_1.val[1]), 4);  \
221         int16x8_t rv5 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
222                                   vreinterpretq_s16_u16(src_1.val[1]), 5);  \
223         int16x8_t rv6 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
224                                   vreinterpretq_s16_u16(src_1.val[1]), 6);  \
225         int16x8_t rv7 = vextq_s16(vreinterpretq_s16_u16(src_1.val[0]),      \
226                                   vreinterpretq_s16_u16(src_1.val[1]), 7);  \
227         tmp[k] = (fn)(rv0, rv1, rv2, rv3, rv4, rv5, rv6, rv7, __VA_ARGS__); \
228       }                                                                     \
229     } else {                                                                \
230       for (int k = 0; k < 15; ++k) {                                        \
231         const int iy = clamp(iy4 + k - 7, 0, height - 1);                   \
232         const uint16_t *src = ref + iy * stride + ix4;                      \
233         int16x8_t rv0 = vreinterpretq_s16_u16(vld1q_u16(src - 7));          \
234         int16x8_t rv1 = vreinterpretq_s16_u16(vld1q_u16(src - 6));          \
235         int16x8_t rv2 = vreinterpretq_s16_u16(vld1q_u16(src - 5));          \
236         int16x8_t rv3 = vreinterpretq_s16_u16(vld1q_u16(src - 4));          \
237         int16x8_t rv4 = vreinterpretq_s16_u16(vld1q_u16(src - 3));          \
238         int16x8_t rv5 = vreinterpretq_s16_u16(vld1q_u16(src - 2));          \
239         int16x8_t rv6 = vreinterpretq_s16_u16(vld1q_u16(src - 1));          \
240         int16x8_t rv7 = vreinterpretq_s16_u16(vld1q_u16(src - 0));          \
241         tmp[k] = (fn)(rv0, rv1, rv2, rv3, rv4, rv5, rv6, rv7, __VA_ARGS__); \
242       }                                                                     \
243     }                                                                       \
244   } while (0)
245 
246   if (p_width == 4) {
247     if (beta == 0) {
248       if (alpha == 0) {
249         APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f1, bd, sx4);
250       } else {
251         APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f4, bd, sx4,
252                                    alpha);
253       }
254     } else {
255       if (alpha == 0) {
256         APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f1, bd,
257                                    (sx4 + beta * (k - 3)));
258       } else {
259         APPLY_HORIZONTAL_SHIFT_4X1(highbd_horizontal_filter_4x1_f4, bd,
260                                    (sx4 + beta * (k - 3)), alpha);
261       }
262     }
263   } else {
264     if (beta == 0) {
265       if (alpha == 0) {
266         APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f1, bd, sx4);
267       } else {
268         APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f8, bd, sx4,
269                                    alpha);
270       }
271     } else {
272       if (alpha == 0) {
273         APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f1, bd,
274                                    (sx4 + beta * (k - 3)));
275       } else {
276         APPLY_HORIZONTAL_SHIFT_8X1(highbd_horizontal_filter_8x1_f8, bd,
277                                    (sx4 + beta * (k - 3)), alpha);
278       }
279     }
280   }
281 
282 #undef APPLY_HORIZONTAL_SHIFT_4X1
283 #undef APPLY_HORIZONTAL_SHIFT_8X1
284 }
285 
highbd_vertical_filter_4x1_f4(uint16_t * pred,int p_stride,int bd,uint16_t * dst,int dst_stride,bool is_compound,bool do_average,bool use_dist_wtd_comp_avg,int fwd,int bwd,int16_t gamma,const int16x8_t * tmp,int i,int sy,int j)286 static AOM_FORCE_INLINE void highbd_vertical_filter_4x1_f4(
287     uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
288     bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
289     int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
290   int32x4_t sum0 = gamma == 0 ? vertical_filter_4x1_f1(tmp, sy)
291                               : vertical_filter_4x1_f4(tmp, sy, gamma);
292 
293   const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
294   const int offset_bits_vert = bd + 2 * FILTER_BITS - round0;
295 
296   sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert));
297 
298   uint16_t *dst16 = &pred[i * p_stride + j];
299 
300   if (!is_compound) {
301     const int reduce_bits_vert = 2 * FILTER_BITS - round0;
302     sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert));
303 
304     const int res_sub_const = (1 << (bd - 1)) + (1 << bd);
305     sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const));
306     uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd);
307     vst1_u16(dst16, res0);
308     return;
309   }
310 
311   sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS);
312 
313   uint16_t *p = &dst[i * dst_stride + j];
314 
315   if (!do_average) {
316     vst1_u16(p, vqmovun_s32(sum0));
317     return;
318   }
319 
320   uint16x4_t p0 = vld1_u16(p);
321   int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(p0));
322   if (use_dist_wtd_comp_avg) {
323     p_vec0 = vmulq_n_s32(p_vec0, fwd);
324     p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd);
325     p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS);
326   } else {
327     p_vec0 = vhaddq_s32(p_vec0, sum0);
328   }
329 
330   const int offset_bits = bd + 2 * FILTER_BITS - round0;
331   const int round1 = COMPOUND_ROUND1_BITS;
332   const int res_sub_const =
333       (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1));
334   const int round_bits = 2 * FILTER_BITS - round0 - round1;
335 
336   p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const));
337   p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits));
338   uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd);
339   vst1_u16(dst16, res0);
340 }
341 
highbd_vertical_filter_8x1_f8(uint16_t * pred,int p_stride,int bd,uint16_t * dst,int dst_stride,bool is_compound,bool do_average,bool use_dist_wtd_comp_avg,int fwd,int bwd,int16_t gamma,const int16x8_t * tmp,int i,int sy,int j)342 static AOM_FORCE_INLINE void highbd_vertical_filter_8x1_f8(
343     uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
344     bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
345     int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
346   int32x4x2_t sums = gamma == 0 ? vertical_filter_8x1_f1(tmp, sy)
347                                 : vertical_filter_8x1_f8(tmp, sy, gamma);
348   int32x4_t sum0 = sums.val[0];
349   int32x4_t sum1 = sums.val[1];
350 
351   const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
352   const int offset_bits_vert = bd + 2 * FILTER_BITS - round0;
353 
354   sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert));
355   sum1 = vaddq_s32(sum1, vdupq_n_s32(1 << offset_bits_vert));
356 
357   uint16_t *dst16 = &pred[i * p_stride + j];
358 
359   if (!is_compound) {
360     const int reduce_bits_vert = 2 * FILTER_BITS - round0;
361     sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert));
362     sum1 = vrshlq_s32(sum1, vdupq_n_s32(-reduce_bits_vert));
363 
364     const int res_sub_const = (1 << (bd - 1)) + (1 << bd);
365     sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const));
366     sum1 = vsubq_s32(sum1, vdupq_n_s32(res_sub_const));
367     uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd);
368     uint16x4_t res1 = clip_pixel_highbd_vec(sum1, bd);
369     vst1_u16(dst16, res0);
370     vst1_u16(dst16 + 4, res1);
371     return;
372   }
373 
374   sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS);
375   sum1 = vrshrq_n_s32(sum1, COMPOUND_ROUND1_BITS);
376 
377   uint16_t *p = &dst[i * dst_stride + j];
378 
379   if (!do_average) {
380     vst1_u16(p, vqmovun_s32(sum0));
381     vst1_u16(p + 4, vqmovun_s32(sum1));
382     return;
383   }
384 
385   uint16x8_t p0 = vld1q_u16(p);
386   int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(p0)));
387   int32x4_t p_vec1 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(p0)));
388   if (use_dist_wtd_comp_avg) {
389     p_vec0 = vmulq_n_s32(p_vec0, fwd);
390     p_vec1 = vmulq_n_s32(p_vec1, fwd);
391     p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd);
392     p_vec1 = vmlaq_n_s32(p_vec1, sum1, bwd);
393     p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS);
394     p_vec1 = vshrq_n_s32(p_vec1, DIST_PRECISION_BITS);
395   } else {
396     p_vec0 = vhaddq_s32(p_vec0, sum0);
397     p_vec1 = vhaddq_s32(p_vec1, sum1);
398   }
399 
400   const int offset_bits = bd + 2 * FILTER_BITS - round0;
401   const int round1 = COMPOUND_ROUND1_BITS;
402   const int res_sub_const =
403       (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1));
404   const int round_bits = 2 * FILTER_BITS - round0 - round1;
405 
406   p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const));
407   p_vec1 = vsubq_s32(p_vec1, vdupq_n_s32(res_sub_const));
408 
409   p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits));
410   p_vec1 = vrshlq_s32(p_vec1, vdupq_n_s32(-round_bits));
411   uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd);
412   uint16x4_t res1 = clip_pixel_highbd_vec(p_vec1, bd);
413   vst1_u16(dst16, res0);
414   vst1_u16(dst16 + 4, res1);
415 }
416 
warp_affine_vertical(uint16_t * pred,int p_width,int p_height,int p_stride,int bd,uint16_t * dst,int dst_stride,bool is_compound,bool do_average,bool use_dist_wtd_comp_avg,int fwd,int bwd,int16_t gamma,int16_t delta,const int16x8_t * tmp,int i,int sy4,int j)417 static AOM_FORCE_INLINE void warp_affine_vertical(
418     uint16_t *pred, int p_width, int p_height, int p_stride, int bd,
419     uint16_t *dst, int dst_stride, bool is_compound, bool do_average,
420     bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, int16_t delta,
421     const int16x8_t *tmp, int i, int sy4, int j) {
422   int limit_height = p_height > 4 ? 8 : 4;
423 
424   if (p_width > 4) {
425     // p_width == 8
426     for (int k = 0; k < limit_height; ++k) {
427       int sy = sy4 + delta * k;
428       highbd_vertical_filter_8x1_f8(
429           pred, p_stride, bd, dst, dst_stride, is_compound, do_average,
430           use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j);
431     }
432   } else {
433     // p_width == 4
434     for (int k = 0; k < limit_height; ++k) {
435       int sy = sy4 + delta * k;
436       highbd_vertical_filter_4x1_f4(
437           pred, p_stride, bd, dst, dst_stride, is_compound, do_average,
438           use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j);
439     }
440   }
441 }
442 
highbd_warp_affine_common(const int32_t * mat,const uint16_t * ref,int width,int height,int stride,uint16_t * pred,int p_col,int p_row,int p_width,int p_height,int p_stride,int subsampling_x,int subsampling_y,int bd,ConvolveParams * conv_params,int16_t alpha,int16_t beta,int16_t gamma,int16_t delta)443 static AOM_FORCE_INLINE void highbd_warp_affine_common(
444     const int32_t *mat, const uint16_t *ref, int width, int height, int stride,
445     uint16_t *pred, int p_col, int p_row, int p_width, int p_height,
446     int p_stride, int subsampling_x, int subsampling_y, int bd,
447     ConvolveParams *conv_params, int16_t alpha, int16_t beta, int16_t gamma,
448     int16_t delta) {
449   uint16_t *const dst = conv_params->dst;
450   const int dst_stride = conv_params->dst_stride;
451   const bool is_compound = conv_params->is_compound;
452   const bool do_average = conv_params->do_average;
453   const bool use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg;
454   const int fwd = conv_params->fwd_offset;
455   const int bwd = conv_params->bck_offset;
456 
457   assert(IMPLIES(is_compound, dst != NULL));
458 
459   for (int i = 0; i < p_height; i += 8) {
460     for (int j = 0; j < p_width; j += 8) {
461       // Calculate the center of this 8x8 block,
462       // project to luma coordinates (if in a subsampled chroma plane),
463       // apply the affine transformation,
464       // then convert back to the original coordinates (if necessary)
465       const int32_t src_x = (j + 4 + p_col) << subsampling_x;
466       const int32_t src_y = (i + 4 + p_row) << subsampling_y;
467       const int64_t dst_x =
468           (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
469       const int64_t dst_y =
470           (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
471       const int64_t x4 = dst_x >> subsampling_x;
472       const int64_t y4 = dst_y >> subsampling_y;
473 
474       const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
475       int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
476       const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
477       int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
478 
479       sx4 += alpha * (-4) + beta * (-4);
480       sy4 += gamma * (-4) + delta * (-4);
481 
482       sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
483       sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
484 
485       // Each horizontal filter result is formed by the sum of up to eight
486       // multiplications by filter values and then a shift. Although both the
487       // inputs and filters are loaded as int16, the input data is at most bd
488       // bits and the filters are at most 8 bits each. Additionally since we
489       // know all possible filter values we know that the sum of absolute
490       // filter values will fit in at most 9 bits. With this in mind we can
491       // conclude that the sum of each filter application will fit in bd + 9
492       // bits. The shift following the summation is ROUND0_BITS (which is 3),
493       // +2 for 12-bit, which gives us a final storage of:
494       // bd ==  8: ( 8 + 9) - 3 => 14 bits
495       // bd == 10: (10 + 9) - 3 => 16 bits
496       // bd == 12: (12 + 9) - 5 => 16 bits
497       // So it is safe to use int16x8_t as the intermediate storage type here.
498       int16x8_t tmp[15];
499 
500       warp_affine_horizontal(ref, width, height, stride, p_width, alpha, beta,
501                              iy4, sx4, ix4, tmp, bd);
502       warp_affine_vertical(pred, p_width, p_height, p_stride, bd, dst,
503                            dst_stride, is_compound, do_average,
504                            use_dist_wtd_comp_avg, fwd, bwd, gamma, delta, tmp,
505                            i, sy4, j);
506     }
507   }
508 }
509 
510 #endif  // AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
511