• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // <random>
11 
12 // template<class _IntType = int>
13 // class uniform_int_distribution
14 
15 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
16 
17 #include <random>
18 #include <cassert>
19 #include <vector>
20 #include <numeric>
21 #include <cstddef>
22 
23 template <class T>
24 inline
25 T
sqr(T x)26 sqr(T x)
27 {
28     return x * x;
29 }
30 
main()31 int main()
32 {
33     {
34         typedef std::uniform_int_distribution<> D;
35         typedef std::minstd_rand G;
36         typedef D::param_type P;
37         G g;
38         D d(5, 100);
39         P p(-10, 20);
40         const int N = 100000;
41         std::vector<D::result_type> u;
42         for (int i = 0; i < N; ++i)
43         {
44             D::result_type v = d(g, p);
45             assert(p.a() <= v && v <= p.b());
46             u.push_back(v);
47         }
48         double mean = std::accumulate(u.begin(), u.end(),
49                                               double(0)) / u.size();
50         double var = 0;
51         double skew = 0;
52         double kurtosis = 0;
53         for (std::size_t i = 0; i < u.size(); ++i)
54         {
55             double dbl = (u[i] - mean);
56             double d2 = sqr(dbl);
57             var += d2;
58             skew += dbl * d2;
59             kurtosis += d2 * d2;
60         }
61         var /= u.size();
62         double dev = std::sqrt(var);
63         skew /= u.size() * dev * var;
64         kurtosis /= u.size() * var * var;
65         kurtosis -= 3;
66         double x_mean = ((double)p.a() + p.b()) / 2;
67         double x_var = (sqr((double)p.b() - p.a() + 1) - 1) / 12;
68         double x_skew = 0;
69         double x_kurtosis = -6. * (sqr((double)p.b() - p.a() + 1) + 1) /
70                             (5. * (sqr((double)p.b() - p.a() + 1) - 1));
71         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
72         assert(std::abs((var - x_var) / x_var) < 0.01);
73         assert(std::abs(skew - x_skew) < 0.01);
74         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
75     }
76 }
77