1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 * Copyright 2021 Valve Corporation
4 *
5 * SPDX-License-Identifier: MIT
6 */
7
8 #include "ac_nir.h"
9 #include "ac_nir_helpers.h"
10 #include "nir_builder.h"
11
12 /* This code is adapted from ac_llvm_cull.c, hence the copyright to AMD. */
13
14 typedef struct
15 {
16 nir_def *w_reflection;
17 nir_def *all_w_negative_or_zero_or_nan;
18 nir_def *any_w_negative;
19 } position_w_info;
20
21 static void
analyze_position_w(nir_builder * b,nir_def * pos[][4],unsigned num_vertices,position_w_info * w_info)22 analyze_position_w(nir_builder *b, nir_def *pos[][4], unsigned num_vertices,
23 position_w_info *w_info)
24 {
25 w_info->all_w_negative_or_zero_or_nan = nir_imm_true(b);
26 w_info->w_reflection = nir_imm_false(b);
27 w_info->any_w_negative = nir_imm_false(b);
28
29 for (unsigned i = 0; i < num_vertices; ++i) {
30 nir_def *neg_w = nir_flt_imm(b, pos[i][3], 0.0f);
31 nir_def *neg_or_zero_or_nan_w = nir_fgeu(b, nir_imm_float(b, 0.0f), pos[i][3]);
32
33 w_info->w_reflection = nir_ixor(b, neg_w, w_info->w_reflection);
34 w_info->any_w_negative = nir_ior(b, neg_w, w_info->any_w_negative);
35 w_info->all_w_negative_or_zero_or_nan = nir_iand(b, neg_or_zero_or_nan_w, w_info->all_w_negative_or_zero_or_nan);
36 }
37 }
38
39 static nir_def *
cull_face_triangle(nir_builder * b,nir_def * pos[3][4],const position_w_info * w_info)40 cull_face_triangle(nir_builder *b, nir_def *pos[3][4], const position_w_info *w_info)
41 {
42 nir_def *det_t0 = nir_fsub(b, pos[2][0], pos[0][0]);
43 nir_def *det_t1 = nir_fsub(b, pos[1][1], pos[0][1]);
44 nir_def *det_t2 = nir_fsub(b, pos[0][0], pos[1][0]);
45 nir_def *det_t3 = nir_fsub(b, pos[0][1], pos[2][1]);
46 nir_def *det_p0 = nir_fmul(b, det_t0, det_t1);
47 nir_def *det_p1 = nir_fmul(b, det_t2, det_t3);
48 nir_def *det = nir_fsub(b, det_p0, det_p1);
49
50 det = nir_bcsel(b, w_info->w_reflection, nir_fneg(b, det), det);
51
52 nir_def *front_facing_ccw = nir_fgt_imm(b, det, 0.0f);
53 nir_def *zero_area = nir_feq_imm(b, det, 0.0f);
54 nir_def *ccw = nir_load_cull_ccw_amd(b);
55 nir_def *front_facing = nir_ieq(b, front_facing_ccw, ccw);
56 nir_def *cull_front = nir_load_cull_front_face_enabled_amd(b);
57 nir_def *cull_back = nir_load_cull_back_face_enabled_amd(b);
58
59 nir_def *face_culled = nir_bcsel(b, front_facing, cull_front, cull_back);
60 face_culled = nir_ior(b, face_culled, zero_area);
61
62 /* Don't reject NaN and +/-infinity, these are tricky.
63 * Just trust fixed-function HW to handle these cases correctly.
64 */
65 return nir_iand(b, face_culled, nir_fisfinite(b, det));
66 }
67
68 static void
calc_bbox_triangle(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2])69 calc_bbox_triangle(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2])
70 {
71 for (unsigned chan = 0; chan < 2; ++chan) {
72 bbox_min[chan] = nir_fmin(b, pos[0][chan], nir_fmin(b, pos[1][chan], pos[2][chan]));
73 bbox_max[chan] = nir_fmax(b, pos[0][chan], nir_fmax(b, pos[1][chan], pos[2][chan]));
74 }
75 }
76
77 static nir_def *
cull_frustrum(nir_builder * b,nir_def * bbox_min[2],nir_def * bbox_max[2])78 cull_frustrum(nir_builder *b, nir_def *bbox_min[2], nir_def *bbox_max[2])
79 {
80 nir_def *prim_outside_view = nir_imm_false(b);
81
82 for (unsigned chan = 0; chan < 2; ++chan) {
83 prim_outside_view = nir_ior(b, prim_outside_view, nir_flt_imm(b, bbox_max[chan], -1.0f));
84 prim_outside_view = nir_ior(b, prim_outside_view, nir_fgt_imm(b, bbox_min[chan], 1.0f));
85 }
86
87 return prim_outside_view;
88 }
89
90 static nir_def *
cull_small_primitive_triangle(nir_builder * b,nir_def * bbox_min[2],nir_def * bbox_max[2])91 cull_small_primitive_triangle(nir_builder *b, nir_def *bbox_min[2], nir_def *bbox_max[2])
92 {
93 nir_def *vp = nir_load_cull_triangle_viewport_xy_scale_and_offset_amd(b);
94 nir_def *small_prim_precision = nir_load_cull_small_triangle_precision_amd(b);
95 nir_def *rejected = nir_imm_false(b);
96
97 for (unsigned chan = 0; chan < 2; ++chan) {
98 nir_def *vp_scale = nir_channel(b, vp, chan);
99 nir_def *vp_translate = nir_channel(b, vp, 2 + chan);
100
101 /* Convert the position to screen-space coordinates. */
102 nir_def *min = nir_ffma(b, bbox_min[chan], vp_scale, vp_translate);
103 nir_def *max = nir_ffma(b, bbox_max[chan], vp_scale, vp_translate);
104
105 /* Scale the bounding box according to precision. */
106 min = nir_fsub(b, min, small_prim_precision);
107 max = nir_fadd(b, max, small_prim_precision);
108
109 /* Determine if the bbox intersects the sample point, by checking if the min and max round to the same int. */
110 min = nir_fround_even(b, min);
111 max = nir_fround_even(b, max);
112
113 nir_def *rounded_to_eq = nir_feq(b, min, max);
114 rejected = nir_ior(b, rejected, rounded_to_eq);
115 }
116
117 return rejected;
118 }
119
120 static nir_def *
ac_nir_cull_triangle(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],position_w_info * w_info,ac_nir_cull_accepted accept_func,void * state)121 ac_nir_cull_triangle(nir_builder *b,
122 nir_def *initially_accepted,
123 nir_def *pos[3][4],
124 position_w_info *w_info,
125 ac_nir_cull_accepted accept_func,
126 void *state)
127 {
128 nir_def *accepted = initially_accepted;
129 accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative_or_zero_or_nan));
130 accepted = nir_iand(b, accepted, nir_inot(b, cull_face_triangle(b, pos, w_info)));
131
132 nir_def *bbox_accepted = NULL;
133
134 nir_if *if_accepted = nir_push_if(b, accepted);
135 {
136 nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0};
137 calc_bbox_triangle(b, pos, bbox_min, bbox_max);
138
139 nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max);
140 nir_def *bbox_rejected = prim_outside_view;
141
142 nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_triangles_enabled_amd(b));
143 {
144 nir_def *small_prim_rejected = cull_small_primitive_triangle(b, bbox_min, bbox_max);
145 bbox_rejected = nir_ior(b, bbox_rejected, small_prim_rejected);
146 }
147 nir_pop_if(b, if_cull_small_prims);
148
149 bbox_rejected = nir_if_phi(b, bbox_rejected, prim_outside_view);
150 bbox_accepted = nir_ior(b, nir_inot(b, bbox_rejected), w_info->any_w_negative);
151
152 /* for caller which need to react when primitive is accepted */
153 if (accept_func) {
154 nir_if *if_still_accepted = nir_push_if(b, bbox_accepted);
155 if_still_accepted->control = nir_selection_control_divergent_always_taken;
156 {
157 accept_func(b, state);
158 }
159 nir_pop_if(b, if_still_accepted);
160 }
161 }
162 nir_pop_if(b, if_accepted);
163
164 return nir_if_phi(b, bbox_accepted, accepted);
165 }
166
167 static void
rotate_45degrees(nir_builder * b,nir_def * v[2])168 rotate_45degrees(nir_builder *b, nir_def *v[2])
169 {
170 /* Rotating a triangle by 45 degrees:
171 *
172 * x2 = x*cos(45) - y*sin(45)
173 * y2 = x*sin(45) + y*cos(45)
174 *
175 * Since sin(45) == cos(45), we can write:
176 *
177 * x2 = x*cos(45) - y*cos(45) = (x - y) * cos(45)
178 * y2 = x*cos(45) + y*cos(45) = (x + y) * cos(45)
179 *
180 * The width of each square (rotated diamond) is sqrt(0.5), so we have to scale it to 1
181 * by multiplying by 1/sqrt(0.5) = sqrt(2) because we want round() to give us the position
182 * of the closest center of the square (rotated diamond). After scaling, we get:
183 *
184 * x2 = (x - y) * cos(45) * sqrt(2)
185 * y2 = (x + y) * cos(45) * sqrt(2)
186 *
187 * Since cos(45) * sqrt(2) = 1, we get:
188 *
189 * x2 = x - y
190 * y2 = x + y
191 */
192 nir_def *result[2];
193 result[0] = nir_fsub(b, v[0], v[1]);
194 result[1] = nir_fadd(b, v[0], v[1]);
195
196 memcpy(v, result, sizeof(result));
197 }
198
199 static void
calc_bbox_line(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2])200 calc_bbox_line(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2])
201 {
202 nir_def *clip_half_line_width = nir_load_clip_half_line_width_amd(b);
203
204 for (unsigned chan = 0; chan < 2; ++chan) {
205 bbox_min[chan] = nir_fmin(b, pos[0][chan], pos[1][chan]);
206 bbox_max[chan] = nir_fmax(b, pos[0][chan], pos[1][chan]);
207
208 nir_def *width = nir_channel(b, clip_half_line_width, chan);
209 bbox_min[chan] = nir_fsub(b, bbox_min[chan], width);
210 bbox_max[chan] = nir_fadd(b, bbox_max[chan], width);
211 }
212 }
213
214 static nir_def *
cull_small_primitive_line(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2],nir_def * prim_is_small_else)215 cull_small_primitive_line(nir_builder *b, nir_def *pos[3][4],
216 nir_def *bbox_min[2], nir_def *bbox_max[2],
217 nir_def *prim_is_small_else)
218 {
219 nir_def *prim_is_small = NULL;
220
221 /* Small primitive filter - eliminate lines that are too small to affect a sample. */
222 nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_lines_enabled_amd(b));
223 {
224 /* This only works with lines without perpendicular end caps (lines with perpendicular
225 * end caps are rasterized as quads and thus can't be culled as small prims in 99% of
226 * cases because line_width >= 1).
227 *
228 * This takes advantage of the diamond exit rule, which says that every pixel
229 * has a diamond inside it touching the pixel boundary and only if a line exits
230 * the diamond, that pixel is filled. If a line enters the diamond or stays
231 * outside the diamond, the pixel isn't filled.
232 *
233 * This algorithm is a little simpler than that. The space outside all diamonds also
234 * has the same diamond shape, which we'll call corner diamonds.
235 *
236 * The idea is to cull all lines that are entirely inside a diamond, including
237 * corner diamonds. If a line is entirely inside a diamond, it can be culled because
238 * it doesn't exit it. If a line is entirely inside a corner diamond, it can be culled
239 * because it doesn't enter any diamond and thus can't exit any diamond.
240 *
241 * The viewport is rotated by 45 degrees to turn diamonds into squares, and a bounding
242 * box test is used to determine whether a line is entirely inside any square (diamond).
243 *
244 * The line width doesn't matter. Wide lines only duplicate filled pixels in either X or
245 * Y direction from the filled pixels. MSAA also doesn't matter. MSAA should ideally use
246 * perpendicular end caps that enable quad rasterization for lines. Thus, this should
247 * always use non-MSAA viewport transformation and non-MSAA small prim precision.
248 *
249 * A good test is piglit/lineloop because it draws 10k subpixel lines in a circle.
250 * It should contain no holes if this matches hw behavior.
251 */
252 nir_def *v0[2], *v1[2];
253 nir_def *vp = nir_load_cull_line_viewport_xy_scale_and_offset_amd(b);
254
255 /* Get vertex positions in pixels. */
256 for (unsigned chan = 0; chan < 2; chan++) {
257 nir_def *vp_scale = nir_channel(b, vp, chan);
258 nir_def *vp_translate = nir_channel(b, vp, 2 + chan);
259
260 v0[chan] = nir_ffma(b, pos[0][chan], vp_scale, vp_translate);
261 v1[chan] = nir_ffma(b, pos[1][chan], vp_scale, vp_translate);
262 }
263
264 /* Rotate the viewport by 45 degrees, so that diamonds become squares. */
265 rotate_45degrees(b, v0);
266 rotate_45degrees(b, v1);
267
268 nir_def *small_prim_precision = nir_load_cull_small_line_precision_amd(b);
269
270 nir_def *rounded_to_eq[2];
271 for (unsigned chan = 0; chan < 2; chan++) {
272 /* Compute the bounding box around both vertices. We do this because we must
273 * enlarge the line area by the precision of the rasterizer.
274 */
275 nir_def *min = nir_fmin(b, v0[chan], v1[chan]);
276 nir_def *max = nir_fmax(b, v0[chan], v1[chan]);
277
278 /* Enlarge the bounding box by the precision of the rasterizer. */
279 min = nir_fsub(b, min, small_prim_precision);
280 max = nir_fadd(b, max, small_prim_precision);
281
282 /* Round the bounding box corners. If both rounded corners are equal,
283 * the bounding box is entirely inside a square (diamond).
284 */
285 min = nir_fround_even(b, min);
286 max = nir_fround_even(b, max);
287
288 rounded_to_eq[chan] = nir_feq(b, min, max);
289 }
290
291 prim_is_small = nir_iand(b, rounded_to_eq[0], rounded_to_eq[1]);
292 prim_is_small = nir_ior(b, prim_is_small, prim_is_small_else);
293 }
294 nir_pop_if(b, if_cull_small_prims);
295
296 return nir_if_phi(b, prim_is_small, prim_is_small_else);
297 }
298
299 static nir_def *
ac_nir_cull_line(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],position_w_info * w_info,ac_nir_cull_accepted accept_func,void * state)300 ac_nir_cull_line(nir_builder *b,
301 nir_def *initially_accepted,
302 nir_def *pos[3][4],
303 position_w_info *w_info,
304 ac_nir_cull_accepted accept_func,
305 void *state)
306 {
307 nir_def *accepted = initially_accepted;
308 accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative_or_zero_or_nan));
309
310 nir_def *bbox_accepted = NULL;
311
312 nir_if *if_accepted = nir_push_if(b, accepted);
313 {
314 nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0};
315 calc_bbox_line(b, pos, bbox_min, bbox_max);
316
317 /* Frustrum culling - eliminate lines that are fully outside the view. */
318 nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max);
319 nir_def *prim_invisible =
320 cull_small_primitive_line(b, pos, bbox_min, bbox_max, prim_outside_view);
321
322 bbox_accepted = nir_ior(b, nir_inot(b, prim_invisible), w_info->any_w_negative);
323
324 /* for caller which need to react when primitive is accepted */
325 if (accept_func) {
326 nir_if *if_still_accepted = nir_push_if(b, bbox_accepted);
327 {
328 accept_func(b, state);
329 }
330 nir_pop_if(b, if_still_accepted);
331 }
332 }
333 nir_pop_if(b, if_accepted);
334
335 return nir_if_phi(b, bbox_accepted, accepted);
336 }
337
338 nir_def *
ac_nir_cull_primitive(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],unsigned num_vertices,ac_nir_cull_accepted accept_func,void * state)339 ac_nir_cull_primitive(nir_builder *b,
340 nir_def *initially_accepted,
341 nir_def *pos[3][4],
342 unsigned num_vertices,
343 ac_nir_cull_accepted accept_func,
344 void *state)
345 {
346 position_w_info w_info = {0};
347 analyze_position_w(b, pos, num_vertices, &w_info);
348
349 if (num_vertices == 3)
350 return ac_nir_cull_triangle(b, initially_accepted, pos, &w_info, accept_func, state);
351 else if (num_vertices == 2)
352 return ac_nir_cull_line(b, initially_accepted, pos, &w_info, accept_func, state);
353 else
354 unreachable("point culling not implemented");
355
356 return NULL;
357 }
358