• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2018 Valve Corporation
3  *
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #include "aco_builder.h"
8 #include "aco_ir.h"
9 
10 #include "common/sid.h"
11 
12 #include <map>
13 #include <stack>
14 #include <vector>
15 #include <optional>
16 
17 namespace aco {
18 
19 namespace {
20 
21 /**
22  * The general idea of this pass is:
23  * The CFG is traversed in reverse postorder (forward) and loops are processed
24  * several times until no progress is made.
25  * Per BB two wait_ctx is maintained: an in-context and out-context.
26  * The in-context is the joined out-contexts of the predecessors.
27  * The context contains a map: gpr -> wait_entry
28  * consisting of the information about the cnt values to be waited for.
29  * Note: After merge-nodes, it might occur that for the same register
30  *       multiple cnt values are to be waited for.
31  *
32  * The values are updated according to the encountered instructions:
33  * - additional events increment the counter of waits of the same type
34  * - or erase gprs with counters higher than to be waited for.
35  */
36 
37 // TODO: do a more clever insertion of wait_cnt (lgkm_cnt)
38 // when there is a load followed by a use of a previous load
39 
40 /* Instructions of the same event will finish in-order except for smem
41  * and maybe flat. Instructions of different events may not finish in-order. */
42 enum wait_event : uint32_t {
43    event_smem = 1 << 0,
44    event_lds = 1 << 1,
45    event_gds = 1 << 2,
46    event_vmem = 1 << 3,
47    event_vmem_store = 1 << 4, /* GFX10+ */
48    event_flat = 1 << 5,
49    event_exp_pos = 1 << 6,
50    event_exp_param = 1 << 7,
51    event_exp_mrt_null = 1 << 8,
52    event_gds_gpr_lock = 1 << 9,
53    event_vmem_gpr_lock = 1 << 10,
54    event_sendmsg = 1 << 11,
55    event_ldsdir = 1 << 12,
56    event_vmem_sample = 1 << 13, /* GFX12+ */
57    event_vmem_bvh = 1 << 14,    /* GFX12+ */
58    num_events = 15,
59 };
60 
61 enum counter_type : uint8_t {
62    counter_exp = 1 << wait_type_exp,
63    counter_lgkm = 1 << wait_type_lgkm,
64    counter_vm = 1 << wait_type_vm,
65    counter_vs = 1 << wait_type_vs,
66    counter_sample = 1 << wait_type_sample,
67    counter_bvh = 1 << wait_type_bvh,
68    counter_km = 1 << wait_type_km,
69    num_counters = wait_type_num,
70 };
71 
72 struct wait_entry {
73    wait_imm imm;
74    uint32_t events;  /* use wait_event notion */
75    uint8_t counters; /* use counter_type notion */
76    bool wait_on_read : 1;
77    bool logical : 1;
78    uint8_t vmem_types : 4; /* use vmem_type notion. for counter_vm. */
79 
wait_entryaco::__anon7e8406860111::wait_entry80    wait_entry(wait_event event_, wait_imm imm_, uint8_t counters_, bool logical_,
81               bool wait_on_read_)
82        : imm(imm_), events(event_), counters(counters_), wait_on_read(wait_on_read_),
83          logical(logical_), vmem_types(0)
84    {}
85 
joinaco::__anon7e8406860111::wait_entry86    bool join(const wait_entry& other)
87    {
88       bool changed = (other.events & ~events) || (other.counters & ~counters) ||
89                      (other.wait_on_read && !wait_on_read) || (other.vmem_types & !vmem_types) ||
90                      (!other.logical && logical);
91       events |= other.events;
92       counters |= other.counters;
93       changed |= imm.combine(other.imm);
94       wait_on_read |= other.wait_on_read;
95       vmem_types |= other.vmem_types;
96       logical &= other.logical;
97       return changed;
98    }
99 
remove_waitaco::__anon7e8406860111::wait_entry100    void remove_wait(wait_type type, uint32_t type_events)
101    {
102       counters &= ~(1 << type);
103       imm[type] = wait_imm::unset_counter;
104 
105       events &= ~type_events | event_flat;
106       if (!(counters & counter_lgkm) && !(counters & counter_vm))
107          events &= ~(type_events & event_flat);
108 
109       if (type == wait_type_vm)
110          vmem_types = 0;
111    }
112 
printaco::__anon7e8406860111::wait_entry113    UNUSED void print(FILE* output) const
114    {
115       fprintf(output, "logical: %u\n", logical);
116       imm.print(output);
117       if (events)
118          fprintf(output, "events: %u\n", events);
119       if (counters)
120          fprintf(output, "counters: %u\n", counters);
121       if (!wait_on_read)
122          fprintf(output, "wait_on_read: %u\n", wait_on_read);
123       if (!logical)
124          fprintf(output, "logical: %u\n", logical);
125       if (vmem_types)
126          fprintf(output, "vmem_types: %u\n", vmem_types);
127    }
128 };
129 
130 struct target_info {
131    wait_imm max_cnt;
132    uint32_t events[wait_type_num] = {};
133    uint16_t unordered_events;
134 
target_infoaco::__anon7e8406860111::target_info135    target_info(enum amd_gfx_level gfx_level)
136    {
137       max_cnt = wait_imm::max(gfx_level);
138       for (unsigned i = 0; i < wait_type_num; i++)
139          max_cnt[i] = max_cnt[i] ? max_cnt[i] - 1 : 0;
140 
141       events[wait_type_exp] = event_exp_pos | event_exp_param | event_exp_mrt_null |
142                               event_gds_gpr_lock | event_vmem_gpr_lock | event_ldsdir;
143       events[wait_type_lgkm] = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
144       events[wait_type_vm] = event_vmem | event_flat;
145       events[wait_type_vs] = event_vmem_store;
146       if (gfx_level >= GFX12) {
147          events[wait_type_sample] = event_vmem_sample;
148          events[wait_type_bvh] = event_vmem_bvh;
149          events[wait_type_km] = event_smem | event_sendmsg;
150          events[wait_type_lgkm] &= ~events[wait_type_km];
151       }
152 
153       for (unsigned i = 0; i < wait_type_num; i++) {
154          u_foreach_bit (j, events[i])
155             counters[j] |= (1 << i);
156       }
157 
158       unordered_events = event_smem | (gfx_level < GFX10 ? event_flat : 0);
159    }
160 
get_counters_for_eventaco::__anon7e8406860111::target_info161    uint8_t get_counters_for_event(wait_event event) const { return counters[ffs(event) - 1]; }
162 
163 private:
164    /* Bitfields of counters affected by each event */
165    uint8_t counters[num_events] = {};
166 };
167 
168 struct wait_ctx {
169    Program* program;
170    enum amd_gfx_level gfx_level;
171    const target_info* info;
172 
173    uint32_t nonzero = 0;
174    bool pending_flat_lgkm = false;
175    bool pending_flat_vm = false;
176    bool pending_s_buffer_store = false; /* GFX10 workaround */
177 
178    wait_imm barrier_imm[storage_count];
179    uint16_t barrier_events[storage_count] = {}; /* use wait_event notion */
180 
181    std::map<PhysReg, wait_entry> gpr_map;
182 
wait_ctxaco::__anon7e8406860111::wait_ctx183    wait_ctx() {}
wait_ctxaco::__anon7e8406860111::wait_ctx184    wait_ctx(Program* program_, const target_info* info_)
185        : program(program_), gfx_level(program_->gfx_level), info(info_)
186    {}
187 
joinaco::__anon7e8406860111::wait_ctx188    bool join(const wait_ctx* other, bool logical)
189    {
190       bool changed = (other->pending_flat_lgkm && !pending_flat_lgkm) ||
191                      (other->pending_flat_vm && !pending_flat_vm) || (~nonzero & other->nonzero);
192 
193       nonzero |= other->nonzero;
194       pending_flat_lgkm |= other->pending_flat_lgkm;
195       pending_flat_vm |= other->pending_flat_vm;
196       pending_s_buffer_store |= other->pending_s_buffer_store;
197 
198       for (const auto& entry : other->gpr_map) {
199          if (entry.second.logical != logical)
200             continue;
201 
202          using iterator = std::map<PhysReg, wait_entry>::iterator;
203          const std::pair<iterator, bool> insert_pair = gpr_map.insert(entry);
204          if (insert_pair.second) {
205             changed = true;
206          } else {
207             changed |= insert_pair.first->second.join(entry.second);
208          }
209       }
210 
211       for (unsigned i = 0; i < storage_count; i++) {
212          changed |= barrier_imm[i].combine(other->barrier_imm[i]);
213          changed |= (other->barrier_events[i] & ~barrier_events[i]) != 0;
214          barrier_events[i] |= other->barrier_events[i];
215       }
216 
217       return changed;
218    }
219 
printaco::__anon7e8406860111::wait_ctx220    UNUSED void print(FILE* output) const
221    {
222       for (unsigned i = 0; i < wait_type_num; i++)
223          fprintf(output, "nonzero[%u]: %u\n", i, nonzero & (1 << i) ? 1 : 0);
224       fprintf(output, "pending_flat_lgkm: %u\n", pending_flat_lgkm);
225       fprintf(output, "pending_flat_vm: %u\n", pending_flat_vm);
226       for (const auto& entry : gpr_map) {
227          fprintf(output, "gpr_map[%c%u] = {\n", entry.first.reg() >= 256 ? 'v' : 's',
228                  entry.first.reg() & 0xff);
229          entry.second.print(output);
230          fprintf(output, "}\n");
231       }
232 
233       for (unsigned i = 0; i < storage_count; i++) {
234          if (!barrier_imm[i].empty() || barrier_events[i]) {
235             fprintf(output, "barriers[%u] = {\n", i);
236             barrier_imm[i].print(output);
237             fprintf(output, "events: %u\n", barrier_events[i]);
238             fprintf(output, "}\n");
239          }
240       }
241    }
242 };
243 
244 wait_event
get_vmem_event(wait_ctx & ctx,Instruction * instr,uint8_t type)245 get_vmem_event(wait_ctx& ctx, Instruction* instr, uint8_t type)
246 {
247    if (instr->definitions.empty() && ctx.gfx_level >= GFX10)
248       return event_vmem_store;
249    wait_event ev = event_vmem;
250    if (ctx.gfx_level >= GFX12 && type != vmem_nosampler)
251       ev = type == vmem_bvh ? event_vmem_bvh : event_vmem_sample;
252    return ev;
253 }
254 
255 void
check_instr(wait_ctx & ctx,wait_imm & wait,Instruction * instr)256 check_instr(wait_ctx& ctx, wait_imm& wait, Instruction* instr)
257 {
258    for (const Operand op : instr->operands) {
259       if (op.isConstant() || op.isUndefined())
260          continue;
261 
262       /* check consecutively read gprs */
263       for (unsigned j = 0; j < op.size(); j++) {
264          std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(PhysReg{op.physReg() + j});
265          if (it != ctx.gpr_map.end() && it->second.wait_on_read)
266             wait.combine(it->second.imm);
267       }
268    }
269 
270    for (const Definition& def : instr->definitions) {
271       /* check consecutively written gprs */
272       for (unsigned j = 0; j < def.getTemp().size(); j++) {
273          PhysReg reg{def.physReg() + j};
274 
275          std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg);
276          if (it == ctx.gpr_map.end())
277             continue;
278 
279          wait_imm reg_imm = it->second.imm;
280 
281          /* Vector Memory reads and writes decrease the counter in the order they were issued.
282           * Before GFX12, they also write VGPRs in order if they're of the same type.
283           * TODO: We can do this for GFX12 and different types for GFX11 if we know that the two
284           * VMEM loads do not write the same lanes. Since GFX11, we track VMEM operations on the
285           * linear CFG, so this is difficult */
286          uint8_t vmem_type = get_vmem_type(ctx.gfx_level, instr);
287          if (vmem_type && ctx.gfx_level < GFX12) {
288             wait_event event = get_vmem_event(ctx, instr, vmem_type);
289             wait_type type = (wait_type)(ffs(ctx.info->get_counters_for_event(event)) - 1);
290             if ((it->second.events & ctx.info->events[type]) == event &&
291                 (type != wait_type_vm || it->second.vmem_types == vmem_type))
292                reg_imm[type] = wait_imm::unset_counter;
293          }
294 
295          /* LDS reads and writes return in the order they were issued. same for GDS */
296          if (instr->isDS() && (it->second.events & ctx.info->events[wait_type_lgkm]) ==
297                                  (instr->ds().gds ? event_gds : event_lds))
298             reg_imm.lgkm = wait_imm::unset_counter;
299 
300          wait.combine(reg_imm);
301       }
302    }
303 }
304 
305 void
perform_barrier(wait_ctx & ctx,wait_imm & imm,memory_sync_info sync,unsigned semantics)306 perform_barrier(wait_ctx& ctx, wait_imm& imm, memory_sync_info sync, unsigned semantics)
307 {
308    sync_scope subgroup_scope =
309       ctx.program->workgroup_size <= ctx.program->wave_size ? scope_workgroup : scope_subgroup;
310    if ((sync.semantics & semantics) && sync.scope > subgroup_scope) {
311       unsigned storage = sync.storage;
312       while (storage) {
313          unsigned idx = u_bit_scan(&storage);
314 
315          /* LDS is private to the workgroup */
316          sync_scope bar_scope_lds = MIN2(sync.scope, scope_workgroup);
317 
318          uint16_t events = ctx.barrier_events[idx];
319          if (bar_scope_lds <= subgroup_scope)
320             events &= ~event_lds;
321 
322          /* Until GFX12, in non-WGP, the L1 (L0 on GFX10+) cache keeps all memory operations
323           * in-order for the same workgroup */
324          if (ctx.gfx_level < GFX12 && !ctx.program->wgp_mode && sync.scope <= scope_workgroup)
325             events &= ~(event_vmem | event_vmem_store | event_smem);
326 
327          if (events)
328             imm.combine(ctx.barrier_imm[idx]);
329       }
330    }
331 }
332 
333 void
force_waitcnt(wait_ctx & ctx,wait_imm & imm)334 force_waitcnt(wait_ctx& ctx, wait_imm& imm)
335 {
336    u_foreach_bit (i, ctx.nonzero)
337       imm[i] = 0;
338 }
339 
340 void
kill(wait_imm & imm,Instruction * instr,wait_ctx & ctx,memory_sync_info sync_info)341 kill(wait_imm& imm, Instruction* instr, wait_ctx& ctx, memory_sync_info sync_info)
342 {
343    if (instr->opcode == aco_opcode::s_setpc_b64 || (debug_flags & DEBUG_FORCE_WAITCNT)) {
344       /* Force emitting waitcnt states right after the instruction if there is
345        * something to wait for. This is also applied for s_setpc_b64 to ensure
346        * waitcnt states are inserted before jumping to the PS epilog.
347        */
348       force_waitcnt(ctx, imm);
349    }
350 
351    /* sendmsg(dealloc_vgprs) releases scratch, so this isn't safe if there is a in-progress
352     * scratch store.
353     */
354    if (ctx.gfx_level >= GFX11 && instr->opcode == aco_opcode::s_sendmsg &&
355        instr->salu().imm == sendmsg_dealloc_vgprs) {
356       imm.combine(ctx.barrier_imm[ffs(storage_scratch) - 1]);
357       imm.combine(ctx.barrier_imm[ffs(storage_vgpr_spill) - 1]);
358    }
359 
360    /* Make sure POPS coherent memory accesses have reached the L2 cache before letting the
361     * overlapping waves proceed into the ordered section.
362     */
363    if (ctx.program->has_pops_overlapped_waves_wait &&
364        (ctx.gfx_level >= GFX11 ? instr->isEXP() && instr->exp().done
365                                : (instr->opcode == aco_opcode::s_sendmsg &&
366                                   instr->salu().imm == sendmsg_ordered_ps_done))) {
367       uint8_t c = counter_vm | counter_vs;
368       /* Await SMEM loads too, as it's possible for an application to create them, like using a
369        * scalarization loop - pointless and unoptimal for an inherently divergent address of
370        * per-pixel data, but still can be done at least synthetically and must be handled correctly.
371        */
372       if (ctx.program->has_smem_buffer_or_global_loads)
373          c |= counter_lgkm;
374 
375       u_foreach_bit (i, c & ctx.nonzero)
376          imm[i] = 0;
377    }
378 
379    check_instr(ctx, imm, instr);
380 
381    /* It's required to wait for scalar stores before "writing back" data.
382     * It shouldn't cost anything anyways since we're about to do s_endpgm.
383     */
384    if ((ctx.nonzero & BITFIELD_BIT(wait_type_lgkm)) && instr->opcode == aco_opcode::s_dcache_wb) {
385       assert(ctx.gfx_level >= GFX8);
386       imm.lgkm = 0;
387    }
388 
389    if (ctx.gfx_level >= GFX10 && instr->isSMEM()) {
390       /* GFX10: A store followed by a load at the same address causes a problem because
391        * the load doesn't load the correct values unless we wait for the store first.
392        * This is NOT mitigated by an s_nop.
393        *
394        * TODO: Refine this when we have proper alias analysis.
395        */
396       if (ctx.pending_s_buffer_store && !instr->smem().definitions.empty() &&
397           !instr->smem().sync.can_reorder()) {
398          imm.lgkm = 0;
399       }
400    }
401 
402    if (instr->opcode == aco_opcode::ds_ordered_count &&
403        ((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1)) {
404       imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]);
405    }
406 
407    if (instr->opcode == aco_opcode::p_barrier)
408       perform_barrier(ctx, imm, instr->barrier().sync, semantic_acqrel);
409    else
410       perform_barrier(ctx, imm, sync_info, semantic_release);
411 
412    if (!imm.empty()) {
413       if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
414          imm.vm = 0;
415       if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
416          imm.lgkm = 0;
417 
418       /* reset counters */
419       for (unsigned i = 0; i < wait_type_num; i++)
420          ctx.nonzero &= imm[i] == 0 ? ~BITFIELD_BIT(i) : UINT32_MAX;
421 
422       /* update barrier wait imms */
423       for (unsigned i = 0; i < storage_count; i++) {
424          wait_imm& bar = ctx.barrier_imm[i];
425          uint16_t& bar_ev = ctx.barrier_events[i];
426          for (unsigned j = 0; j < wait_type_num; j++) {
427             if (bar[j] != wait_imm::unset_counter && imm[j] <= bar[j]) {
428                bar[j] = wait_imm::unset_counter;
429                bar_ev &= ~ctx.info->events[j] | event_flat;
430             }
431          }
432          if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
433             bar_ev &= ~event_flat;
434       }
435 
436       /* remove all gprs with higher counter from map */
437       std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.begin();
438       while (it != ctx.gpr_map.end()) {
439          for (unsigned i = 0; i < wait_type_num; i++) {
440             if (imm[i] != wait_imm::unset_counter && imm[i] <= it->second.imm[i])
441                it->second.remove_wait((wait_type)i, ctx.info->events[i]);
442          }
443          if (!it->second.counters)
444             it = ctx.gpr_map.erase(it);
445          else
446             it++;
447       }
448    }
449 
450    if (imm.vm == 0)
451       ctx.pending_flat_vm = false;
452    if (imm.lgkm == 0) {
453       ctx.pending_flat_lgkm = false;
454       ctx.pending_s_buffer_store = false;
455    }
456 }
457 
458 void
update_barrier_imm(wait_ctx & ctx,uint8_t counters,wait_event event,memory_sync_info sync)459 update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, memory_sync_info sync)
460 {
461    for (unsigned i = 0; i < storage_count; i++) {
462       wait_imm& bar = ctx.barrier_imm[i];
463       uint16_t& bar_ev = ctx.barrier_events[i];
464 
465       /* We re-use barrier_imm/barrier_events to wait for all scratch stores to finish. */
466       bool ignore_private = i == (ffs(storage_scratch) - 1) || i == (ffs(storage_vgpr_spill) - 1);
467 
468       if (sync.storage & (1 << i) && (!(sync.semantics & semantic_private) || ignore_private)) {
469          bar_ev |= event;
470          u_foreach_bit (j, counters)
471             bar[j] = 0;
472       } else if (!(bar_ev & ctx.info->unordered_events) && !(ctx.info->unordered_events & event)) {
473          u_foreach_bit (j, counters) {
474             if (bar[j] != wait_imm::unset_counter && (bar_ev & ctx.info->events[j]) == event)
475                bar[j] = std::min<uint16_t>(bar[j] + 1, ctx.info->max_cnt[j]);
476          }
477       }
478    }
479 }
480 
481 void
update_counters(wait_ctx & ctx,wait_event event,memory_sync_info sync=memory_sync_info ())482 update_counters(wait_ctx& ctx, wait_event event, memory_sync_info sync = memory_sync_info())
483 {
484    uint8_t counters = ctx.info->get_counters_for_event(event);
485 
486    ctx.nonzero |= counters;
487 
488    update_barrier_imm(ctx, counters, event, sync);
489 
490    if (ctx.info->unordered_events & event)
491       return;
492 
493    if (ctx.pending_flat_lgkm)
494       counters &= ~counter_lgkm;
495    if (ctx.pending_flat_vm)
496       counters &= ~counter_vm;
497 
498    for (std::pair<const PhysReg, wait_entry>& e : ctx.gpr_map) {
499       wait_entry& entry = e.second;
500 
501       if (entry.events & ctx.info->unordered_events)
502          continue;
503 
504       assert(entry.events);
505 
506       u_foreach_bit (i, counters) {
507          if ((entry.events & ctx.info->events[i]) == event)
508             entry.imm[i] = std::min<uint16_t>(entry.imm[i] + 1, ctx.info->max_cnt[i]);
509       }
510    }
511 }
512 
513 void
update_counters_for_flat_load(wait_ctx & ctx,memory_sync_info sync=memory_sync_info ())514 update_counters_for_flat_load(wait_ctx& ctx, memory_sync_info sync = memory_sync_info())
515 {
516    assert(ctx.gfx_level < GFX10);
517 
518    ctx.nonzero |= BITFIELD_BIT(wait_type_lgkm) | BITFIELD_BIT(wait_type_vm);
519 
520    update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, sync);
521 
522    for (std::pair<PhysReg, wait_entry> e : ctx.gpr_map) {
523       if (e.second.counters & counter_vm)
524          e.second.imm.vm = 0;
525       if (e.second.counters & counter_lgkm)
526          e.second.imm.lgkm = 0;
527    }
528    ctx.pending_flat_lgkm = true;
529    ctx.pending_flat_vm = true;
530 }
531 
532 void
insert_wait_entry(wait_ctx & ctx,PhysReg reg,RegClass rc,wait_event event,bool wait_on_read,uint8_t vmem_types=0,bool force_linear=false)533 insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read,
534                   uint8_t vmem_types = 0, bool force_linear = false)
535 {
536    uint16_t counters = ctx.info->get_counters_for_event(event);
537    wait_imm imm;
538    u_foreach_bit (i, counters)
539       imm[i] = 0;
540 
541    wait_entry new_entry(event, imm, counters, !rc.is_linear() && !force_linear, wait_on_read);
542    if (counters & counter_vm)
543       new_entry.vmem_types |= vmem_types;
544 
545    for (unsigned i = 0; i < rc.size(); i++) {
546       auto it = ctx.gpr_map.emplace(PhysReg{reg.reg() + i}, new_entry);
547       if (!it.second)
548          it.first->second.join(new_entry);
549    }
550 }
551 
552 void
insert_wait_entry(wait_ctx & ctx,Operand op,wait_event event,uint8_t vmem_types=0)553 insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event, uint8_t vmem_types = 0)
554 {
555    if (!op.isConstant() && !op.isUndefined())
556       insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false, vmem_types);
557 }
558 
559 void
insert_wait_entry(wait_ctx & ctx,Definition def,wait_event event,uint8_t vmem_types=0)560 insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event, uint8_t vmem_types = 0)
561 {
562    /* We can't safely write to unwritten destination VGPR lanes with DS/VMEM on GFX11 without
563     * waiting for the load to finish.
564     */
565    uint32_t ds_vmem_events =
566       event_lds | event_gds | event_vmem | event_vmem_sample | event_vmem_bvh | event_flat;
567    bool force_linear = ctx.gfx_level >= GFX11 && (event & ds_vmem_events);
568 
569    insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true, vmem_types, force_linear);
570 }
571 
572 void
gen(Instruction * instr,wait_ctx & ctx)573 gen(Instruction* instr, wait_ctx& ctx)
574 {
575    switch (instr->format) {
576    case Format::EXP: {
577       Export_instruction& exp_instr = instr->exp();
578 
579       wait_event ev;
580       if (exp_instr.dest <= 9)
581          ev = event_exp_mrt_null;
582       else if (exp_instr.dest <= 15)
583          ev = event_exp_pos;
584       else
585          ev = event_exp_param;
586       update_counters(ctx, ev);
587 
588       /* insert new entries for exported vgprs */
589       for (unsigned i = 0; i < 4; i++) {
590          if (exp_instr.enabled_mask & (1 << i)) {
591             unsigned idx = exp_instr.compressed ? i >> 1 : i;
592             assert(idx < exp_instr.operands.size());
593             insert_wait_entry(ctx, exp_instr.operands[idx], ev);
594          }
595       }
596       insert_wait_entry(ctx, exec, s2, ev, false);
597       break;
598    }
599    case Format::FLAT: {
600       FLAT_instruction& flat = instr->flat();
601       if (ctx.gfx_level < GFX10 && !instr->definitions.empty())
602          update_counters_for_flat_load(ctx, flat.sync);
603       else
604          update_counters(ctx, event_flat, flat.sync);
605 
606       if (!instr->definitions.empty())
607          insert_wait_entry(ctx, instr->definitions[0], event_flat);
608       break;
609    }
610    case Format::SMEM: {
611       SMEM_instruction& smem = instr->smem();
612       update_counters(ctx, event_smem, smem.sync);
613 
614       if (!instr->definitions.empty())
615          insert_wait_entry(ctx, instr->definitions[0], event_smem);
616       else if (ctx.gfx_level >= GFX10 && !smem.sync.can_reorder())
617          ctx.pending_s_buffer_store = true;
618 
619       break;
620    }
621    case Format::DS: {
622       DS_instruction& ds = instr->ds();
623       update_counters(ctx, ds.gds ? event_gds : event_lds, ds.sync);
624       if (ds.gds)
625          update_counters(ctx, event_gds_gpr_lock);
626 
627       if (!instr->definitions.empty())
628          insert_wait_entry(ctx, instr->definitions[0], ds.gds ? event_gds : event_lds);
629 
630       if (ds.gds) {
631          for (const Operand& op : instr->operands)
632             insert_wait_entry(ctx, op, event_gds_gpr_lock);
633          insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
634       }
635       break;
636    }
637    case Format::LDSDIR: {
638       LDSDIR_instruction& ldsdir = instr->ldsdir();
639       update_counters(ctx, event_ldsdir, ldsdir.sync);
640       insert_wait_entry(ctx, instr->definitions[0], event_ldsdir);
641       break;
642    }
643    case Format::MUBUF:
644    case Format::MTBUF:
645    case Format::MIMG:
646    case Format::GLOBAL:
647    case Format::SCRATCH: {
648       uint8_t type = get_vmem_type(ctx.gfx_level, instr);
649       wait_event ev = get_vmem_event(ctx, instr, type);
650 
651       update_counters(ctx, ev, get_sync_info(instr));
652 
653       if (!instr->definitions.empty())
654          insert_wait_entry(ctx, instr->definitions[0], ev, type);
655 
656       if (ctx.gfx_level == GFX6 && instr->format != Format::MIMG && instr->operands.size() == 4) {
657          update_counters(ctx, event_vmem_gpr_lock);
658          insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
659       } else if (ctx.gfx_level == GFX6 && instr->isMIMG() && !instr->operands[2].isUndefined()) {
660          update_counters(ctx, event_vmem_gpr_lock);
661          insert_wait_entry(ctx, instr->operands[2], event_vmem_gpr_lock);
662       }
663 
664       break;
665    }
666    case Format::SOPP: {
667       if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_sendmsghalt)
668          update_counters(ctx, event_sendmsg);
669       break;
670    }
671    case Format::SOP1: {
672       if (instr->opcode == aco_opcode::s_sendmsg_rtn_b32 ||
673           instr->opcode == aco_opcode::s_sendmsg_rtn_b64) {
674          update_counters(ctx, event_sendmsg);
675          insert_wait_entry(ctx, instr->definitions[0], event_sendmsg);
676       }
677       break;
678    }
679    default: break;
680    }
681 }
682 
683 void
emit_waitcnt(wait_ctx & ctx,std::vector<aco_ptr<Instruction>> & instructions,wait_imm & imm)684 emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm& imm)
685 {
686    Builder bld(ctx.program, &instructions);
687    imm.build_waitcnt(bld);
688 }
689 
690 bool
check_clause_raw(std::bitset<512> & regs_written,Instruction * instr)691 check_clause_raw(std::bitset<512>& regs_written, Instruction* instr)
692 {
693    for (Operand op : instr->operands) {
694       if (op.isConstant())
695          continue;
696       for (unsigned i = 0; i < op.size(); i++) {
697          if (regs_written[op.physReg().reg() + i])
698             return false;
699       }
700    }
701 
702    for (Definition def : instr->definitions) {
703       for (unsigned i = 0; i < def.size(); i++)
704          regs_written[def.physReg().reg() + i] = 1;
705    }
706 
707    return true;
708 }
709 
710 void
handle_block(Program * program,Block & block,wait_ctx & ctx)711 handle_block(Program* program, Block& block, wait_ctx& ctx)
712 {
713    std::vector<aco_ptr<Instruction>> new_instructions;
714 
715    wait_imm queued_imm;
716 
717    size_t clause_end = 0;
718    for (size_t i = 0; i < block.instructions.size(); i++) {
719       aco_ptr<Instruction>& instr = block.instructions[i];
720 
721       bool is_wait = queued_imm.unpack(ctx.gfx_level, instr.get());
722 
723       memory_sync_info sync_info = get_sync_info(instr.get());
724       kill(queued_imm, instr.get(), ctx, sync_info);
725 
726       /* At the start of a possible clause, also emit waitcnts for each instruction to avoid
727        * splitting the clause.
728        */
729       if (i >= clause_end || !queued_imm.empty()) {
730          std::optional<std::bitset<512>> regs_written;
731          for (clause_end = i + 1; clause_end < block.instructions.size(); clause_end++) {
732             Instruction* next = block.instructions[clause_end].get();
733             if (!should_form_clause(instr.get(), next))
734                break;
735 
736             if (!regs_written) {
737                regs_written.emplace();
738                check_clause_raw(*regs_written, instr.get());
739             }
740 
741             if (!check_clause_raw(*regs_written, next))
742                break;
743 
744             kill(queued_imm, next, ctx, get_sync_info(next));
745          }
746       }
747 
748       gen(instr.get(), ctx);
749 
750       if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
751          if (instr->isVINTERP_INREG() && queued_imm.exp != wait_imm::unset_counter) {
752             instr->vinterp_inreg().wait_exp = MIN2(instr->vinterp_inreg().wait_exp, queued_imm.exp);
753             queued_imm.exp = wait_imm::unset_counter;
754          }
755 
756          if (!queued_imm.empty())
757             emit_waitcnt(ctx, new_instructions, queued_imm);
758 
759          bool is_ordered_count_acquire =
760             instr->opcode == aco_opcode::ds_ordered_count &&
761             !((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1);
762 
763          new_instructions.emplace_back(std::move(instr));
764          perform_barrier(ctx, queued_imm, sync_info, semantic_acquire);
765 
766          if (is_ordered_count_acquire)
767             queued_imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]);
768       }
769    }
770 
771    /* For last block of a program which has succeed shader part, wait all memory ops done
772     * before go to next shader part.
773     */
774    if (block.kind & block_kind_end_with_regs)
775       force_waitcnt(ctx, queued_imm);
776 
777    if (!queued_imm.empty())
778       emit_waitcnt(ctx, new_instructions, queued_imm);
779 
780    block.instructions.swap(new_instructions);
781 }
782 
783 } /* end namespace */
784 
785 void
insert_waitcnt(Program * program)786 insert_waitcnt(Program* program)
787 {
788    target_info info(program->gfx_level);
789 
790    /* per BB ctx */
791    std::vector<bool> done(program->blocks.size());
792    std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program, &info));
793    std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program, &info));
794 
795    std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
796    unsigned loop_progress = 0;
797 
798    if (program->pending_lds_access) {
799       update_barrier_imm(in_ctx[0], info.get_counters_for_event(event_lds), event_lds,
800                          memory_sync_info(storage_shared));
801    }
802 
803    for (Definition def : program->args_pending_vmem) {
804       update_counters(in_ctx[0], event_vmem);
805       insert_wait_entry(in_ctx[0], def, event_vmem);
806    }
807 
808    for (unsigned i = 0; i < program->blocks.size();) {
809       Block& current = program->blocks[i++];
810 
811       if (current.kind & block_kind_discard_early_exit) {
812          /* Because the jump to the discard early exit block may happen anywhere in a block, it's
813           * not possible to join it with its predecessors this way.
814           * We emit all required waits when emitting the discard block.
815           */
816          continue;
817       }
818 
819       wait_ctx ctx = in_ctx[current.index];
820 
821       if (current.kind & block_kind_loop_header) {
822          loop_header_indices.push(current.index);
823       } else if (current.kind & block_kind_loop_exit) {
824          bool repeat = false;
825          if (loop_progress == loop_header_indices.size()) {
826             i = loop_header_indices.top();
827             repeat = true;
828          }
829          loop_header_indices.pop();
830          loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
831          if (repeat)
832             continue;
833       }
834 
835       bool changed = false;
836       for (unsigned b : current.linear_preds)
837          changed |= ctx.join(&out_ctx[b], false);
838       for (unsigned b : current.logical_preds)
839          changed |= ctx.join(&out_ctx[b], true);
840 
841       if (done[current.index] && !changed) {
842          in_ctx[current.index] = std::move(ctx);
843          continue;
844       } else {
845          in_ctx[current.index] = ctx;
846       }
847 
848       loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
849       done[current.index] = true;
850 
851       handle_block(program, current, ctx);
852 
853       out_ctx[current.index] = std::move(ctx);
854    }
855 }
856 
857 } // namespace aco
858