1 /*
2 * Copyright © 2023 Valve Corporation
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "ac_gpu_info.h"
8 #include "ac_nir.h"
9 #include "nir.h"
10 #include "nir_builder.h"
11 #include "nir_deref.h"
12 #include "radv_constants.h"
13 #include "radv_nir.h"
14 #include "radv_shader.h"
15 #include "radv_shader_args.h"
16
17 typedef struct {
18 const struct radv_shader_args *args;
19 const struct radv_shader_info *info;
20 const struct radv_graphics_state_key *gfx_state;
21 const struct radeon_info *gpu_info;
22 } lower_vs_inputs_state;
23
24 static nir_def *
lower_load_vs_input_from_prolog(nir_builder * b,nir_intrinsic_instr * intrin,lower_vs_inputs_state * s)25 lower_load_vs_input_from_prolog(nir_builder *b, nir_intrinsic_instr *intrin, lower_vs_inputs_state *s)
26 {
27 nir_src *offset_src = nir_get_io_offset_src(intrin);
28 assert(nir_src_is_const(*offset_src));
29
30 const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
31 const unsigned base_offset = nir_src_as_uint(*offset_src);
32 const unsigned location = io_sem.location + base_offset - VERT_ATTRIB_GENERIC0;
33 const unsigned component = nir_intrinsic_component(intrin);
34 const unsigned bit_size = intrin->def.bit_size;
35 const unsigned num_components = intrin->def.num_components;
36
37 /* 64-bit inputs: they occupy twice as many 32-bit components.
38 * 16-bit inputs: they occupy a 32-bit component (not packed).
39 */
40 const unsigned arg_bit_size = MAX2(bit_size, 32);
41
42 unsigned num_input_args = 1;
43 nir_def *input_args[2] = {ac_nir_load_arg(b, &s->args->ac, s->args->vs_inputs[location]), NULL};
44 if (component * 32 + arg_bit_size * num_components > 128) {
45 assert(bit_size == 64);
46
47 num_input_args++;
48 input_args[1] = ac_nir_load_arg(b, &s->args->ac, s->args->vs_inputs[location + 1]);
49 }
50
51 nir_def *extracted = nir_extract_bits(b, input_args, num_input_args, component * 32, num_components, arg_bit_size);
52
53 if (bit_size < arg_bit_size) {
54 assert(bit_size == 16);
55
56 if (nir_alu_type_get_base_type(nir_intrinsic_dest_type(intrin)) == nir_type_float)
57 return nir_f2f16(b, extracted);
58 else
59 return nir_u2u16(b, extracted);
60 }
61
62 return extracted;
63 }
64
65 static nir_def *
calc_vs_input_index_instance_rate(nir_builder * b,unsigned location,lower_vs_inputs_state * s)66 calc_vs_input_index_instance_rate(nir_builder *b, unsigned location, lower_vs_inputs_state *s)
67 {
68 const uint32_t divisor = s->gfx_state->vi.instance_rate_divisors[location];
69 nir_def *start_instance = nir_load_base_instance(b);
70
71 if (divisor == 0)
72 return start_instance;
73
74 nir_def *instance_id = nir_udiv_imm(b, nir_load_instance_id(b), divisor);
75 return nir_iadd(b, start_instance, instance_id);
76 }
77
78 static nir_def *
calc_vs_input_index(nir_builder * b,unsigned location,lower_vs_inputs_state * s)79 calc_vs_input_index(nir_builder *b, unsigned location, lower_vs_inputs_state *s)
80 {
81 if (s->gfx_state->vi.instance_rate_inputs & BITFIELD_BIT(location))
82 return calc_vs_input_index_instance_rate(b, location, s);
83
84 return nir_iadd(b, nir_load_first_vertex(b), nir_load_vertex_id_zero_base(b));
85 }
86
87 static bool
can_use_untyped_load(const struct util_format_description * f,const unsigned bit_size)88 can_use_untyped_load(const struct util_format_description *f, const unsigned bit_size)
89 {
90 /* All components must have same size and type. */
91 if (!f->is_array)
92 return false;
93
94 const struct util_format_channel_description *c = &f->channel[0];
95 return c->size == bit_size && bit_size >= 32;
96 }
97
98 static nir_def *
oob_input_load_value(nir_builder * b,const unsigned channel_idx,const unsigned bit_size,const bool is_float)99 oob_input_load_value(nir_builder *b, const unsigned channel_idx, const unsigned bit_size, const bool is_float)
100 {
101 /* 22.1.1. Attribute Location and Component Assignment of Vulkan 1.3 specification:
102 * For 64-bit data types, no default attribute values are provided. Input variables
103 * must not use more components than provided by the attribute.
104 */
105 if (bit_size == 64)
106 return nir_undef(b, 1, bit_size);
107
108 if (channel_idx == 3) {
109 if (is_float)
110 return nir_imm_floatN_t(b, 1.0, bit_size);
111 else
112 return nir_imm_intN_t(b, 1, bit_size);
113 }
114
115 return nir_imm_intN_t(b, 0, bit_size);
116 }
117
118 static unsigned
count_format_bytes(const struct util_format_description * f,const unsigned first_channel,const unsigned num_channels)119 count_format_bytes(const struct util_format_description *f, const unsigned first_channel, const unsigned num_channels)
120 {
121 if (!num_channels)
122 return 0;
123
124 const unsigned last_channel = first_channel + num_channels - 1;
125 assert(last_channel < f->nr_channels);
126 unsigned bits = 0;
127 for (unsigned i = first_channel; i <= last_channel; ++i) {
128 bits += f->channel[i].size;
129 }
130
131 assert(bits % 8 == 0);
132 return bits / 8;
133 }
134
135 static bool
format_needs_swizzle(const struct util_format_description * f)136 format_needs_swizzle(const struct util_format_description *f)
137 {
138 for (unsigned i = 0; i < f->nr_channels; ++i) {
139 if (f->swizzle[i] != PIPE_SWIZZLE_X + i)
140 return true;
141 }
142
143 return false;
144 }
145
146 static unsigned
first_used_swizzled_channel(const struct util_format_description * f,const unsigned mask,const bool backwards)147 first_used_swizzled_channel(const struct util_format_description *f, const unsigned mask, const bool backwards)
148 {
149 unsigned first_used = backwards ? 0 : f->nr_channels;
150 const unsigned it_mask = mask & BITFIELD_MASK(f->nr_channels);
151
152 u_foreach_bit (b, it_mask) {
153 assert(f->swizzle[b] != PIPE_SWIZZLE_0 && f->swizzle[b] != PIPE_SWIZZLE_1);
154 const unsigned c = f->swizzle[b] - PIPE_SWIZZLE_X;
155 first_used = backwards ? MAX2(first_used, c) : MIN2(first_used, c);
156 }
157
158 return first_used;
159 }
160
161 static nir_def *
adjust_vertex_fetch_alpha(nir_builder * b,enum ac_vs_input_alpha_adjust alpha_adjust,nir_def * alpha)162 adjust_vertex_fetch_alpha(nir_builder *b, enum ac_vs_input_alpha_adjust alpha_adjust, nir_def *alpha)
163 {
164 if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED)
165 alpha = nir_f2u32(b, alpha);
166
167 /* For the integer-like cases, do a natural sign extension.
168 *
169 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 and happen to contain 0, 1, 2, 3 as
170 * the two LSBs of the exponent.
171 */
172 unsigned offset = alpha_adjust == AC_ALPHA_ADJUST_SNORM ? 23u : 0u;
173
174 alpha = nir_ibfe_imm(b, alpha, offset, 2u);
175
176 /* Convert back to the right type. */
177 if (alpha_adjust == AC_ALPHA_ADJUST_SNORM) {
178 alpha = nir_i2f32(b, alpha);
179 alpha = nir_fmax(b, alpha, nir_imm_float(b, -1.0f));
180 } else if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) {
181 alpha = nir_i2f32(b, alpha);
182 }
183
184 return alpha;
185 }
186
187 static nir_def *
lower_load_vs_input(nir_builder * b,nir_intrinsic_instr * intrin,lower_vs_inputs_state * s)188 lower_load_vs_input(nir_builder *b, nir_intrinsic_instr *intrin, lower_vs_inputs_state *s)
189 {
190 nir_src *offset_src = nir_get_io_offset_src(intrin);
191 assert(nir_src_is_const(*offset_src));
192
193 const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
194 const unsigned base_offset = nir_src_as_uint(*offset_src);
195 const unsigned location = io_sem.location + base_offset - VERT_ATTRIB_GENERIC0;
196 const unsigned bit_size = intrin->def.bit_size;
197 const unsigned dest_num_components = intrin->def.num_components;
198
199 /* Convert the component offset to bit_size units.
200 * (Intrinsic component offset is in 32-bit units.)
201 *
202 * Small bitsize inputs consume the same space as 32-bit inputs,
203 * but 64-bit inputs consume twice as many.
204 * 64-bit variables must not have a component of 1 or 3.
205 * (See VK spec 15.1.5 "Component Assignment")
206 */
207 const unsigned component = nir_intrinsic_component(intrin) / (MAX2(32, bit_size) / 32);
208
209 /* Bitmask of components in bit_size units
210 * of the current input load that are actually used.
211 */
212 const unsigned dest_use_mask = nir_def_components_read(&intrin->def) << component;
213
214 /* If the input is entirely unused, just replace it with undef.
215 * This is just in case we debug this pass without running DCE first.
216 */
217 if (!dest_use_mask)
218 return nir_undef(b, dest_num_components, bit_size);
219
220 const uint32_t attrib_binding = s->gfx_state->vi.vertex_attribute_bindings[location];
221 const uint32_t attrib_offset = s->gfx_state->vi.vertex_attribute_offsets[location];
222 const uint32_t attrib_stride = s->gfx_state->vi.vertex_attribute_strides[location];
223 const enum pipe_format attrib_format = s->gfx_state->vi.vertex_attribute_formats[location];
224 const struct util_format_description *f = util_format_description(attrib_format);
225 const struct ac_vtx_format_info *vtx_info =
226 ac_get_vtx_format_info(s->gpu_info->gfx_level, s->gpu_info->family, attrib_format);
227 const unsigned binding_index = s->info->vs.use_per_attribute_vb_descs ? location : attrib_binding;
228 const unsigned desc_index = util_bitcount(s->info->vs.vb_desc_usage_mask & u_bit_consecutive(0, binding_index));
229
230 nir_def *vertex_buffers_arg = ac_nir_load_arg(b, &s->args->ac, s->args->ac.vertex_buffers);
231 nir_def *vertex_buffers = nir_pack_64_2x32_split(b, vertex_buffers_arg, nir_imm_int(b, s->gpu_info->address32_hi));
232 nir_def *descriptor = nir_load_smem_amd(b, 4, vertex_buffers, nir_imm_int(b, desc_index * 16));
233 nir_def *base_index = calc_vs_input_index(b, location, s);
234 nir_def *zero = nir_imm_int(b, 0);
235
236 /* We currently implement swizzling for all formats in shaders.
237 * Note, it is possible to specify swizzling in the DST_SEL fields of descriptors,
238 * but we don't use that because typed loads using the MTBUF instruction format
239 * don't support DST_SEL, so it's simpler to just handle it all in shaders.
240 */
241 const bool needs_swizzle = format_needs_swizzle(f);
242
243 /* We need to adjust the alpha channel as loaded by the HW,
244 * for example sign extension and normalization may be necessary.
245 */
246 const enum ac_vs_input_alpha_adjust alpha_adjust = vtx_info->alpha_adjust;
247
248 /* Try to shrink the load format by skipping unused components from the start.
249 * Beneficial because the backend may be able to emit fewer HW instructions.
250 * Only possible with array formats.
251 */
252 const unsigned first_used_channel = first_used_swizzled_channel(f, dest_use_mask, false);
253 const unsigned skipped_start = f->is_array ? first_used_channel : 0;
254
255 /* Number of channels we actually use and load.
256 * Don't shrink the format here because this might allow the backend to
257 * emit fewer (but larger than needed) HW instructions.
258 */
259 const unsigned first_trailing_unused_channel = first_used_swizzled_channel(f, dest_use_mask, true) + 1;
260 const unsigned max_loaded_channels = MIN2(first_trailing_unused_channel, f->nr_channels);
261 const unsigned fetch_num_channels =
262 first_used_channel >= max_loaded_channels ? 0 : max_loaded_channels - skipped_start;
263
264 /* Load VS inputs from VRAM.
265 *
266 * For the vast majority of cases this will only create 1x load_(typed)_buffer_amd
267 * intrinsic and the backend is responsible for further splitting that
268 * to as many HW instructions as needed based on alignment.
269 *
270 * Take care to prevent loaded components from failing the range check,
271 * by emitting several load intrinsics with different index sources.
272 * This is necessary because the backend can't further roll the const offset
273 * into the index source of MUBUF / MTBUF instructions.
274 */
275 nir_def *loads[NIR_MAX_VEC_COMPONENTS] = {0};
276 unsigned num_loads = 0;
277 for (unsigned x = 0, channels; x < fetch_num_channels; x += channels) {
278 channels = fetch_num_channels - x;
279 const unsigned start = skipped_start + x;
280 enum pipe_format fetch_format = attrib_format;
281 nir_def *index = base_index;
282
283 /* Add excess constant offset to the index. */
284 unsigned const_off = attrib_offset + count_format_bytes(f, 0, start);
285 if (attrib_stride && const_off >= attrib_stride) {
286 index = nir_iadd_imm(b, base_index, const_off / attrib_stride);
287 const_off %= attrib_stride;
288 }
289
290 /* Reduce the number of loaded channels until we can pass the range check.
291 * Only for array formats. VK spec mandates proper alignment for packed formats.
292 * Note, NONE seems to occur in real use and is considered an array format.
293 */
294 if (f->is_array && fetch_format != PIPE_FORMAT_NONE) {
295 while (channels > 1 && attrib_stride && (const_off + count_format_bytes(f, start, channels)) > attrib_stride) {
296 channels--;
297 }
298
299 /* Keep the fetch format as large as possible to let the backend emit
300 * larger load instructions when it deems them beneficial.
301 */
302 fetch_format = util_format_get_array(f->channel[0].type, f->channel[0].size, f->nr_channels - start,
303 f->is_unorm || f->is_snorm, f->channel[0].pure_integer);
304 }
305
306 assert(f->is_array || channels == fetch_num_channels);
307
308 /* Prefer using untyped buffer loads if possible, to avoid potential alignment issues.
309 * Typed loads can cause GPU hangs when used with improper alignment.
310 */
311 if (can_use_untyped_load(f, bit_size)) {
312 loads[num_loads++] = nir_load_buffer_amd(b, channels, bit_size, descriptor, zero, zero, index,
313 .base = const_off, .memory_modes = nir_var_shader_in);
314 } else {
315 const unsigned align_mul = MAX2(1, s->gfx_state->vi.vertex_binding_align[attrib_binding]);
316 const unsigned align_offset = const_off % align_mul;
317
318 loads[num_loads++] = nir_load_typed_buffer_amd(
319 b, channels, bit_size, descriptor, zero, zero, index, .base = const_off, .format = fetch_format,
320 .align_mul = align_mul, .align_offset = align_offset, .memory_modes = nir_var_shader_in);
321 }
322 }
323
324 nir_def *load = loads[0];
325
326 /* Extract the channels we actually need when we couldn't skip starting
327 * components or had to emit more than one load intrinsic.
328 */
329 if (num_loads > 0 && (first_used_channel > skipped_start || num_loads != 1))
330 load = nir_extract_bits(b, loads, num_loads, (first_used_channel - skipped_start) * bit_size,
331 max_loaded_channels - first_used_channel, bit_size);
332
333 /* Return early if possible to avoid generating unnecessary IR. */
334 if (num_loads > 0 && first_used_channel == component && load->num_components == dest_num_components &&
335 !needs_swizzle && alpha_adjust == AC_ALPHA_ADJUST_NONE)
336 return load;
337
338 /* Fill unused and OOB components.
339 * Apply swizzle and alpha adjust according to the format.
340 */
341 const nir_alu_type dst_type = nir_alu_type_get_base_type(nir_intrinsic_dest_type(intrin));
342 nir_def *channels[NIR_MAX_VEC_COMPONENTS] = {0};
343 for (unsigned i = 0; i < dest_num_components; ++i) {
344 const unsigned c = i + component;
345
346 if (!(dest_use_mask & BITFIELD_BIT(c))) {
347 /* Fill unused channels with zero. */
348 channels[i] = nir_imm_zero(b, 1, bit_size);
349 continue;
350 }
351
352 const unsigned sw = f->swizzle[c];
353 assert(sw >= first_used_channel);
354 const unsigned loaded_channel = sw - first_used_channel;
355
356 if (load && loaded_channel < load->num_components) {
357 /* Use channels that were loaded from VRAM. */
358 channels[i] = nir_channel(b, load, loaded_channel);
359
360 if (alpha_adjust != AC_ALPHA_ADJUST_NONE && c == 3)
361 channels[i] = adjust_vertex_fetch_alpha(b, alpha_adjust, channels[i]);
362 } else {
363 /* Handle input loads that are larger than their format. */
364 channels[i] = oob_input_load_value(b, c, bit_size, dst_type == nir_type_float);
365 }
366 }
367
368 return nir_vec(b, channels, dest_num_components);
369 }
370
371 static bool
lower_vs_input_instr(nir_builder * b,nir_intrinsic_instr * intrin,void * state)372 lower_vs_input_instr(nir_builder *b, nir_intrinsic_instr *intrin, void *state)
373 {
374 if (intrin->intrinsic != nir_intrinsic_load_input)
375 return false;
376
377 lower_vs_inputs_state *s = (lower_vs_inputs_state *)state;
378
379 b->cursor = nir_before_instr(&intrin->instr);
380
381 nir_def *replacement = NULL;
382
383 if (s->info->vs.dynamic_inputs) {
384 replacement = lower_load_vs_input_from_prolog(b, intrin, s);
385 } else {
386 replacement = lower_load_vs_input(b, intrin, s);
387 }
388
389 nir_def_replace(&intrin->def, replacement);
390 nir_instr_free(&intrin->instr);
391
392 return true;
393 }
394
395 bool
radv_nir_lower_vs_inputs(nir_shader * shader,const struct radv_shader_stage * vs_stage,const struct radv_graphics_state_key * gfx_state,const struct radeon_info * gpu_info)396 radv_nir_lower_vs_inputs(nir_shader *shader, const struct radv_shader_stage *vs_stage,
397 const struct radv_graphics_state_key *gfx_state, const struct radeon_info *gpu_info)
398 {
399 assert(shader->info.stage == MESA_SHADER_VERTEX);
400
401 lower_vs_inputs_state state = {
402 .info = &vs_stage->info,
403 .args = &vs_stage->args,
404 .gfx_state = gfx_state,
405 .gpu_info = gpu_info,
406 };
407
408 return nir_shader_intrinsics_pass(shader, lower_vs_input_instr, nir_metadata_control_flow, &state);
409 }
410
411 static void
type_size_vec4(const struct glsl_type * type,unsigned * size,unsigned * align)412 type_size_vec4(const struct glsl_type *type, unsigned *size, unsigned *align)
413 {
414 *size = glsl_count_attribute_slots(type, false);
415 *align = 1;
416 }
417
418 static bool
opt_vs_input_to_const(nir_builder * b,nir_intrinsic_instr * intrin,void * state)419 opt_vs_input_to_const(nir_builder *b, nir_intrinsic_instr *intrin, void *state)
420 {
421 const struct radv_graphics_state_key *gfx_state = state;
422
423 if (intrin->intrinsic != nir_intrinsic_load_deref)
424 return false;
425
426 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
427 if (!nir_deref_mode_is(deref, nir_var_shader_in) || nir_deref_instr_has_indirect(deref))
428 return false;
429
430 const nir_variable *var = nir_deref_instr_get_variable(deref);
431 const unsigned location =
432 var->data.location + nir_deref_instr_get_const_offset(deref, &type_size_vec4) - VERT_ATTRIB_GENERIC0;
433 const bool is_integer = glsl_base_type_is_integer(glsl_get_base_type(deref->type));
434 const unsigned bit_size = intrin->def.bit_size;
435 const unsigned component = var->data.location_frac >> (bit_size == 64 ? 1 : 0);
436
437 const enum pipe_format attrib_format = gfx_state->vi.vertex_attribute_formats[location];
438 const struct util_format_description *f = util_format_description(attrib_format);
439
440 b->cursor = nir_after_instr(&intrin->instr);
441
442 nir_def *res = &intrin->def;
443 for (unsigned i = 0; i < intrin->def.num_components; i++) {
444 const unsigned c = i + component;
445 if (f->swizzle[c] >= f->nr_channels) {
446 /* Handle input loads that are larger than their format. */
447 nir_def *channel = oob_input_load_value(b, c, bit_size, !is_integer);
448 res = nir_vector_insert_imm(b, res, channel, i);
449 }
450 }
451
452 if (res != &intrin->def) {
453 nir_def_rewrite_uses_after(&intrin->def, res, res->parent_instr);
454 return true;
455 } else {
456 return false;
457 }
458 }
459
460 bool
radv_nir_optimize_vs_inputs_to_const(nir_shader * shader,const struct radv_graphics_state_key * gfx_state)461 radv_nir_optimize_vs_inputs_to_const(nir_shader *shader, const struct radv_graphics_state_key *gfx_state)
462 {
463 assert(shader->info.stage == MESA_SHADER_VERTEX);
464 return nir_shader_intrinsics_pass(shader, opt_vs_input_to_const, nir_metadata_control_flow, (void *)gfx_state);
465 }
466