1 /*
2 * Copyright 2021 Alyssa Rosenzweig
3 * SPDX-License-Identifier: MIT
4 */
5
6 #include "util/bitset.h"
7 #include "util/macros.h"
8 #include "util/u_dynarray.h"
9 #include "util/u_math.h"
10 #include "util/u_memory.h"
11 #include "util/u_qsort.h"
12 #include "agx_builder.h"
13 #include "agx_compile.h"
14 #include "agx_compiler.h"
15 #include "agx_debug.h"
16 #include "agx_opcodes.h"
17 #include "shader_enums.h"
18
19 /* SSA-based register allocator */
20 struct phi_web_node {
21 /* Parent index, or circular for root */
22 uint32_t parent;
23
24 /* If root, assigned register, or ~0 if no register assigned. */
25 uint16_t reg;
26 bool assigned;
27
28 /* Rank, at most log2(n) so need ~5-bits */
29 uint8_t rank;
30 };
31 static_assert(sizeof(struct phi_web_node) == 8, "packed");
32
33 static unsigned
phi_web_find(struct phi_web_node * web,unsigned x)34 phi_web_find(struct phi_web_node *web, unsigned x)
35 {
36 if (web[x].parent == x) {
37 /* Root */
38 return x;
39 } else {
40 /* Search up the tree */
41 unsigned root = x;
42 while (web[root].parent != root)
43 root = web[root].parent;
44
45 /* Compress path. Second pass ensures O(1) memory usage. */
46 while (web[x].parent != x) {
47 unsigned temp = web[x].parent;
48 web[x].parent = root;
49 x = temp;
50 }
51
52 return root;
53 }
54 }
55
56 static void
phi_web_union(struct phi_web_node * web,unsigned x,unsigned y)57 phi_web_union(struct phi_web_node *web, unsigned x, unsigned y)
58 {
59 x = phi_web_find(web, x);
60 y = phi_web_find(web, y);
61
62 if (x == y)
63 return;
64
65 /* Union-by-rank: ensure x.rank >= y.rank */
66 if (web[x].rank < web[y].rank) {
67 unsigned temp = x;
68 x = y;
69 y = temp;
70 }
71
72 web[y].parent = x;
73
74 /* Increment rank if necessary */
75 if (web[x].rank == web[y].rank) {
76 web[x].rank++;
77 }
78 }
79
80 struct ra_ctx {
81 agx_context *shader;
82 agx_block *block;
83 agx_instr *instr;
84 uint16_t *ssa_to_reg;
85 uint8_t *ncomps;
86 uint8_t *ncomps_unrounded;
87 enum agx_size *sizes;
88 enum ra_class *classes;
89 BITSET_WORD *visited;
90 BITSET_WORD *used_regs[RA_CLASSES];
91
92 /* Maintained while assigning registers. Count of registers required, i.e.
93 * the maximum register assigned + 1.
94 */
95 unsigned *count[RA_CLASSES];
96
97 /* For affinities */
98 agx_instr **src_to_collect_phi;
99 struct phi_web_node *phi_web;
100
101 /* If bit i of used_regs is set, and register i is the first consecutive
102 * register holding an SSA value, then reg_to_ssa[i] is the SSA index of the
103 * value currently in register i.
104 *
105 * Only for GPRs. We can add reg classes later if we have a use case.
106 */
107 uint32_t reg_to_ssa[AGX_NUM_REGS];
108
109 /* Maximum number of registers that RA is allowed to use */
110 unsigned bound[RA_CLASSES];
111 };
112
113 /*
114 * RA treats the nesting counter, the divergent shuffle temporary, and the
115 * spiller temporaries as alive throughout if used anywhere. This could be
116 * optimized. Using a single power-of-two reserved region at the start ensures
117 * these registers are never shuffled.
118 */
119 static unsigned
reserved_size(agx_context * ctx)120 reserved_size(agx_context *ctx)
121 {
122 if (ctx->has_spill_pcopy_reserved)
123 return 8;
124 else if (ctx->any_quad_divergent_shuffle)
125 return 2;
126 else if (ctx->any_cf)
127 return 1;
128 else
129 return 0;
130 }
131
132 UNUSED static void
print_reg_file(struct ra_ctx * rctx,FILE * fp)133 print_reg_file(struct ra_ctx *rctx, FILE *fp)
134 {
135 unsigned reserved = reserved_size(rctx->shader);
136
137 /* Dump the contents */
138 for (unsigned i = reserved; i < rctx->bound[RA_GPR]; ++i) {
139 if (BITSET_TEST(rctx->used_regs[RA_GPR], i)) {
140 uint32_t ssa = rctx->reg_to_ssa[i];
141 unsigned n = rctx->ncomps[ssa];
142 fprintf(fp, "h%u...%u: %u\n", i, i + n - 1, ssa);
143 i += (n - 1);
144 }
145 }
146 fprintf(fp, "\n");
147
148 /* Dump a visualization of the sizes to understand what live range
149 * splitting is up against.
150 */
151 for (unsigned i = 0; i < rctx->bound[RA_GPR]; ++i) {
152 /* Space out 16-bit vec4s */
153 if (i && (i % 4) == 0) {
154 fprintf(fp, " ");
155 }
156
157 if (i < reserved) {
158 fprintf(fp, "-");
159 } else if (BITSET_TEST(rctx->used_regs[RA_GPR], i)) {
160 uint32_t ssa = rctx->reg_to_ssa[i];
161 unsigned n = rctx->ncomps[ssa];
162 for (unsigned j = 0; j < n; ++j) {
163 assert(n < 10);
164 fprintf(fp, "%u", n);
165 }
166
167 i += (n - 1);
168 } else {
169 fprintf(fp, ".");
170 }
171 }
172 fprintf(fp, "\n\n");
173 }
174
175 enum agx_size
agx_split_width(const agx_instr * I)176 agx_split_width(const agx_instr *I)
177 {
178 enum agx_size width = ~0;
179
180 agx_foreach_dest(I, d) {
181 if (I->dest[d].type == AGX_INDEX_NULL)
182 continue;
183 else if (width != ~0)
184 assert(width == I->dest[d].size);
185 else
186 width = I->dest[d].size;
187 }
188
189 assert(width != ~0 && "should have been DCE'd");
190 return width;
191 }
192
193 /*
194 * Calculate register demand in 16-bit registers, while gathering widths and
195 * classes. Becuase we allocate in SSA, this calculation is exact in
196 * linear-time. Depends on liveness information.
197 */
198 static unsigned
agx_calc_register_demand(agx_context * ctx)199 agx_calc_register_demand(agx_context *ctx)
200 {
201 /* Print detailed demand calculation, helpful to debug spilling */
202 bool debug = false;
203
204 if (debug) {
205 agx_print_shader(ctx, stdout);
206 }
207
208 uint8_t *widths = calloc(ctx->alloc, sizeof(uint8_t));
209 enum ra_class *classes = calloc(ctx->alloc, sizeof(enum ra_class));
210
211 agx_foreach_instr_global(ctx, I) {
212 agx_foreach_ssa_dest(I, d) {
213 unsigned v = I->dest[d].value;
214 assert(widths[v] == 0 && "broken SSA");
215 /* Round up vectors for easier live range splitting */
216 widths[v] = util_next_power_of_two(agx_index_size_16(I->dest[d]));
217 classes[v] = ra_class_for_index(I->dest[d]);
218 }
219 }
220
221 /* Calculate demand at the start of each block based on live-in, then update
222 * for each instruction processed. Calculate rolling maximum.
223 */
224 unsigned max_demand = 0;
225
226 agx_foreach_block(ctx, block) {
227 unsigned demand = reserved_size(ctx);
228
229 /* Everything live-in */
230 {
231 int i;
232 BITSET_FOREACH_SET(i, block->live_in, ctx->alloc) {
233 if (classes[i] == RA_GPR)
234 demand += widths[i];
235 }
236 }
237
238 max_demand = MAX2(demand, max_demand);
239
240 /* To handle non-power-of-two vectors, sometimes live range splitting
241 * needs extra registers for 1 instruction. This counter tracks the number
242 * of registers to be freed after 1 extra instruction.
243 */
244 unsigned late_kill_count = 0;
245
246 if (debug) {
247 printf("\n");
248 }
249
250 agx_foreach_instr_in_block(block, I) {
251 /* Phis happen in parallel and are already accounted for in the live-in
252 * set, just skip them so we don't double count.
253 */
254 if (I->op == AGX_OPCODE_PHI)
255 continue;
256
257 if (debug) {
258 printf("%u: ", demand);
259 agx_print_instr(I, stdout);
260 }
261
262 if (I->op == AGX_OPCODE_PRELOAD) {
263 unsigned size = agx_size_align_16(I->src[0].size);
264 max_demand = MAX2(max_demand, I->src[0].value + size);
265 } else if (I->op == AGX_OPCODE_EXPORT) {
266 unsigned size = agx_size_align_16(I->src[0].size);
267 max_demand = MAX2(max_demand, I->imm + size);
268 }
269
270 /* Handle late-kill registers from last instruction */
271 demand -= late_kill_count;
272 late_kill_count = 0;
273
274 /* Kill sources the first time we see them */
275 agx_foreach_src(I, s) {
276 if (!I->src[s].kill)
277 continue;
278 assert(I->src[s].type == AGX_INDEX_NORMAL);
279 if (ra_class_for_index(I->src[s]) != RA_GPR)
280 continue;
281
282 bool skip = false;
283
284 for (unsigned backwards = 0; backwards < s; ++backwards) {
285 if (agx_is_equiv(I->src[backwards], I->src[s])) {
286 skip = true;
287 break;
288 }
289 }
290
291 if (!skip)
292 demand -= widths[I->src[s].value];
293 }
294
295 /* Make destinations live */
296 agx_foreach_ssa_dest(I, d) {
297 if (ra_class_for_index(I->dest[d]) != RA_GPR)
298 continue;
299
300 /* Live range splits allocate at power-of-two granularity. Round up
301 * destination sizes (temporarily) to powers-of-two.
302 */
303 unsigned real_width = widths[I->dest[d].value];
304 unsigned pot_width = util_next_power_of_two(real_width);
305
306 demand += pot_width;
307 late_kill_count += (pot_width - real_width);
308 }
309
310 max_demand = MAX2(demand, max_demand);
311 }
312
313 demand -= late_kill_count;
314 }
315
316 free(widths);
317 free(classes);
318 return max_demand;
319 }
320
321 static bool
find_regs_simple(struct ra_ctx * rctx,enum ra_class cls,unsigned count,unsigned align,unsigned * out)322 find_regs_simple(struct ra_ctx *rctx, enum ra_class cls, unsigned count,
323 unsigned align, unsigned *out)
324 {
325 for (unsigned reg = 0; reg + count <= rctx->bound[cls]; reg += align) {
326 if (!BITSET_TEST_RANGE(rctx->used_regs[cls], reg, reg + count - 1)) {
327 *out = reg;
328 return true;
329 }
330 }
331
332 return false;
333 }
334
335 /*
336 * Search the register file for the best contiguous aligned region of the given
337 * size to evict when shuffling registers. The region must not contain any
338 * register marked in the passed bitset.
339 *
340 * As a hint, this also takes in the set of registers from killed sources passed
341 * to this instruction. These should be deprioritized, since they are more
342 * expensive to use (extra moves to shuffle the contents away).
343 *
344 * Precondition: such a region exists.
345 *
346 * Postcondition: at least one register in the returned region is already free.
347 */
348 static unsigned
find_best_region_to_evict(struct ra_ctx * rctx,enum ra_class cls,unsigned size,BITSET_WORD * already_evicted,BITSET_WORD * killed)349 find_best_region_to_evict(struct ra_ctx *rctx, enum ra_class cls, unsigned size,
350 BITSET_WORD *already_evicted, BITSET_WORD *killed)
351 {
352 assert(util_is_power_of_two_or_zero(size) && "precondition");
353 assert((rctx->bound[cls] % size) == 0 &&
354 "register file size must be aligned to the maximum vector size");
355 assert(cls == RA_GPR);
356
357 /* Useful for testing RA */
358 bool invert = false;
359
360 unsigned best_base = ~0;
361 unsigned best_moves = invert ? 0 : ~0;
362
363 for (unsigned base = 0; base + size <= rctx->bound[cls]; base += size) {
364 /* The first k registers are preallocated and unevictable, so must be
365 * skipped. By itself, this does not pose a problem. We are allocating n
366 * registers, but this region has at most n-k free. Since there are at
367 * least n free registers total, there is at least k free registers
368 * outside this region. Choose any such free register. The region
369 * containing it has at most n-1 occupied registers. In the worst case,
370 * n-k of those registers are are moved to the beginning region and the
371 * remaining (n-1)-(n-k) = k-1 registers are moved to the k-1 free
372 * registers in other regions, given there are k free registers total.
373 * These recursive shuffles work out because everything is power-of-two
374 * sized and naturally aligned, so the sizes shuffled are strictly
375 * descending. So, we do not need extra registers to handle "single
376 * region" unevictability.
377 */
378 if (base < reserved_size(rctx->shader))
379 continue;
380
381 /* Do not evict the same register multiple times. It's not necessary since
382 * we're just shuffling, there are enough free registers elsewhere.
383 */
384 if (BITSET_TEST_RANGE(already_evicted, base, base + size - 1))
385 continue;
386
387 /* Estimate the number of moves required if we pick this region */
388 unsigned moves = 0;
389 bool any_free = false;
390
391 for (unsigned reg = base; reg < base + size; ++reg) {
392 /* We need a move for each blocked register (TODO: we only need a
393 * single move for 32-bit pairs, could optimize to use that instead.)
394 */
395 if (BITSET_TEST(rctx->used_regs[cls], reg))
396 moves++;
397 else
398 any_free = true;
399
400 /* Each clobbered killed register requires a move or a swap. Since
401 * swaps require more instructions, assign a higher cost here. In
402 * practice, 3 is too high but 2 is slightly better than 1.
403 */
404 if (BITSET_TEST(killed, reg))
405 moves += 2;
406 }
407
408 /* Pick the region requiring fewest moves as a heuristic. Regions with no
409 * free registers are skipped even if the heuristic estimates a lower cost
410 * (due to killed sources), since the recursive splitting algorithm
411 * requires at least one free register.
412 */
413 if (any_free && ((moves < best_moves) ^ invert)) {
414 best_moves = moves;
415 best_base = base;
416 }
417 }
418
419 assert(best_base < rctx->bound[cls] &&
420 "not enough registers (should have spilled already)");
421 return best_base;
422 }
423
424 static void
set_ssa_to_reg(struct ra_ctx * rctx,unsigned ssa,unsigned reg)425 set_ssa_to_reg(struct ra_ctx *rctx, unsigned ssa, unsigned reg)
426 {
427 enum ra_class cls = rctx->classes[ssa];
428 *(rctx->count[cls]) = MAX2(*(rctx->count[cls]), reg + rctx->ncomps[ssa]);
429
430 rctx->ssa_to_reg[ssa] = reg;
431
432 if (cls == RA_GPR) {
433 rctx->reg_to_ssa[reg] = ssa;
434 }
435 }
436
437 /*
438 * Insert parallel copies to move an SSA variable `var` to a new register
439 * `new_reg`. This may require scalarizing.
440 */
441 static void
insert_copy(struct ra_ctx * rctx,struct util_dynarray * copies,unsigned new_reg,unsigned var)442 insert_copy(struct ra_ctx *rctx, struct util_dynarray *copies, unsigned new_reg,
443 unsigned var)
444 {
445 enum agx_size size = rctx->sizes[var];
446 unsigned align = agx_size_align_16(size);
447
448 for (unsigned i = 0; i < rctx->ncomps[var]; i += align) {
449 struct agx_copy copy = {
450 .dest = new_reg + i,
451 .src = agx_register(rctx->ssa_to_reg[var] + i, size),
452 };
453
454 assert((copy.dest % align) == 0 && "new dest must be aligned");
455 assert((copy.src.value % align) == 0 && "src must be aligned");
456 util_dynarray_append(copies, struct agx_copy, copy);
457 }
458 }
459
460 static unsigned
assign_regs_by_copying(struct ra_ctx * rctx,agx_index dest,const agx_instr * I,struct util_dynarray * copies,BITSET_WORD * clobbered,BITSET_WORD * killed)461 assign_regs_by_copying(struct ra_ctx *rctx, agx_index dest, const agx_instr *I,
462 struct util_dynarray *copies, BITSET_WORD *clobbered,
463 BITSET_WORD *killed)
464 {
465 assert(dest.type == AGX_INDEX_NORMAL);
466
467 /* Initialize the worklist with the variable we're assigning */
468 unsigned blocked_vars[16] = {dest.value};
469 size_t nr_blocked = 1;
470
471 while (nr_blocked > 0) {
472 /* Grab the largest var. TODO: Consider not writing O(N^2) code. */
473 uint32_t ssa = ~0, nr = 0, chosen_idx = ~0;
474 for (unsigned i = 0; i < nr_blocked; ++i) {
475 uint32_t this_ssa = blocked_vars[i];
476 uint32_t this_nr = rctx->ncomps[this_ssa];
477
478 if (this_nr > nr) {
479 nr = this_nr;
480 ssa = this_ssa;
481 chosen_idx = i;
482 }
483 }
484
485 assert(ssa != ~0 && nr > 0 && "must have found something");
486 assert(chosen_idx < nr_blocked && "must have found something");
487
488 /* Pop it from the work list by swapping in the last element */
489 blocked_vars[chosen_idx] = blocked_vars[--nr_blocked];
490
491 /* We need to shuffle some variables to make room. Look for a range of
492 * the register file that is partially blocked.
493 */
494 unsigned new_reg =
495 find_best_region_to_evict(rctx, RA_GPR, nr, clobbered, killed);
496
497 /* Blocked registers need to get reassigned. Add them to the worklist. */
498 for (unsigned i = 0; i < nr; ++i) {
499 if (BITSET_TEST(rctx->used_regs[RA_GPR], new_reg + i)) {
500 unsigned blocked_reg = new_reg + i;
501 uint32_t blocked_ssa = rctx->reg_to_ssa[blocked_reg];
502 uint32_t blocked_nr = rctx->ncomps[blocked_ssa];
503
504 assert(blocked_nr >= 1 && "must be assigned");
505
506 blocked_vars[nr_blocked++] = blocked_ssa;
507 assert(
508 rctx->ssa_to_reg[blocked_ssa] == blocked_reg &&
509 "variable must start within the range, since vectors are limited");
510
511 for (unsigned j = 0; j < blocked_nr; ++j) {
512 assert(
513 BITSET_TEST(rctx->used_regs[RA_GPR], new_reg + i + j) &&
514 "variable is allocated contiguous and vectors are limited, "
515 "so evicted in full");
516 }
517
518 /* Skip to the next variable */
519 i += blocked_nr - 1;
520 }
521 }
522
523 /* We are going to allocate to this range, so it is now fully used. Mark
524 * it as such so we don't reassign here later.
525 */
526 BITSET_SET_RANGE(rctx->used_regs[RA_GPR], new_reg, new_reg + nr - 1);
527
528 /* The first iteration is special: it is the original allocation of a
529 * variable. All subsequent iterations pick a new register for a blocked
530 * variable. For those, copy the blocked variable to its new register.
531 */
532 if (ssa != dest.value) {
533 insert_copy(rctx, copies, new_reg, ssa);
534 }
535
536 /* Mark down the set of clobbered registers, so that killed sources may be
537 * handled correctly later.
538 */
539 BITSET_SET_RANGE(clobbered, new_reg, new_reg + nr - 1);
540
541 /* Update bookkeeping for this variable */
542 set_ssa_to_reg(rctx, ssa, new_reg);
543 }
544
545 return rctx->ssa_to_reg[dest.value];
546 }
547
548 static int
sort_by_size(const void * a_,const void * b_,void * sizes_)549 sort_by_size(const void *a_, const void *b_, void *sizes_)
550 {
551 const enum agx_size *sizes = sizes_;
552 const unsigned *a = a_, *b = b_;
553
554 return sizes[*b] - sizes[*a];
555 }
556
557 /*
558 * Allocating a destination of n consecutive registers may require moving those
559 * registers' contents to the locations of killed sources. For the instruction
560 * to read the correct values, the killed sources themselves need to be moved to
561 * the space where the destination will go.
562 *
563 * This is legal because there is no interference between the killed source and
564 * the destination. This is always possible because, after this insertion, the
565 * destination needs to contain the killed sources already overlapping with the
566 * destination (size k) plus the killed sources clobbered to make room for
567 * livethrough sources overlapping with the destination (at most size |dest|-k),
568 * so the total size is at most k + |dest| - k = |dest| and so fits in the dest.
569 * Sorting by alignment may be necessary.
570 */
571 static void
insert_copies_for_clobbered_killed(struct ra_ctx * rctx,unsigned reg,unsigned count,const agx_instr * I,struct util_dynarray * copies,BITSET_WORD * clobbered)572 insert_copies_for_clobbered_killed(struct ra_ctx *rctx, unsigned reg,
573 unsigned count, const agx_instr *I,
574 struct util_dynarray *copies,
575 BITSET_WORD *clobbered)
576 {
577 unsigned vars[16] = {0};
578 unsigned nr_vars = 0;
579
580 /* Precondition: the reserved region is not shuffled. */
581 assert(reg >= reserved_size(rctx->shader) && "reserved is never moved");
582
583 /* Consider the destination clobbered for the purpose of source collection.
584 * This way, killed sources already in the destination will be preserved
585 * (though possibly compacted).
586 */
587 BITSET_SET_RANGE(clobbered, reg, reg + count - 1);
588
589 /* Collect killed clobbered sources, if any */
590 agx_foreach_ssa_src(I, s) {
591 unsigned reg = rctx->ssa_to_reg[I->src[s].value];
592 unsigned nr = rctx->ncomps[I->src[s].value];
593
594 if (I->src[s].kill && ra_class_for_index(I->src[s]) == RA_GPR &&
595 BITSET_TEST_RANGE(clobbered, reg, reg + nr - 1)) {
596
597 assert(nr_vars < ARRAY_SIZE(vars) &&
598 "cannot clobber more than max variable size");
599
600 vars[nr_vars++] = I->src[s].value;
601 }
602 }
603
604 if (nr_vars == 0)
605 return;
606
607 assert(I->op != AGX_OPCODE_PHI && "kill bit not set for phis");
608
609 /* Sort by descending alignment so they are packed with natural alignment */
610 util_qsort_r(vars, nr_vars, sizeof(vars[0]), sort_by_size, rctx->sizes);
611
612 /* Reassign in the destination region */
613 unsigned base = reg;
614
615 /* We align vectors to their sizes, so this assertion holds as long as no
616 * instruction has a source whose scalar size is greater than the entire size
617 * of the vector destination. Yet the killed source must fit within this
618 * destination, so the destination must be bigger and therefore have bigger
619 * alignment.
620 */
621 assert((base % agx_size_align_16(rctx->sizes[vars[0]])) == 0 &&
622 "destination alignment >= largest killed source alignment");
623
624 for (unsigned i = 0; i < nr_vars; ++i) {
625 unsigned var = vars[i];
626 unsigned var_count = rctx->ncomps[var];
627 unsigned var_align = agx_size_align_16(rctx->sizes[var]);
628
629 assert(rctx->classes[var] == RA_GPR && "construction");
630 assert((base % var_align) == 0 && "induction");
631 assert((var_count % var_align) == 0 && "no partial variables");
632
633 insert_copy(rctx, copies, base, var);
634 set_ssa_to_reg(rctx, var, base);
635 base += var_count;
636 }
637
638 assert(base <= reg + count && "no overflow");
639 }
640
641 /*
642 * When shuffling registers to assign a phi destination, we can't simply insert
643 * the required moves before the phi, since phis happen in parallel along the
644 * edge. Instead, there are two cases:
645 *
646 * 1. The source of the copy is the destination of a phi. Since we are
647 * emitting shuffle code, there will be no more reads of that destination
648 * with the old register. Since the phis all happen in parallel and writes
649 * precede reads, there was no previous read of that destination either. So
650 * the old destination is dead. Just replace the phi's destination with the
651 * moves's destination instead.
652 *
653 * 2. Otherwise, the source of the copy is a live-in value, since it's
654 * live when assigning phis at the start of a block but it is not a phi.
655 * If we move in parallel with the phi, the phi will still read the correct
656 * old register regardless and the destinations can't alias. So, insert a phi
657 * to do the copy in parallel along the incoming edges.
658 */
659 static void
agx_emit_move_before_phi(agx_context * ctx,agx_block * block,struct agx_copy * copy)660 agx_emit_move_before_phi(agx_context *ctx, agx_block *block,
661 struct agx_copy *copy)
662 {
663 assert(!copy->dest_mem && !copy->src.memory && "no memory shuffles");
664
665 /* Look for the phi writing the destination */
666 agx_foreach_phi_in_block(block, phi) {
667 if (agx_is_equiv(agx_as_register(phi->dest[0]), copy->src) &&
668 !phi->dest[0].memory) {
669
670 phi->dest[0].reg = copy->dest;
671 return;
672 }
673 }
674
675 /* There wasn't such a phi, so it's live-in. Insert a phi instead. */
676 agx_builder b = agx_init_builder(ctx, agx_before_block(block));
677
678 agx_instr *phi = agx_phi_to(&b, agx_register_like(copy->dest, copy->src),
679 agx_num_predecessors(block));
680 assert(!copy->src.kill);
681
682 agx_foreach_src(phi, s) {
683 phi->src[s] = copy->src;
684 }
685 }
686
687 static unsigned
find_regs(struct ra_ctx * rctx,agx_instr * I,unsigned dest_idx,unsigned count,unsigned align)688 find_regs(struct ra_ctx *rctx, agx_instr *I, unsigned dest_idx, unsigned count,
689 unsigned align)
690 {
691 unsigned reg;
692 assert(count == align);
693
694 enum ra_class cls = ra_class_for_index(I->dest[dest_idx]);
695
696 if (find_regs_simple(rctx, cls, count, align, ®)) {
697 return reg;
698 } else {
699 assert(cls == RA_GPR && "no memory live range splits");
700
701 BITSET_DECLARE(clobbered, AGX_NUM_REGS) = {0};
702 BITSET_DECLARE(killed, AGX_NUM_REGS) = {0};
703 struct util_dynarray copies = {0};
704 util_dynarray_init(&copies, NULL);
705
706 /* Initialize the set of registers killed by this instructions' sources */
707 agx_foreach_ssa_src(I, s) {
708 unsigned v = I->src[s].value;
709
710 if (BITSET_TEST(rctx->visited, v) && !I->src[s].memory) {
711 unsigned base = rctx->ssa_to_reg[v];
712 unsigned nr = rctx->ncomps[v];
713
714 assert(base + nr <= AGX_NUM_REGS);
715 BITSET_SET_RANGE(killed, base, base + nr - 1);
716 }
717 }
718
719 reg = assign_regs_by_copying(rctx, I->dest[dest_idx], I, &copies,
720 clobbered, killed);
721 insert_copies_for_clobbered_killed(rctx, reg, count, I, &copies,
722 clobbered);
723
724 /* Insert the necessary copies. Phis need special handling since we can't
725 * insert instructions before the phi.
726 */
727 if (I->op == AGX_OPCODE_PHI) {
728 util_dynarray_foreach(&copies, struct agx_copy, copy) {
729 agx_emit_move_before_phi(rctx->shader, rctx->block, copy);
730 }
731 } else {
732 agx_builder b = agx_init_builder(rctx->shader, agx_before_instr(I));
733 agx_emit_parallel_copies(
734 &b, copies.data,
735 util_dynarray_num_elements(&copies, struct agx_copy));
736 }
737
738 util_dynarray_fini(&copies);
739
740 /* assign_regs asserts this is cleared, so clear to be reassigned */
741 BITSET_CLEAR_RANGE(rctx->used_regs[cls], reg, reg + count - 1);
742 return reg;
743 }
744 }
745
746 static uint32_t
search_ssa_to_reg_out(struct ra_ctx * ctx,struct agx_block * blk,enum ra_class cls,unsigned ssa)747 search_ssa_to_reg_out(struct ra_ctx *ctx, struct agx_block *blk,
748 enum ra_class cls, unsigned ssa)
749 {
750 for (unsigned reg = 0; reg < ctx->bound[cls]; ++reg) {
751 if (blk->reg_to_ssa_out[cls][reg] == ssa)
752 return reg;
753 }
754
755 unreachable("variable not defined in block");
756 }
757
758 /*
759 * Loop over live-in values at the start of the block and mark their registers
760 * as in-use. We process blocks in dominance order, so this handles everything
761 * but loop headers.
762 *
763 * For loop headers, this handles the forward edges but not the back edge.
764 * However, that's okay: we don't want to reserve the registers that are
765 * defined within the loop, because then we'd get a contradiction. Instead we
766 * leave them available and then they become fixed points of a sort.
767 */
768 static void
reserve_live_in(struct ra_ctx * rctx)769 reserve_live_in(struct ra_ctx *rctx)
770 {
771 /* If there are no predecessors, there is nothing live-in */
772 unsigned nr_preds = agx_num_predecessors(rctx->block);
773 if (nr_preds == 0)
774 return;
775
776 agx_builder b =
777 agx_init_builder(rctx->shader, agx_before_block(rctx->block));
778
779 int i;
780 BITSET_FOREACH_SET(i, rctx->block->live_in, rctx->shader->alloc) {
781 /* Skip values defined in loops when processing the loop header */
782 if (!BITSET_TEST(rctx->visited, i))
783 continue;
784
785 unsigned base;
786 enum ra_class cls = rctx->classes[i];
787 enum agx_size size = rctx->sizes[i];
788
789 /* We need to use the unrounded channel count, since the extra padding
790 * will be uninitialized and would fail RA validation.
791 */
792 unsigned channels = rctx->ncomps_unrounded[i] / agx_size_align_16(size);
793
794 /* If we split live ranges, the variable might be defined differently at
795 * the end of each predecessor. Join them together with a phi inserted at
796 * the start of the block.
797 */
798 if (nr_preds > 1) {
799 /* We'll fill in the destination after, to coalesce one of the moves */
800 agx_instr *phi = agx_phi_to(&b, agx_null(), nr_preds);
801
802 agx_foreach_predecessor(rctx->block, pred) {
803 unsigned pred_idx = agx_predecessor_index(rctx->block, *pred);
804
805 phi->src[pred_idx] = agx_get_vec_index(i, size, channels);
806 phi->src[pred_idx].memory = cls == RA_MEM;
807
808 if ((*pred)->reg_to_ssa_out[cls] == NULL) {
809 /* If this is a loop header, we don't know where the register
810 * will end up. So, we create a phi conservatively but don't fill
811 * it in until the end of the loop. Stash in the information
812 * we'll need to fill in the real register later.
813 */
814 assert(rctx->block->loop_header);
815 } else {
816 /* Otherwise, we can build the phi now */
817 phi->src[pred_idx].reg =
818 search_ssa_to_reg_out(rctx, *pred, cls, i);
819 phi->src[pred_idx].has_reg = true;
820 }
821 }
822
823 /* Pick the phi destination to coalesce a move. Predecessor ordering is
824 * stable, so this means all live-in values get their registers from a
825 * particular predecessor. That means that such a register allocation
826 * is valid here, because it was valid in the predecessor.
827 */
828 assert(phi->src[0].has_reg && "not loop source");
829 phi->dest[0] = phi->src[0];
830 base = phi->dest[0].reg;
831 } else {
832 /* If we don't emit a phi, there is already a unique register */
833 assert(nr_preds == 1);
834
835 agx_block **pred = util_dynarray_begin(&rctx->block->predecessors);
836 /* TODO: Flip logic to eliminate the search */
837 base = search_ssa_to_reg_out(rctx, *pred, cls, i);
838 }
839
840 set_ssa_to_reg(rctx, i, base);
841
842 for (unsigned j = 0; j < rctx->ncomps[i]; ++j) {
843 BITSET_SET(rctx->used_regs[cls], base + j);
844 }
845 }
846 }
847
848 static void
assign_regs(struct ra_ctx * rctx,agx_index v,unsigned reg)849 assign_regs(struct ra_ctx *rctx, agx_index v, unsigned reg)
850 {
851 enum ra_class cls = ra_class_for_index(v);
852 assert(reg < rctx->bound[cls] && "must not overflow register file");
853 assert(v.type == AGX_INDEX_NORMAL && "only SSA gets registers allocated");
854 set_ssa_to_reg(rctx, v.value, reg);
855
856 assert(!BITSET_TEST(rctx->visited, v.value) && "SSA violated");
857 BITSET_SET(rctx->visited, v.value);
858
859 assert(rctx->ncomps[v.value] >= 1);
860 unsigned end = reg + rctx->ncomps[v.value] - 1;
861
862 assert(!BITSET_TEST_RANGE(rctx->used_regs[cls], reg, end) &&
863 "no interference");
864 BITSET_SET_RANGE(rctx->used_regs[cls], reg, end);
865
866 /* Phi webs need to remember which register they're assigned to */
867 struct phi_web_node *node =
868 &rctx->phi_web[phi_web_find(rctx->phi_web, v.value)];
869
870 if (!node->assigned) {
871 node->reg = reg;
872 node->assigned = true;
873 }
874 }
875
876 static void
agx_set_sources(struct ra_ctx * rctx,agx_instr * I)877 agx_set_sources(struct ra_ctx *rctx, agx_instr *I)
878 {
879 assert(I->op != AGX_OPCODE_PHI);
880
881 agx_foreach_ssa_src(I, s) {
882 assert(BITSET_TEST(rctx->visited, I->src[s].value) && "no phis");
883
884 I->src[s].reg = rctx->ssa_to_reg[I->src[s].value];
885 I->src[s].has_reg = true;
886 }
887 }
888
889 static void
agx_set_dests(struct ra_ctx * rctx,agx_instr * I)890 agx_set_dests(struct ra_ctx *rctx, agx_instr *I)
891 {
892 agx_foreach_ssa_dest(I, s) {
893 I->dest[s].reg = rctx->ssa_to_reg[I->dest[s].value];
894 I->dest[s].has_reg = true;
895 }
896 }
897
898 static unsigned
affinity_base_of_collect(struct ra_ctx * rctx,agx_instr * collect,unsigned src)899 affinity_base_of_collect(struct ra_ctx *rctx, agx_instr *collect, unsigned src)
900 {
901 unsigned src_reg = rctx->ssa_to_reg[collect->src[src].value];
902 unsigned src_offset = src * agx_size_align_16(collect->src[src].size);
903
904 if (src_reg >= src_offset)
905 return src_reg - src_offset;
906 else
907 return ~0;
908 }
909
910 static bool
try_coalesce_with(struct ra_ctx * rctx,agx_index ssa,unsigned count,bool may_be_unvisited,unsigned * out)911 try_coalesce_with(struct ra_ctx *rctx, agx_index ssa, unsigned count,
912 bool may_be_unvisited, unsigned *out)
913 {
914 assert(ssa.type == AGX_INDEX_NORMAL);
915 if (!BITSET_TEST(rctx->visited, ssa.value)) {
916 assert(may_be_unvisited);
917 return false;
918 }
919
920 unsigned base = rctx->ssa_to_reg[ssa.value];
921 enum ra_class cls = ra_class_for_index(ssa);
922
923 if (BITSET_TEST_RANGE(rctx->used_regs[cls], base, base + count - 1))
924 return false;
925
926 assert(base + count <= rctx->bound[cls] && "invariant");
927 *out = base;
928 return true;
929 }
930
931 static unsigned
pick_regs(struct ra_ctx * rctx,agx_instr * I,unsigned d)932 pick_regs(struct ra_ctx *rctx, agx_instr *I, unsigned d)
933 {
934 agx_index idx = I->dest[d];
935 enum ra_class cls = ra_class_for_index(idx);
936 assert(idx.type == AGX_INDEX_NORMAL);
937
938 unsigned count = rctx->ncomps[idx.value];
939 assert(count >= 1);
940
941 unsigned align = count;
942
943 /* Try to allocate entire phi webs compatibly */
944 unsigned phi_idx = phi_web_find(rctx->phi_web, idx.value);
945 if (rctx->phi_web[phi_idx].assigned) {
946 unsigned reg = rctx->phi_web[phi_idx].reg;
947 if ((reg % align) == 0 && reg + align < rctx->bound[cls] &&
948 !BITSET_TEST_RANGE(rctx->used_regs[cls], reg, reg + align - 1))
949 return reg;
950 }
951
952 /* Try to allocate moves compatibly with their sources */
953 if (I->op == AGX_OPCODE_MOV && I->src[0].type == AGX_INDEX_NORMAL &&
954 I->src[0].memory == I->dest[0].memory &&
955 I->src[0].size == I->dest[0].size) {
956
957 unsigned out;
958 if (try_coalesce_with(rctx, I->src[0], count, false, &out))
959 return out;
960 }
961
962 /* Try to allocate phis compatibly with their sources */
963 if (I->op == AGX_OPCODE_PHI) {
964 agx_foreach_ssa_src(I, s) {
965 /* Loop headers have phis with a source preceding the definition */
966 bool may_be_unvisited = rctx->block->loop_header;
967
968 unsigned out;
969 if (try_coalesce_with(rctx, I->src[s], count, may_be_unvisited, &out))
970 return out;
971 }
972 }
973
974 /* Try to allocate collects compatibly with their sources */
975 if (I->op == AGX_OPCODE_COLLECT) {
976 agx_foreach_ssa_src(I, s) {
977 assert(BITSET_TEST(rctx->visited, I->src[s].value) &&
978 "registers assigned in an order compatible with dominance "
979 "and this is not a phi node, so we have assigned a register");
980
981 unsigned base = affinity_base_of_collect(rctx, I, s);
982 if (base >= rctx->bound[cls] || (base + count) > rctx->bound[cls])
983 continue;
984
985 /* Unaligned destinations can happen when dest size > src size */
986 if (base % align)
987 continue;
988
989 if (!BITSET_TEST_RANGE(rctx->used_regs[cls], base, base + count - 1))
990 return base;
991 }
992 }
993
994 /* Try to coalesce scalar exports */
995 agx_instr *collect_phi = rctx->src_to_collect_phi[idx.value];
996 if (collect_phi && collect_phi->op == AGX_OPCODE_EXPORT) {
997 unsigned reg = collect_phi->imm;
998
999 if (!BITSET_TEST_RANGE(rctx->used_regs[cls], reg, reg + align - 1) &&
1000 (reg % align) == 0)
1001 return reg;
1002 }
1003
1004 /* Try to coalesce vector exports */
1005 if (collect_phi && collect_phi->op == AGX_OPCODE_SPLIT) {
1006 if (collect_phi->dest[0].type == AGX_INDEX_NORMAL) {
1007 agx_instr *exp = rctx->src_to_collect_phi[collect_phi->dest[0].value];
1008 if (exp && exp->op == AGX_OPCODE_EXPORT) {
1009 unsigned reg = exp->imm;
1010
1011 if (!BITSET_TEST_RANGE(rctx->used_regs[cls], reg,
1012 reg + align - 1) &&
1013 (reg % align) == 0)
1014 return reg;
1015 }
1016 }
1017 }
1018
1019 /* Try to allocate sources of collects contiguously */
1020 if (collect_phi && collect_phi->op == AGX_OPCODE_COLLECT) {
1021 agx_instr *collect = collect_phi;
1022
1023 assert(count == align && "collect sources are scalar");
1024
1025 /* Find our offset in the collect. If our source is repeated in the
1026 * collect, this may not be unique. We arbitrarily choose the first.
1027 */
1028 unsigned our_source = ~0;
1029 agx_foreach_ssa_src(collect, s) {
1030 if (agx_is_equiv(collect->src[s], idx)) {
1031 our_source = s;
1032 break;
1033 }
1034 }
1035
1036 assert(our_source < collect->nr_srcs && "source must be in the collect");
1037
1038 /* See if we can allocate compatibly with any source of the collect */
1039 agx_foreach_ssa_src(collect, s) {
1040 if (!BITSET_TEST(rctx->visited, collect->src[s].value))
1041 continue;
1042
1043 /* Determine where the collect should start relative to the source */
1044 unsigned base = affinity_base_of_collect(rctx, collect, s);
1045 if (base >= rctx->bound[cls])
1046 continue;
1047
1048 unsigned our_reg = base + (our_source * align);
1049
1050 /* Don't allocate past the end of the register file */
1051 if ((our_reg + align) > rctx->bound[cls])
1052 continue;
1053
1054 /* If those registers are free, then choose them */
1055 if (!BITSET_TEST_RANGE(rctx->used_regs[cls], our_reg,
1056 our_reg + align - 1))
1057 return our_reg;
1058 }
1059
1060 unsigned collect_align = rctx->ncomps[collect->dest[0].value];
1061 unsigned offset = our_source * align;
1062
1063 /* Prefer ranges of the register file that leave room for all sources of
1064 * the collect contiguously.
1065 */
1066 for (unsigned base = 0;
1067 base + (collect->nr_srcs * align) <= rctx->bound[cls];
1068 base += collect_align) {
1069 if (!BITSET_TEST_RANGE(rctx->used_regs[cls], base,
1070 base + (collect->nr_srcs * align) - 1))
1071 return base + offset;
1072 }
1073
1074 /* Try to respect the alignment requirement of the collect destination,
1075 * which may be greater than the sources (e.g. pack_64_2x32_split). Look
1076 * for a register for the source such that the collect base is aligned.
1077 */
1078 if (collect_align > align) {
1079 for (unsigned reg = offset; reg + collect_align <= rctx->bound[cls];
1080 reg += collect_align) {
1081 if (!BITSET_TEST_RANGE(rctx->used_regs[cls], reg, reg + count - 1))
1082 return reg;
1083 }
1084 }
1085 }
1086
1087 /* Try to allocate phi sources compatibly with their phis */
1088 if (collect_phi && collect_phi->op == AGX_OPCODE_PHI) {
1089 agx_instr *phi = collect_phi;
1090 unsigned out;
1091
1092 agx_foreach_ssa_src(phi, s) {
1093 if (try_coalesce_with(rctx, phi->src[s], count, true, &out))
1094 return out;
1095 }
1096
1097 /* If we're in a loop, we may have already allocated the phi. Try that. */
1098 if (phi->dest[0].has_reg) {
1099 unsigned base = phi->dest[0].reg;
1100
1101 if (base + count <= rctx->bound[cls] &&
1102 !BITSET_TEST_RANGE(rctx->used_regs[cls], base, base + count - 1))
1103 return base;
1104 }
1105 }
1106
1107 /* Default to any contiguous sequence of registers */
1108 return find_regs(rctx, I, d, count, align);
1109 }
1110
1111 /** Assign registers to SSA values in a block. */
1112
1113 static void
agx_ra_assign_local(struct ra_ctx * rctx)1114 agx_ra_assign_local(struct ra_ctx *rctx)
1115 {
1116 BITSET_DECLARE(used_regs_gpr, AGX_NUM_REGS) = {0};
1117 BITSET_DECLARE(used_regs_mem, AGX_NUM_MODELED_REGS) = {0};
1118 uint16_t *ssa_to_reg = calloc(rctx->shader->alloc, sizeof(uint16_t));
1119
1120 agx_block *block = rctx->block;
1121 uint8_t *ncomps = rctx->ncomps;
1122 rctx->used_regs[RA_GPR] = used_regs_gpr;
1123 rctx->used_regs[RA_MEM] = used_regs_mem;
1124 rctx->ssa_to_reg = ssa_to_reg;
1125
1126 reserve_live_in(rctx);
1127
1128 /* Force the nesting counter r0l live throughout shaders using control flow.
1129 * This could be optimized (sync with agx_calc_register_demand).
1130 */
1131 if (rctx->shader->any_cf)
1132 BITSET_SET(used_regs_gpr, 0);
1133
1134 /* Force the zero r0h live throughout shaders using divergent shuffles. */
1135 if (rctx->shader->any_quad_divergent_shuffle) {
1136 assert(rctx->shader->any_cf);
1137 BITSET_SET(used_regs_gpr, 1);
1138 }
1139
1140 /* Reserve bottom registers as temporaries for parallel copy lowering */
1141 if (rctx->shader->has_spill_pcopy_reserved) {
1142 BITSET_SET_RANGE(used_regs_gpr, 0, 7);
1143 }
1144
1145 agx_foreach_instr_in_block(block, I) {
1146 rctx->instr = I;
1147
1148 /* Optimization: if a split contains the last use of a vector, the split
1149 * can be removed by assigning the destinations overlapping the source.
1150 */
1151 if (I->op == AGX_OPCODE_SPLIT && I->src[0].kill) {
1152 assert(ra_class_for_index(I->src[0]) == RA_GPR);
1153 unsigned reg = ssa_to_reg[I->src[0].value];
1154 unsigned width = agx_size_align_16(agx_split_width(I));
1155
1156 agx_foreach_dest(I, d) {
1157 assert(ra_class_for_index(I->dest[0]) == RA_GPR);
1158
1159 /* Free up the source */
1160 unsigned offset_reg = reg + (d * width);
1161 BITSET_CLEAR_RANGE(used_regs_gpr, offset_reg,
1162 offset_reg + width - 1);
1163
1164 /* Assign the destination where the source was */
1165 if (!agx_is_null(I->dest[d]))
1166 assign_regs(rctx, I->dest[d], offset_reg);
1167 }
1168
1169 unsigned excess =
1170 rctx->ncomps[I->src[0].value] - (I->nr_dests * width);
1171 if (excess) {
1172 BITSET_CLEAR_RANGE(used_regs_gpr, reg + (I->nr_dests * width),
1173 reg + rctx->ncomps[I->src[0].value] - 1);
1174 }
1175
1176 agx_set_sources(rctx, I);
1177 agx_set_dests(rctx, I);
1178 continue;
1179 } else if (I->op == AGX_OPCODE_PRELOAD) {
1180 /* We must coalesce all preload moves */
1181 assert(I->dest[0].size == I->src[0].size);
1182 assert(I->src[0].type == AGX_INDEX_REGISTER);
1183
1184 /* r1l specifically is a preloaded register. It is reserved during
1185 * demand calculations to ensure we don't need live range shuffling of
1186 * spilling temporaries. But we can still preload to it. So if it's
1187 * reserved, just free it. It'll be fine.
1188 */
1189 if (I->src[0].value == 2) {
1190 BITSET_CLEAR(rctx->used_regs[RA_GPR], 2);
1191 }
1192
1193 assign_regs(rctx, I->dest[0], I->src[0].value);
1194 agx_set_dests(rctx, I);
1195 continue;
1196 }
1197
1198 /* First, free killed sources */
1199 agx_foreach_ssa_src(I, s) {
1200 if (I->src[s].kill) {
1201 assert(I->op != AGX_OPCODE_PHI && "phis don't use .kill");
1202
1203 enum ra_class cls = ra_class_for_index(I->src[s]);
1204 unsigned reg = ssa_to_reg[I->src[s].value];
1205 unsigned count = ncomps[I->src[s].value];
1206
1207 assert(count >= 1);
1208 BITSET_CLEAR_RANGE(rctx->used_regs[cls], reg, reg + count - 1);
1209 }
1210 }
1211
1212 /* Next, assign destinations one at a time. This is always legal
1213 * because of the SSA form.
1214 */
1215 agx_foreach_ssa_dest(I, d) {
1216 if (I->op == AGX_OPCODE_PHI && I->dest[d].has_reg)
1217 continue;
1218
1219 assign_regs(rctx, I->dest[d], pick_regs(rctx, I, d));
1220 }
1221
1222 /* Phi sources are special. Set in the corresponding predecessors */
1223 if (I->op != AGX_OPCODE_PHI)
1224 agx_set_sources(rctx, I);
1225
1226 agx_set_dests(rctx, I);
1227 }
1228
1229 for (unsigned i = 0; i < RA_CLASSES; ++i) {
1230 block->reg_to_ssa_out[i] =
1231 malloc(rctx->bound[i] * sizeof(*block->reg_to_ssa_out[i]));
1232
1233 /* Initialize with sentinel so we don't have unused regs mapping to r0 */
1234 memset(block->reg_to_ssa_out[i], 0xFF,
1235 rctx->bound[i] * sizeof(*block->reg_to_ssa_out[i]));
1236 }
1237
1238 int i;
1239 BITSET_FOREACH_SET(i, block->live_out, rctx->shader->alloc) {
1240 block->reg_to_ssa_out[rctx->classes[i]][rctx->ssa_to_reg[i]] = i;
1241 }
1242
1243 /* Also set the sources for the phis in our successors, since that logically
1244 * happens now (given the possibility of live range splits, etc)
1245 */
1246 agx_foreach_successor(block, succ) {
1247 unsigned pred_idx = agx_predecessor_index(succ, block);
1248
1249 agx_foreach_phi_in_block(succ, phi) {
1250 if (phi->src[pred_idx].type == AGX_INDEX_NORMAL &&
1251 !phi->src[pred_idx].has_reg) {
1252 /* This source needs a fixup */
1253 unsigned value = phi->src[pred_idx].value;
1254 phi->src[pred_idx].reg = rctx->ssa_to_reg[value];
1255 phi->src[pred_idx].has_reg = true;
1256 }
1257 }
1258 }
1259
1260 free(rctx->ssa_to_reg);
1261 }
1262
1263 /*
1264 * Lower phis to parallel copies at the logical end of a given block. If a block
1265 * needs parallel copies inserted, a successor of the block has a phi node. To
1266 * have a (nontrivial) phi node, a block must have multiple predecessors. So the
1267 * edge from the block to the successor (with phi) is not the only edge entering
1268 * the successor. Because the control flow graph has no critical edges, this
1269 * edge must therefore be the only edge leaving the block, so the block must
1270 * have only a single successor.
1271 */
1272 static void
agx_insert_parallel_copies(agx_context * ctx,agx_block * block)1273 agx_insert_parallel_copies(agx_context *ctx, agx_block *block)
1274 {
1275 bool any_succ = false;
1276 unsigned nr_phi = 0;
1277
1278 /* Phi nodes logically happen on the control flow edge, so parallel copies
1279 * are added at the end of the predecessor */
1280 agx_builder b = agx_init_builder(ctx, agx_after_block_logical(block));
1281
1282 agx_foreach_successor(block, succ) {
1283 assert(nr_phi == 0 && "control flow graph has a critical edge");
1284
1285 agx_foreach_phi_in_block(succ, phi) {
1286 assert(!any_succ && "control flow graph has a critical edge");
1287 nr_phi += agx_channels(phi->dest[0]);
1288 }
1289
1290 any_succ = true;
1291
1292 /* Nothing to do if there are no phi nodes */
1293 if (nr_phi == 0)
1294 continue;
1295
1296 unsigned pred_index = agx_predecessor_index(succ, block);
1297
1298 /* Create a parallel copy lowering all the phi nodes */
1299 struct agx_copy *copies = calloc(sizeof(*copies), nr_phi);
1300
1301 unsigned i = 0;
1302
1303 agx_foreach_phi_in_block(succ, phi) {
1304 agx_index dest = phi->dest[0];
1305 agx_index src = phi->src[pred_index];
1306
1307 if (src.type == AGX_INDEX_IMMEDIATE)
1308 src.size = dest.size;
1309
1310 assert(dest.type == AGX_INDEX_REGISTER);
1311 assert(dest.size == src.size);
1312
1313 /* Scalarize the phi, since the parallel copy lowering doesn't handle
1314 * vector phis. While we scalarize phis in NIR, we can generate vector
1315 * phis from spilling so must take care.
1316 */
1317 for (unsigned c = 0; c < agx_channels(phi->dest[0]); ++c) {
1318 agx_index src_ = src;
1319 unsigned offs = c * agx_size_align_16(src.size);
1320
1321 if (src.type != AGX_INDEX_IMMEDIATE) {
1322 assert(src.type == AGX_INDEX_UNIFORM ||
1323 src.type == AGX_INDEX_REGISTER);
1324 src_.value += offs;
1325 src_.channels_m1 = 1 - 1;
1326 }
1327
1328 assert(i < nr_phi);
1329 copies[i++] = (struct agx_copy){
1330 .dest = dest.value + offs,
1331 .dest_mem = dest.memory,
1332 .src = src_,
1333 };
1334 }
1335 }
1336
1337 agx_emit_parallel_copies(&b, copies, nr_phi);
1338
1339 free(copies);
1340 }
1341 }
1342
1343 static void
lower_exports(agx_context * ctx)1344 lower_exports(agx_context *ctx)
1345 {
1346 struct agx_copy copies[AGX_NUM_REGS];
1347 unsigned nr = 0;
1348 agx_block *block = agx_exit_block(ctx);
1349
1350 agx_foreach_instr_in_block_safe(block, I) {
1351 if (I->op != AGX_OPCODE_EXPORT)
1352 continue;
1353
1354 assert(agx_channels(I->src[0]) == 1 && "scalarized in frontend");
1355 assert(nr < ARRAY_SIZE(copies));
1356
1357 copies[nr++] = (struct agx_copy){
1358 .dest = I->imm,
1359 .src = I->src[0],
1360 };
1361
1362 /* We cannot use fewer registers than we export */
1363 ctx->max_reg =
1364 MAX2(ctx->max_reg, I->imm + agx_size_align_16(I->src[0].size));
1365 }
1366
1367 agx_builder b = agx_init_builder(ctx, agx_after_block_logical(block));
1368 agx_emit_parallel_copies(&b, copies, nr);
1369 }
1370
1371 void
agx_ra(agx_context * ctx)1372 agx_ra(agx_context *ctx)
1373 {
1374 bool force_spilling =
1375 (agx_compiler_debug & AGX_DBG_SPILL) && ctx->key->has_scratch;
1376
1377 /* Determine maximum possible registers. We won't exceed this! */
1378 unsigned max_possible_regs = AGX_NUM_REGS;
1379
1380 /* Compute shaders need to have their entire workgroup together, so our
1381 * register usage is bounded by the workgroup size.
1382 */
1383 if (gl_shader_stage_is_compute(ctx->stage)) {
1384 unsigned threads_per_workgroup;
1385
1386 /* If we don't know the workgroup size, worst case it. TODO: Optimize
1387 * this, since it'll decimate opencl perf.
1388 */
1389 if (ctx->nir->info.workgroup_size_variable) {
1390 threads_per_workgroup = 1024;
1391 } else {
1392 threads_per_workgroup = ctx->nir->info.workgroup_size[0] *
1393 ctx->nir->info.workgroup_size[1] *
1394 ctx->nir->info.workgroup_size[2];
1395 }
1396
1397 max_possible_regs =
1398 agx_max_registers_for_occupancy(threads_per_workgroup);
1399 }
1400
1401 if (force_spilling) {
1402 /* Even when testing spilling, we need enough room for preloaded/exported
1403 * regs.
1404 */
1405 unsigned d = 24;
1406 unsigned max_ncomps = 8;
1407
1408 agx_foreach_instr_global(ctx, I) {
1409 if (I->op == AGX_OPCODE_PRELOAD) {
1410 unsigned size = agx_size_align_16(I->src[0].size);
1411 d = MAX2(d, I->src[0].value + size);
1412 } else if (I->op == AGX_OPCODE_EXPORT) {
1413 unsigned size = agx_size_align_16(I->src[0].size);
1414 d = MAX2(d, I->imm + size);
1415 } else if (I->op == AGX_OPCODE_IMAGE_WRITE) {
1416 /* vec4 source + vec4 coordinates + bindless handle + reserved */
1417 d = MAX2(d, 26);
1418 } else if (I->op == AGX_OPCODE_TEXTURE_SAMPLE &&
1419 (I->lod_mode == AGX_LOD_MODE_LOD_GRAD ||
1420 I->lod_mode == AGX_LOD_MODE_LOD_GRAD_MIN)) {
1421 /* as above but with big gradient */
1422 d = MAX2(d, 36);
1423 }
1424
1425 agx_foreach_ssa_dest(I, v) {
1426 max_ncomps = MAX2(max_ncomps, agx_index_size_16(I->dest[v]));
1427 }
1428 }
1429
1430 max_possible_regs = ALIGN_POT(d, util_next_power_of_two(max_ncomps));
1431 } else if (ctx->key->is_helper) {
1432 /* The helper program is unspillable and has a limited register file */
1433 max_possible_regs = 32;
1434 }
1435
1436 /* Calculate the demand. We'll use it to determine if we need to spill and to
1437 * bound register assignment.
1438 */
1439 agx_compute_liveness(ctx);
1440 unsigned effective_demand = agx_calc_register_demand(ctx);
1441 bool spilling = (effective_demand > max_possible_regs);
1442
1443 if (spilling) {
1444 assert(ctx->key->has_scratch && "internal shaders are unspillable");
1445 agx_spill(ctx, max_possible_regs);
1446
1447 /* After spilling, recalculate liveness and demand */
1448 agx_compute_liveness(ctx);
1449 effective_demand = agx_calc_register_demand(ctx);
1450
1451 /* The resulting program can now be assigned registers */
1452 assert(effective_demand <= max_possible_regs && "spiller post-condition");
1453 }
1454
1455 /* Record all phi webs. First initialize the union-find data structure with
1456 * all SSA defs in their own singletons, then union together anything related
1457 * by a phi. The resulting union-find structure will be the webs.
1458 */
1459 struct phi_web_node *phi_web = calloc(ctx->alloc, sizeof(*phi_web));
1460 for (unsigned i = 0; i < ctx->alloc; ++i) {
1461 phi_web[i].parent = i;
1462 }
1463
1464 agx_foreach_block(ctx, block) {
1465 agx_foreach_phi_in_block(block, phi) {
1466 agx_foreach_ssa_src(phi, s) {
1467 phi_web_union(phi_web, phi->dest[0].value, phi->src[s].value);
1468 }
1469 }
1470 }
1471
1472 uint8_t *ncomps = calloc(ctx->alloc, sizeof(uint8_t));
1473 uint8_t *ncomps_unrounded = calloc(ctx->alloc, sizeof(uint8_t));
1474 enum ra_class *classes = calloc(ctx->alloc, sizeof(enum ra_class));
1475 agx_instr **src_to_collect_phi = calloc(ctx->alloc, sizeof(agx_instr *));
1476 enum agx_size *sizes = calloc(ctx->alloc, sizeof(enum agx_size));
1477 BITSET_WORD *visited = calloc(BITSET_WORDS(ctx->alloc), sizeof(BITSET_WORD));
1478 unsigned max_ncomps = 1;
1479
1480 agx_foreach_instr_global(ctx, I) {
1481 /* Record collects/phis so we can coalesce when assigning */
1482 if (I->op == AGX_OPCODE_COLLECT || I->op == AGX_OPCODE_PHI ||
1483 I->op == AGX_OPCODE_EXPORT || I->op == AGX_OPCODE_SPLIT) {
1484 agx_foreach_ssa_src(I, s) {
1485 src_to_collect_phi[I->src[s].value] = I;
1486 }
1487 }
1488
1489 agx_foreach_ssa_dest(I, d) {
1490 unsigned v = I->dest[d].value;
1491 assert(ncomps[v] == 0 && "broken SSA");
1492 /* Round up vectors for easier live range splitting */
1493 ncomps_unrounded[v] = agx_index_size_16(I->dest[d]);
1494 ncomps[v] = util_next_power_of_two(ncomps_unrounded[v]);
1495 sizes[v] = I->dest[d].size;
1496 classes[v] = ra_class_for_index(I->dest[d]);
1497
1498 max_ncomps = MAX2(max_ncomps, ncomps[v]);
1499 }
1500 }
1501
1502 /* For live range splitting to work properly, ensure the register file is
1503 * aligned to the larger vector size. Most of the time, this is a no-op since
1504 * the largest vector size is usually 128-bit and the register file is
1505 * naturally 128-bit aligned. However, this is required for correctness with
1506 * 3D textureGrad, which can have a source vector of length 6x32-bit,
1507 * rounding up to 256-bit and requiring special accounting here.
1508 */
1509 unsigned reg_file_alignment = MAX2(max_ncomps, 8);
1510 assert(util_is_power_of_two_nonzero(reg_file_alignment));
1511
1512 unsigned demand = ALIGN_POT(effective_demand, reg_file_alignment);
1513 assert(demand <= max_possible_regs && "Invariant");
1514
1515 /* Round up the demand to the maximum number of registers we can use without
1516 * affecting occupancy. This reduces live range splitting.
1517 */
1518 unsigned max_regs = agx_occupancy_for_register_count(demand).max_registers;
1519 if (ctx->key->is_helper || force_spilling)
1520 max_regs = max_possible_regs;
1521
1522 max_regs = ROUND_DOWN_TO(max_regs, reg_file_alignment);
1523
1524 /* Or, we can bound tightly for debugging */
1525 if (agx_compiler_debug & AGX_DBG_DEMAND)
1526 max_regs = ALIGN_POT(MAX2(demand, 12), reg_file_alignment);
1527
1528 /* ...but not too tightly */
1529 assert((max_regs % reg_file_alignment) == 0 && "occupancy limits aligned");
1530 assert(max_regs >= (6 * 2) && "space for vertex shader preloading");
1531 assert(max_regs <= max_possible_regs);
1532
1533 unsigned reg_count = 0, mem_slot_count = 0;
1534
1535 /* Assign registers in dominance-order. This coincides with source-order due
1536 * to a NIR invariant, so we do not need special handling for this.
1537 */
1538 agx_foreach_block(ctx, block) {
1539 agx_ra_assign_local(&(struct ra_ctx){
1540 .shader = ctx,
1541 .block = block,
1542 .src_to_collect_phi = src_to_collect_phi,
1543 .phi_web = phi_web,
1544 .ncomps = ncomps,
1545 .ncomps_unrounded = ncomps_unrounded,
1546 .sizes = sizes,
1547 .classes = classes,
1548 .visited = visited,
1549 .bound[RA_GPR] = max_regs,
1550 .bound[RA_MEM] = AGX_NUM_MODELED_REGS,
1551 .count[RA_GPR] = ®_count,
1552 .count[RA_MEM] = &mem_slot_count,
1553 });
1554 }
1555
1556 ctx->max_reg = reg_count ? (reg_count - 1) : 0;
1557 ctx->spill_base_B = ctx->scratch_size_B;
1558 ctx->scratch_size_B += mem_slot_count * 2;
1559
1560 /* Vertex shaders preload the vertex/instance IDs (r5, r6) even if the shader
1561 * don't use them. Account for that so the preload doesn't clobber GPRs.
1562 * Hardware tessellation eval shaders preload patch/instance IDs there.
1563 */
1564 if (ctx->nir->info.stage == MESA_SHADER_VERTEX ||
1565 ctx->nir->info.stage == MESA_SHADER_TESS_EVAL)
1566 ctx->max_reg = MAX2(ctx->max_reg, 6 * 2);
1567
1568 assert(ctx->max_reg <= max_regs);
1569
1570 /* Validate RA after assigning registers just before lowering SSA */
1571 agx_validate_ra(ctx);
1572
1573 agx_foreach_instr_global_safe(ctx, ins) {
1574 /* Lower away SSA */
1575 agx_foreach_ssa_dest(ins, d) {
1576 ins->dest[d] =
1577 agx_replace_index(ins->dest[d], agx_as_register(ins->dest[d]));
1578 }
1579
1580 agx_foreach_ssa_src(ins, s) {
1581 agx_replace_src(ins, s, agx_as_register(ins->src[s]));
1582 }
1583
1584 /* Lower away RA pseudo-instructions */
1585 agx_builder b = agx_init_builder(ctx, agx_after_instr(ins));
1586
1587 if (ins->op == AGX_OPCODE_COLLECT) {
1588 assert(ins->dest[0].type == AGX_INDEX_REGISTER);
1589 assert(!ins->dest[0].memory);
1590
1591 unsigned base = ins->dest[0].value;
1592 unsigned width = agx_size_align_16(ins->src[0].size);
1593
1594 struct agx_copy *copies = alloca(sizeof(copies[0]) * ins->nr_srcs);
1595 unsigned n = 0;
1596
1597 /* Move the sources */
1598 agx_foreach_src(ins, i) {
1599 if (agx_is_null(ins->src[i]) || ins->src[i].type == AGX_INDEX_UNDEF)
1600 continue;
1601 assert(ins->src[i].size == ins->src[0].size);
1602
1603 assert(n < ins->nr_srcs);
1604 copies[n++] = (struct agx_copy){
1605 .dest = base + (i * width),
1606 .src = ins->src[i],
1607 };
1608 }
1609
1610 agx_emit_parallel_copies(&b, copies, n);
1611 agx_remove_instruction(ins);
1612 continue;
1613 } else if (ins->op == AGX_OPCODE_SPLIT) {
1614 assert(ins->src[0].type == AGX_INDEX_REGISTER ||
1615 ins->src[0].type == AGX_INDEX_UNIFORM);
1616
1617 struct agx_copy copies[4];
1618 assert(ins->nr_dests <= ARRAY_SIZE(copies));
1619
1620 unsigned n = 0;
1621 unsigned width = agx_size_align_16(agx_split_width(ins));
1622
1623 /* Move the sources */
1624 agx_foreach_dest(ins, i) {
1625 if (ins->dest[i].type != AGX_INDEX_REGISTER)
1626 continue;
1627
1628 assert(!ins->dest[i].memory);
1629
1630 agx_index src = ins->src[0];
1631 src.size = ins->dest[i].size;
1632 src.channels_m1 = 0;
1633 src.value += (i * width);
1634
1635 assert(n < ARRAY_SIZE(copies));
1636 copies[n++] = (struct agx_copy){
1637 .dest = ins->dest[i].value,
1638 .src = src,
1639 };
1640 }
1641
1642 /* Lower away */
1643 agx_builder b = agx_init_builder(ctx, agx_after_instr(ins));
1644 agx_emit_parallel_copies(&b, copies, n);
1645 agx_remove_instruction(ins);
1646 continue;
1647 }
1648 }
1649
1650 /* Insert parallel copies lowering phi nodes and exports */
1651 agx_foreach_block(ctx, block) {
1652 agx_insert_parallel_copies(ctx, block);
1653 }
1654
1655 lower_exports(ctx);
1656
1657 agx_foreach_instr_global_safe(ctx, I) {
1658 switch (I->op) {
1659 /* Pseudoinstructions for RA must be removed now */
1660 case AGX_OPCODE_PHI:
1661 case AGX_OPCODE_PRELOAD:
1662 agx_remove_instruction(I);
1663 break;
1664
1665 /* Coalesced moves can be removed */
1666 case AGX_OPCODE_MOV:
1667 if (I->src[0].type == AGX_INDEX_REGISTER &&
1668 I->dest[0].size == I->src[0].size &&
1669 I->src[0].value == I->dest[0].value &&
1670 I->src[0].memory == I->dest[0].memory) {
1671
1672 assert(I->dest[0].type == AGX_INDEX_REGISTER);
1673 agx_remove_instruction(I);
1674 }
1675 break;
1676
1677 default:
1678 break;
1679 }
1680 }
1681
1682 if (spilling)
1683 agx_lower_spill(ctx);
1684
1685 agx_foreach_block(ctx, block) {
1686 for (unsigned i = 0; i < ARRAY_SIZE(block->reg_to_ssa_out); ++i) {
1687 free(block->reg_to_ssa_out[i]);
1688 block->reg_to_ssa_out[i] = NULL;
1689 }
1690 }
1691
1692 free(phi_web);
1693 free(src_to_collect_phi);
1694 free(ncomps);
1695 free(ncomps_unrounded);
1696 free(sizes);
1697 free(classes);
1698 free(visited);
1699 }
1700