• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2018 Jonathan Marek <jonathan@marek.ca>
3  * SPDX-License-Identifier: MIT
4  *
5  * Authors:
6  *    Jonathan Marek <jonathan@marek.ca>
7  */
8 
9 #include "ir2_private.h"
10 
11 #include "fd2_program.h"
12 #include "freedreno_util.h"
13 #include "nir_legacy.h"
14 
15 static const nir_shader_compiler_options options = {
16    .compact_arrays = true,
17    .lower_fpow = true,
18    .lower_flrp32 = true,
19    .lower_fmod = true,
20    .lower_fdiv = true,
21    .lower_fceil = true,
22    .fuse_ffma16 = true,
23    .fuse_ffma32 = true,
24    .fuse_ffma64 = true,
25    /* .fdot_replicates = true, it is replicated, but it makes things worse */
26    .lower_all_io_to_temps = true,
27    .vertex_id_zero_based = true, /* its not implemented anyway */
28    .lower_bitops = true,
29    .lower_vector_cmp = true,
30    .lower_fdph = true,
31    .has_fsub = true,
32    .has_isub = true,
33    .no_integers = true,
34    .lower_insert_byte = true,
35    .lower_insert_word = true,
36    .force_indirect_unrolling = nir_var_all,
37    .force_indirect_unrolling_sampler = true,
38    .max_unroll_iterations = 32,
39 };
40 
41 const nir_shader_compiler_options *
ir2_get_compiler_options(void)42 ir2_get_compiler_options(void)
43 {
44    return &options;
45 }
46 
47 #define OPT(nir, pass, ...)                                                    \
48    ({                                                                          \
49       bool this_progress = false;                                              \
50       NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__);                       \
51       this_progress;                                                           \
52    })
53 #define OPT_V(nir, pass, ...) NIR_PASS_V(nir, pass, ##__VA_ARGS__)
54 
55 static void
ir2_optimize_loop(nir_shader * s)56 ir2_optimize_loop(nir_shader *s)
57 {
58    bool progress;
59    do {
60       progress = false;
61 
62       OPT_V(s, nir_lower_vars_to_ssa);
63       progress |= OPT(s, nir_opt_copy_prop_vars);
64       progress |= OPT(s, nir_copy_prop);
65       progress |= OPT(s, nir_opt_dce);
66       progress |= OPT(s, nir_opt_cse);
67       /* progress |= OPT(s, nir_opt_gcm, true); */
68       progress |= OPT(s, nir_opt_peephole_select, UINT_MAX, true, true);
69       progress |= OPT(s, nir_opt_intrinsics);
70       progress |= OPT(s, nir_opt_algebraic);
71       progress |= OPT(s, nir_opt_constant_folding);
72       progress |= OPT(s, nir_opt_dead_cf);
73       if (OPT(s, nir_opt_loop)) {
74          progress |= true;
75          /* If nir_opt_loop makes progress, then we need to clean
76           * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
77           * to make progress.
78           */
79          OPT(s, nir_copy_prop);
80          OPT(s, nir_opt_dce);
81       }
82       progress |= OPT(s, nir_opt_loop_unroll);
83       progress |= OPT(s, nir_opt_if, nir_opt_if_optimize_phi_true_false);
84       progress |= OPT(s, nir_opt_remove_phis);
85       progress |= OPT(s, nir_opt_undef);
86 
87    } while (progress);
88 }
89 
90 /* trig workarounds is the same as ir3.. but we don't want to include ir3 */
91 bool ir3_nir_apply_trig_workarounds(nir_shader *shader);
92 
93 int
ir2_optimize_nir(nir_shader * s,bool lower)94 ir2_optimize_nir(nir_shader *s, bool lower)
95 {
96    struct nir_lower_tex_options tex_options = {
97       .lower_txp = ~0u,
98       .lower_rect = 0,
99       .lower_invalid_implicit_lod = true,
100    };
101 
102    if (FD_DBG(DISASM)) {
103       debug_printf("----------------------\n");
104       nir_print_shader(s, stdout);
105       debug_printf("----------------------\n");
106    }
107 
108    OPT_V(s, nir_lower_vars_to_ssa);
109    OPT_V(s, nir_lower_indirect_derefs, nir_var_shader_in | nir_var_shader_out,
110          UINT32_MAX);
111 
112    if (lower) {
113       OPT_V(s, ir3_nir_apply_trig_workarounds);
114       OPT_V(s, nir_lower_tex, &tex_options);
115    }
116 
117    ir2_optimize_loop(s);
118 
119    OPT_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
120    OPT_V(s, nir_opt_sink, nir_move_const_undef);
121 
122    /* TODO we dont want to get shaders writing to depth for depth textures */
123    if (s->info.stage == MESA_SHADER_FRAGMENT) {
124       nir_foreach_shader_out_variable (var, s) {
125          if (var->data.location == FRAG_RESULT_DEPTH)
126             return -1;
127       }
128    }
129 
130    return 0;
131 }
132 
133 static struct ir2_src
load_const(struct ir2_context * ctx,float * value_f,unsigned ncomp)134 load_const(struct ir2_context *ctx, float *value_f, unsigned ncomp)
135 {
136    struct fd2_shader_stateobj *so = ctx->so;
137    unsigned idx, i, j;
138    unsigned imm_ncomp = 0;
139    unsigned swiz = 0;
140    uint32_t *value = (uint32_t *)value_f;
141 
142    /* try to merge with existing immediate (TODO: try with neg) */
143    for (idx = 0; idx < so->num_immediates; idx++) {
144       swiz = 0;
145       imm_ncomp = so->immediates[idx].ncomp;
146       for (i = 0; i < ncomp; i++) {
147          for (j = 0; j < imm_ncomp; j++) {
148             if (value[i] == so->immediates[idx].val[j])
149                break;
150          }
151          if (j == imm_ncomp) {
152             if (j == 4)
153                break;
154             so->immediates[idx].val[imm_ncomp++] = value[i];
155          }
156          swiz |= swiz_set(j, i);
157       }
158       /* matched all components */
159       if (i == ncomp)
160          break;
161    }
162 
163    /* need to allocate new immediate */
164    if (idx == so->num_immediates) {
165       swiz = 0;
166       imm_ncomp = 0;
167       for (i = 0; i < ncomp; i++) {
168          for (j = 0; j < imm_ncomp; j++) {
169             if (value[i] == ctx->so->immediates[idx].val[j])
170                break;
171          }
172          if (j == imm_ncomp) {
173             so->immediates[idx].val[imm_ncomp++] = value[i];
174          }
175          swiz |= swiz_set(j, i);
176       }
177       so->num_immediates++;
178    }
179    so->immediates[idx].ncomp = imm_ncomp;
180 
181    if (ncomp == 1)
182       swiz = swiz_merge(swiz, IR2_SWIZZLE_XXXX);
183 
184    return ir2_src(so->first_immediate + idx, swiz, IR2_SRC_CONST);
185 }
186 
187 struct ir2_src
ir2_zero(struct ir2_context * ctx)188 ir2_zero(struct ir2_context *ctx)
189 {
190    return load_const(ctx, (float[]){0.0f}, 1);
191 }
192 
193 static void
update_range(struct ir2_context * ctx,struct ir2_reg * reg)194 update_range(struct ir2_context *ctx, struct ir2_reg *reg)
195 {
196    if (!reg->initialized) {
197       reg->initialized = true;
198       reg->loop_depth = ctx->loop_depth;
199    }
200 
201    if (ctx->loop_depth > reg->loop_depth) {
202       reg->block_idx_free = ctx->loop_last_block[reg->loop_depth + 1];
203    } else {
204       reg->loop_depth = ctx->loop_depth;
205       reg->block_idx_free = -1;
206    }
207 
208    /* for regs we want to free at the end of the loop in any case
209     * XXX dont do this for ssa
210     */
211    if (reg->loop_depth)
212       reg->block_idx_free = ctx->loop_last_block[reg->loop_depth];
213 }
214 
215 static struct ir2_src
make_legacy_src(struct ir2_context * ctx,nir_legacy_src src)216 make_legacy_src(struct ir2_context *ctx, nir_legacy_src src)
217 {
218    struct ir2_src res = {};
219    struct ir2_reg *reg;
220 
221    /* Handle constants specially */
222    if (src.is_ssa) {
223       nir_const_value *const_value =
224          nir_src_as_const_value(nir_src_for_ssa(src.ssa));
225 
226       if (const_value) {
227          float c[src.ssa->num_components];
228          nir_const_value_to_array(c, const_value, src.ssa->num_components, f32);
229          return load_const(ctx, c, src.ssa->num_components);
230       }
231    }
232 
233    /* Otherwise translate the SSA def or register */
234    if (!src.is_ssa) {
235       res.num = src.reg.handle->index;
236       res.type = IR2_SRC_REG;
237       reg = &ctx->reg[res.num];
238    } else {
239       assert(ctx->ssa_map[src.ssa->index] >= 0);
240       res.num = ctx->ssa_map[src.ssa->index];
241       res.type = IR2_SRC_SSA;
242       reg = &ctx->instr[res.num].ssa;
243    }
244 
245    update_range(ctx, reg);
246    return res;
247 }
248 
249 static struct ir2_src
make_src(struct ir2_context * ctx,nir_src src)250 make_src(struct ir2_context *ctx, nir_src src)
251 {
252    return make_legacy_src(ctx, nir_legacy_chase_src(&src));
253 }
254 
255 static void
set_legacy_index(struct ir2_context * ctx,nir_legacy_dest dst,struct ir2_instr * instr)256 set_legacy_index(struct ir2_context *ctx, nir_legacy_dest dst,
257                  struct ir2_instr *instr)
258 {
259    struct ir2_reg *reg = &instr->ssa;
260 
261    if (dst.is_ssa) {
262       ctx->ssa_map[dst.ssa->index] = instr->idx;
263    } else {
264       reg = &ctx->reg[dst.reg.handle->index];
265 
266       instr->is_ssa = false;
267       instr->reg = reg;
268    }
269    update_range(ctx, reg);
270 }
271 
272 static void
set_index(struct ir2_context * ctx,nir_def * def,struct ir2_instr * instr)273 set_index(struct ir2_context *ctx, nir_def *def, struct ir2_instr *instr)
274 {
275    set_legacy_index(ctx, nir_legacy_chase_dest(def), instr);
276 }
277 
278 static struct ir2_instr *
ir2_instr_create(struct ir2_context * ctx,int type)279 ir2_instr_create(struct ir2_context *ctx, int type)
280 {
281    struct ir2_instr *instr;
282 
283    instr = &ctx->instr[ctx->instr_count++];
284    instr->idx = ctx->instr_count - 1;
285    instr->type = type;
286    instr->block_idx = ctx->block_idx;
287    instr->pred = ctx->pred;
288    instr->is_ssa = true;
289    return instr;
290 }
291 
292 static struct ir2_instr *
instr_create_alu(struct ir2_context * ctx,nir_op opcode,unsigned ncomp)293 instr_create_alu(struct ir2_context *ctx, nir_op opcode, unsigned ncomp)
294 {
295    /* emit_alu will fixup instrs that don't map directly */
296    static const struct ir2_opc {
297       int8_t scalar, vector;
298    } nir_ir2_opc[nir_num_opcodes + 1] = {
299       [0 ... nir_num_opcodes - 1] = {-1, -1},
300 
301       [nir_op_mov] = {MAXs, MAXv},
302       [nir_op_fneg] = {MAXs, MAXv},
303       [nir_op_fabs] = {MAXs, MAXv},
304       [nir_op_fsat] = {MAXs, MAXv},
305       [nir_op_fsign] = {-1, CNDGTEv},
306       [nir_op_fadd] = {ADDs, ADDv},
307       [nir_op_fsub] = {ADDs, ADDv},
308       [nir_op_fmul] = {MULs, MULv},
309       [nir_op_ffma] = {-1, MULADDv},
310       [nir_op_fmax] = {MAXs, MAXv},
311       [nir_op_fmin] = {MINs, MINv},
312       [nir_op_ffloor] = {FLOORs, FLOORv},
313       [nir_op_ffract] = {FRACs, FRACv},
314       [nir_op_ftrunc] = {TRUNCs, TRUNCv},
315       [nir_op_fdot2] = {-1, DOT2ADDv},
316       [nir_op_fdot3] = {-1, DOT3v},
317       [nir_op_fdot4] = {-1, DOT4v},
318       [nir_op_sge] = {-1, SETGTEv},
319       [nir_op_slt] = {-1, SETGTv},
320       [nir_op_sne] = {-1, SETNEv},
321       [nir_op_seq] = {-1, SETEv},
322       [nir_op_fcsel] = {-1, CNDEv},
323       [nir_op_frsq] = {RECIPSQ_IEEE, -1},
324       [nir_op_frcp] = {RECIP_IEEE, -1},
325       [nir_op_flog2] = {LOG_IEEE, -1},
326       [nir_op_fexp2] = {EXP_IEEE, -1},
327       [nir_op_fsqrt] = {SQRT_IEEE, -1},
328       [nir_op_fcos] = {COS, -1},
329       [nir_op_fsin] = {SIN, -1},
330    /* no fsat, fneg, fabs since source mods deal with those */
331 
332    /* so we can use this function with non-nir op */
333 #define ir2_op_cube nir_num_opcodes
334       [ir2_op_cube] = {-1, CUBEv},
335    };
336 
337    struct ir2_opc op = nir_ir2_opc[opcode];
338    assert(op.vector >= 0 || op.scalar >= 0);
339 
340    struct ir2_instr *instr = ir2_instr_create(ctx, IR2_ALU);
341    instr->alu.vector_opc = op.vector;
342    instr->alu.scalar_opc = op.scalar;
343    instr->alu.export = -1;
344    instr->alu.write_mask = (1 << ncomp) - 1;
345    instr->src_count =
346       opcode == ir2_op_cube ? 2 : nir_op_infos[opcode].num_inputs;
347    instr->ssa.ncomp = ncomp;
348    return instr;
349 }
350 
351 static struct ir2_instr *
instr_create_alu_reg(struct ir2_context * ctx,nir_op opcode,uint8_t write_mask,struct ir2_instr * share_reg)352 instr_create_alu_reg(struct ir2_context *ctx, nir_op opcode, uint8_t write_mask,
353                      struct ir2_instr *share_reg)
354 {
355    struct ir2_instr *instr;
356    struct ir2_reg *reg;
357 
358    reg = share_reg ? share_reg->reg : &ctx->reg[ctx->reg_count++];
359    reg->ncomp = MAX2(reg->ncomp, util_logbase2(write_mask) + 1);
360 
361    instr = instr_create_alu(ctx, opcode, util_bitcount(write_mask));
362    instr->alu.write_mask = write_mask;
363    instr->reg = reg;
364    instr->is_ssa = false;
365    return instr;
366 }
367 
368 static struct ir2_instr *
instr_create_alu_dest(struct ir2_context * ctx,nir_op opcode,nir_def * def)369 instr_create_alu_dest(struct ir2_context *ctx, nir_op opcode, nir_def *def)
370 {
371    struct ir2_instr *instr;
372    instr = instr_create_alu(ctx, opcode, def->num_components);
373    set_index(ctx, def, instr);
374    return instr;
375 }
376 
377 static struct ir2_instr *
ir2_instr_create_fetch(struct ir2_context * ctx,nir_def * def,instr_fetch_opc_t opc)378 ir2_instr_create_fetch(struct ir2_context *ctx, nir_def *def,
379                        instr_fetch_opc_t opc)
380 {
381    struct ir2_instr *instr = ir2_instr_create(ctx, IR2_FETCH);
382    instr->fetch.opc = opc;
383    instr->src_count = 1;
384    instr->ssa.ncomp = def->num_components;
385    set_index(ctx, def, instr);
386    return instr;
387 }
388 
389 static struct ir2_src
make_src_noconst(struct ir2_context * ctx,nir_src src)390 make_src_noconst(struct ir2_context *ctx, nir_src src)
391 {
392    struct ir2_instr *instr;
393 
394    if (nir_src_as_const_value(src)) {
395       instr = instr_create_alu(ctx, nir_op_mov, src.ssa->num_components);
396       instr->src[0] = make_src(ctx, src);
397       return ir2_src(instr->idx, 0, IR2_SRC_SSA);
398    }
399 
400    return make_src(ctx, src);
401 }
402 
403 static void
emit_alu(struct ir2_context * ctx,nir_alu_instr * alu)404 emit_alu(struct ir2_context *ctx, nir_alu_instr *alu)
405 {
406    const nir_op_info *info = &nir_op_infos[alu->op];
407    nir_def *def = &alu->def;
408    struct ir2_instr *instr;
409    struct ir2_src tmp;
410    unsigned ncomp;
411 
412    /* Don't emit modifiers that are totally folded */
413    if (((alu->op == nir_op_fneg) || (alu->op == nir_op_fabs)) &&
414        nir_legacy_float_mod_folds(alu))
415       return;
416 
417    if ((alu->op == nir_op_fsat) && nir_legacy_fsat_folds(alu))
418       return;
419 
420    /* get the number of dst components */
421    ncomp = def->num_components;
422 
423    instr = instr_create_alu(ctx, alu->op, ncomp);
424 
425    nir_legacy_alu_dest legacy_dest =
426       nir_legacy_chase_alu_dest(&alu->def);
427    set_legacy_index(ctx, legacy_dest.dest, instr);
428    instr->alu.saturate = legacy_dest.fsat;
429    instr->alu.write_mask = legacy_dest.write_mask;
430 
431    for (int i = 0; i < info->num_inputs; i++) {
432       nir_alu_src *src = &alu->src[i];
433 
434       /* compress swizzle with writemask when applicable */
435       unsigned swiz = 0, j = 0;
436       for (int i = 0; i < 4; i++) {
437          if (!(legacy_dest.write_mask & 1 << i) && !info->output_size)
438             continue;
439          swiz |= swiz_set(src->swizzle[i], j++);
440       }
441 
442       nir_legacy_alu_src legacy_src =
443          nir_legacy_chase_alu_src(src, true /* fuse_abs */);
444 
445       instr->src[i] = make_legacy_src(ctx, legacy_src.src);
446       instr->src[i].swizzle = swiz_merge(instr->src[i].swizzle, swiz);
447       instr->src[i].negate = legacy_src.fneg;
448       instr->src[i].abs = legacy_src.fabs;
449    }
450 
451    /* workarounds for NIR ops that don't map directly to a2xx ops */
452    switch (alu->op) {
453    case nir_op_fneg:
454       instr->src[0].negate = 1;
455       break;
456    case nir_op_fabs:
457       instr->src[0].abs = 1;
458       break;
459    case nir_op_fsat:
460       instr->alu.saturate = 1;
461       break;
462    case nir_op_slt:
463       tmp = instr->src[0];
464       instr->src[0] = instr->src[1];
465       instr->src[1] = tmp;
466       break;
467    case nir_op_fcsel:
468       tmp = instr->src[1];
469       instr->src[1] = instr->src[2];
470       instr->src[2] = tmp;
471       break;
472    case nir_op_fsub:
473       instr->src[1].negate = !instr->src[1].negate;
474       break;
475    case nir_op_fdot2:
476       instr->src_count = 3;
477       instr->src[2] = ir2_zero(ctx);
478       break;
479    case nir_op_fsign: {
480       /* we need an extra instruction to deal with the zero case */
481       struct ir2_instr *tmp;
482 
483       /* tmp = x == 0 ? 0 : 1 */
484       tmp = instr_create_alu(ctx, nir_op_fcsel, ncomp);
485       tmp->src[0] = instr->src[0];
486       tmp->src[1] = ir2_zero(ctx);
487       tmp->src[2] = load_const(ctx, (float[]){1.0f}, 1);
488 
489       /* result = x >= 0 ? tmp : -tmp */
490       instr->src[1] = ir2_src(tmp->idx, 0, IR2_SRC_SSA);
491       instr->src[2] = instr->src[1];
492       instr->src[2].negate = true;
493       instr->src_count = 3;
494    } break;
495    default:
496       break;
497    }
498 }
499 
500 static void
load_input(struct ir2_context * ctx,nir_def * def,unsigned idx)501 load_input(struct ir2_context *ctx, nir_def *def, unsigned idx)
502 {
503    struct ir2_instr *instr;
504    int slot = -1;
505 
506    if (ctx->so->type == MESA_SHADER_VERTEX) {
507       instr = ir2_instr_create_fetch(ctx, def, 0);
508       instr->src[0] = ir2_src(0, 0, IR2_SRC_INPUT);
509       instr->fetch.vtx.const_idx = 20 + (idx / 3);
510       instr->fetch.vtx.const_idx_sel = idx % 3;
511       return;
512    }
513 
514    /* get slot from idx */
515    nir_foreach_shader_in_variable (var, ctx->nir) {
516       if (var->data.driver_location == idx) {
517          slot = var->data.location;
518          break;
519       }
520    }
521    assert(slot >= 0);
522 
523    switch (slot) {
524    case VARYING_SLOT_POS:
525       /* need to extract xy with abs and add tile offset on a20x
526        * zw from fragcoord input (w inverted in fragment shader)
527        * TODO: only components that are required by fragment shader
528        */
529       instr = instr_create_alu_reg(
530          ctx, ctx->so->is_a20x ? nir_op_fadd : nir_op_mov, 3, NULL);
531       instr->src[0] = ir2_src(ctx->f->inputs_count, 0, IR2_SRC_INPUT);
532       instr->src[0].abs = true;
533       /* on a20x, C64 contains the tile offset */
534       instr->src[1] = ir2_src(64, 0, IR2_SRC_CONST);
535 
536       instr = instr_create_alu_reg(ctx, nir_op_mov, 4, instr);
537       instr->src[0] = ir2_src(ctx->f->fragcoord, 0, IR2_SRC_INPUT);
538 
539       instr = instr_create_alu_reg(ctx, nir_op_frcp, 8, instr);
540       instr->src[0] = ir2_src(ctx->f->fragcoord, IR2_SWIZZLE_Y, IR2_SRC_INPUT);
541 
542       unsigned reg_idx = instr->reg - ctx->reg; /* XXX */
543       instr = instr_create_alu_dest(ctx, nir_op_mov, def);
544       instr->src[0] = ir2_src(reg_idx, 0, IR2_SRC_REG);
545       break;
546    default:
547       instr = instr_create_alu_dest(ctx, nir_op_mov, def);
548       instr->src[0] = ir2_src(idx, 0, IR2_SRC_INPUT);
549       break;
550    }
551 }
552 
553 static unsigned
output_slot(struct ir2_context * ctx,nir_intrinsic_instr * intr)554 output_slot(struct ir2_context *ctx, nir_intrinsic_instr *intr)
555 {
556    int slot = -1;
557    unsigned idx = nir_intrinsic_base(intr);
558    nir_foreach_shader_out_variable (var, ctx->nir) {
559       if (var->data.driver_location == idx) {
560          slot = var->data.location;
561          break;
562       }
563    }
564    assert(slot != -1);
565    return slot;
566 }
567 
568 static void
store_output(struct ir2_context * ctx,nir_src src,unsigned slot,unsigned ncomp)569 store_output(struct ir2_context *ctx, nir_src src, unsigned slot,
570              unsigned ncomp)
571 {
572    struct ir2_instr *instr;
573    unsigned idx = 0;
574 
575    if (ctx->so->type == MESA_SHADER_VERTEX) {
576       switch (slot) {
577       case VARYING_SLOT_POS:
578          ctx->position = make_src(ctx, src);
579          idx = 62;
580          break;
581       case VARYING_SLOT_PSIZ:
582          ctx->so->writes_psize = true;
583          idx = 63;
584          break;
585       default:
586          /* find matching slot from fragment shader input */
587          for (idx = 0; idx < ctx->f->inputs_count; idx++)
588             if (ctx->f->inputs[idx].slot == slot)
589                break;
590          if (idx == ctx->f->inputs_count)
591             return;
592       }
593    } else if (slot != FRAG_RESULT_COLOR && slot != FRAG_RESULT_DATA0) {
594       /* only color output is implemented */
595       return;
596    }
597 
598    instr = instr_create_alu(ctx, nir_op_mov, ncomp);
599    instr->src[0] = make_src(ctx, src);
600    instr->alu.export = idx;
601 }
602 
603 static void
emit_intrinsic(struct ir2_context * ctx,nir_intrinsic_instr * intr)604 emit_intrinsic(struct ir2_context *ctx, nir_intrinsic_instr *intr)
605 {
606    struct ir2_instr *instr;
607    ASSERTED nir_const_value *const_offset;
608    unsigned idx;
609 
610    switch (intr->intrinsic) {
611    case nir_intrinsic_decl_reg:
612    case nir_intrinsic_load_reg:
613    case nir_intrinsic_store_reg:
614       /* Nothing to do for these */
615       break;
616 
617    case nir_intrinsic_load_input:
618       load_input(ctx, &intr->def, nir_intrinsic_base(intr));
619       break;
620    case nir_intrinsic_store_output:
621       store_output(ctx, intr->src[0], output_slot(ctx, intr),
622                    intr->num_components);
623       break;
624    case nir_intrinsic_load_uniform:
625       const_offset = nir_src_as_const_value(intr->src[0]);
626       assert(const_offset); /* TODO can be false in ES2? */
627       idx = nir_intrinsic_base(intr);
628       idx += (uint32_t)const_offset[0].f32;
629       instr = instr_create_alu_dest(ctx, nir_op_mov, &intr->def);
630       instr->src[0] = ir2_src(idx, 0, IR2_SRC_CONST);
631       break;
632    case nir_intrinsic_terminate:
633    case nir_intrinsic_terminate_if:
634       instr = ir2_instr_create(ctx, IR2_ALU);
635       instr->alu.vector_opc = VECTOR_NONE;
636       if (intr->intrinsic == nir_intrinsic_terminate_if) {
637          instr->alu.scalar_opc = KILLNEs;
638          instr->src[0] = make_src(ctx, intr->src[0]);
639       } else {
640          instr->alu.scalar_opc = KILLEs;
641          instr->src[0] = ir2_zero(ctx);
642       }
643       instr->alu.export = -1;
644       instr->src_count = 1;
645       ctx->so->has_kill = true;
646       break;
647    case nir_intrinsic_load_front_face:
648       /* gl_FrontFacing is in the sign of param.x
649        * rcp required because otherwise we can't differentiate -0.0 and +0.0
650        */
651       ctx->so->need_param = true;
652 
653       struct ir2_instr *tmp = instr_create_alu(ctx, nir_op_frcp, 1);
654       tmp->src[0] = ir2_src(ctx->f->inputs_count, 0, IR2_SRC_INPUT);
655 
656       instr = instr_create_alu_dest(ctx, nir_op_sge, &intr->def);
657       instr->src[0] = ir2_src(tmp->idx, 0, IR2_SRC_SSA);
658       instr->src[1] = ir2_zero(ctx);
659       break;
660    case nir_intrinsic_load_point_coord:
661       /* param.zw (note: abs might be needed like fragcoord in param.xy?) */
662       ctx->so->need_param = true;
663 
664       instr = instr_create_alu_dest(ctx, nir_op_mov, &intr->def);
665       instr->src[0] =
666          ir2_src(ctx->f->inputs_count, IR2_SWIZZLE_ZW, IR2_SRC_INPUT);
667       break;
668    default:
669       compile_error(ctx, "unimplemented intr %d\n", intr->intrinsic);
670       break;
671    }
672 }
673 
674 static void
emit_tex(struct ir2_context * ctx,nir_tex_instr * tex)675 emit_tex(struct ir2_context *ctx, nir_tex_instr *tex)
676 {
677    bool is_rect = false, is_cube = false;
678    struct ir2_instr *instr;
679    nir_src *coord, *lod_bias;
680 
681    coord = lod_bias = NULL;
682 
683    for (unsigned i = 0; i < tex->num_srcs; i++) {
684       switch (tex->src[i].src_type) {
685       case nir_tex_src_coord:
686          coord = &tex->src[i].src;
687          break;
688       case nir_tex_src_bias:
689       case nir_tex_src_lod:
690          assert(!lod_bias);
691          lod_bias = &tex->src[i].src;
692          break;
693       default:
694          compile_error(ctx, "Unhandled NIR tex src type: %d\n",
695                        tex->src[i].src_type);
696          return;
697       }
698    }
699 
700    switch (tex->op) {
701    case nir_texop_tex:
702    case nir_texop_txb:
703    case nir_texop_txl:
704       break;
705    default:
706       compile_error(ctx, "unimplemented texop %d\n", tex->op);
707       return;
708    }
709 
710    switch (tex->sampler_dim) {
711    case GLSL_SAMPLER_DIM_2D:
712    case GLSL_SAMPLER_DIM_EXTERNAL:
713       break;
714    case GLSL_SAMPLER_DIM_RECT:
715       is_rect = true;
716       break;
717    case GLSL_SAMPLER_DIM_CUBE:
718       is_cube = true;
719       break;
720    default:
721       compile_error(ctx, "unimplemented sampler %d\n", tex->sampler_dim);
722       return;
723    }
724 
725    struct ir2_src src_coord = make_src_noconst(ctx, *coord);
726 
727    /* for cube maps
728     * tmp = cube(coord)
729     * tmp.xy = tmp.xy / |tmp.z| + 1.5
730     * coord = tmp.xyw
731     */
732    if (is_cube) {
733       struct ir2_instr *rcp, *coord_xy;
734       unsigned reg_idx;
735 
736       instr = instr_create_alu_reg(ctx, ir2_op_cube, 15, NULL);
737       instr->src[0] = src_coord;
738       instr->src[0].swizzle = IR2_SWIZZLE_ZZXY;
739       instr->src[1] = src_coord;
740       instr->src[1].swizzle = IR2_SWIZZLE_YXZZ;
741 
742       reg_idx = instr->reg - ctx->reg; /* hacky */
743 
744       rcp = instr_create_alu(ctx, nir_op_frcp, 1);
745       rcp->src[0] = ir2_src(reg_idx, IR2_SWIZZLE_Z, IR2_SRC_REG);
746       rcp->src[0].abs = true;
747 
748       coord_xy = instr_create_alu_reg(ctx, nir_op_ffma, 3, instr);
749       coord_xy->src[0] = ir2_src(reg_idx, 0, IR2_SRC_REG);
750       coord_xy->src[1] = ir2_src(rcp->idx, IR2_SWIZZLE_XXXX, IR2_SRC_SSA);
751       coord_xy->src[2] = load_const(ctx, (float[]){1.5f}, 1);
752 
753       src_coord = ir2_src(reg_idx, 0, IR2_SRC_REG);
754       /* TODO: lod/bias transformed by src_coord.z ? */
755    }
756 
757    instr = ir2_instr_create_fetch(ctx, &tex->def, TEX_FETCH);
758    instr->src[0] = src_coord;
759    instr->src[0].swizzle = is_cube ? IR2_SWIZZLE_YXW : 0;
760    instr->fetch.tex.is_cube = is_cube;
761    instr->fetch.tex.is_rect = is_rect;
762    instr->fetch.tex.samp_id = tex->sampler_index;
763 
764    /* for lod/bias, we insert an extra src for the backend to deal with */
765    if (lod_bias) {
766       instr->src[1] = make_src_noconst(ctx, *lod_bias);
767       /* backend will use 2-3 components so apply swizzle */
768       swiz_merge_p(&instr->src[1].swizzle, IR2_SWIZZLE_XXXX);
769       instr->src_count = 2;
770    }
771 }
772 
773 static void
setup_input(struct ir2_context * ctx,nir_variable * in)774 setup_input(struct ir2_context *ctx, nir_variable *in)
775 {
776    struct fd2_shader_stateobj *so = ctx->so;
777    unsigned n = in->data.driver_location;
778    unsigned slot = in->data.location;
779 
780    assert(glsl_type_is_vector_or_scalar(in->type) ||
781           glsl_type_is_unsized_array(in->type));
782 
783    /* handle later */
784    if (ctx->so->type == MESA_SHADER_VERTEX)
785       return;
786 
787    if (ctx->so->type != MESA_SHADER_FRAGMENT)
788       compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
789 
790    n = ctx->f->inputs_count++;
791 
792    /* half of fragcoord from param reg, half from a varying */
793    if (slot == VARYING_SLOT_POS) {
794       ctx->f->fragcoord = n;
795       so->need_param = true;
796    }
797 
798    ctx->f->inputs[n].slot = slot;
799    ctx->f->inputs[n].ncomp = glsl_get_components(in->type);
800 
801    /* in->data.interpolation?
802     * opengl ES 2.0 can't do flat mode, but we still get it from GALLIUM_HUD
803     */
804 }
805 
806 static void
emit_undef(struct ir2_context * ctx,nir_undef_instr * undef)807 emit_undef(struct ir2_context *ctx, nir_undef_instr *undef)
808 {
809    /* TODO we don't want to emit anything for undefs */
810 
811    struct ir2_instr *instr;
812 
813    instr = instr_create_alu_dest(ctx, nir_op_mov, &undef->def);
814    instr->src[0] = ir2_src(0, 0, IR2_SRC_CONST);
815 }
816 
817 static void
emit_instr(struct ir2_context * ctx,nir_instr * instr)818 emit_instr(struct ir2_context *ctx, nir_instr *instr)
819 {
820    switch (instr->type) {
821    case nir_instr_type_alu:
822       emit_alu(ctx, nir_instr_as_alu(instr));
823       break;
824    case nir_instr_type_deref:
825       /* ignored, handled as part of the intrinsic they are src to */
826       break;
827    case nir_instr_type_intrinsic:
828       emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
829       break;
830    case nir_instr_type_load_const:
831       /* dealt with when using nir_src */
832       break;
833    case nir_instr_type_tex:
834       emit_tex(ctx, nir_instr_as_tex(instr));
835       break;
836    case nir_instr_type_jump:
837       ctx->block_has_jump[ctx->block_idx] = true;
838       break;
839    case nir_instr_type_undef:
840       emit_undef(ctx, nir_instr_as_undef(instr));
841       break;
842    default:
843       break;
844    }
845 }
846 
847 /* fragcoord.zw and a20x hw binning outputs */
848 static void
extra_position_exports(struct ir2_context * ctx,bool binning)849 extra_position_exports(struct ir2_context *ctx, bool binning)
850 {
851    struct ir2_instr *instr, *rcp, *sc, *wincoord, *off;
852 
853    if (ctx->f->fragcoord < 0 && !binning)
854       return;
855 
856    instr = instr_create_alu(ctx, nir_op_fmax, 1);
857    instr->src[0] = ctx->position;
858    instr->src[0].swizzle = IR2_SWIZZLE_W;
859    instr->src[1] = ir2_zero(ctx);
860 
861    rcp = instr_create_alu(ctx, nir_op_frcp, 1);
862    rcp->src[0] = ir2_src(instr->idx, 0, IR2_SRC_SSA);
863 
864    sc = instr_create_alu(ctx, nir_op_fmul, 4);
865    sc->src[0] = ctx->position;
866    sc->src[1] = ir2_src(rcp->idx, IR2_SWIZZLE_XXXX, IR2_SRC_SSA);
867 
868    wincoord = instr_create_alu(ctx, nir_op_ffma, 4);
869    wincoord->src[0] = ir2_src(66, 0, IR2_SRC_CONST);
870    wincoord->src[1] = ir2_src(sc->idx, 0, IR2_SRC_SSA);
871    wincoord->src[2] = ir2_src(65, 0, IR2_SRC_CONST);
872 
873    /* fragcoord z/w */
874    if (ctx->f->fragcoord >= 0 && !binning) {
875       instr = instr_create_alu(ctx, nir_op_mov, 1);
876       instr->src[0] = ir2_src(wincoord->idx, IR2_SWIZZLE_Z, IR2_SRC_SSA);
877       instr->alu.export = ctx->f->fragcoord;
878 
879       instr = instr_create_alu(ctx, nir_op_mov, 1);
880       instr->src[0] = ctx->position;
881       instr->src[0].swizzle = IR2_SWIZZLE_W;
882       instr->alu.export = ctx->f->fragcoord;
883       instr->alu.write_mask = 2;
884    }
885 
886    if (!binning)
887       return;
888 
889    off = instr_create_alu(ctx, nir_op_fadd, 1);
890    off->src[0] = ir2_src(64, 0, IR2_SRC_CONST);
891    off->src[1] = ir2_src(2, 0, IR2_SRC_INPUT);
892 
893    /* 8 max set in freedreno_screen.. unneeded instrs patched out */
894    for (int i = 0; i < 8; i++) {
895       instr = instr_create_alu(ctx, nir_op_ffma, 4);
896       instr->src[0] = ir2_src(1, IR2_SWIZZLE_WYWW, IR2_SRC_CONST);
897       instr->src[1] = ir2_src(off->idx, IR2_SWIZZLE_XXXX, IR2_SRC_SSA);
898       instr->src[2] = ir2_src(3 + i, 0, IR2_SRC_CONST);
899       instr->alu.export = 32;
900 
901       instr = instr_create_alu(ctx, nir_op_ffma, 4);
902       instr->src[0] = ir2_src(68 + i * 2, 0, IR2_SRC_CONST);
903       instr->src[1] = ir2_src(wincoord->idx, 0, IR2_SRC_SSA);
904       instr->src[2] = ir2_src(67 + i * 2, 0, IR2_SRC_CONST);
905       instr->alu.export = 33;
906    }
907 }
908 
909 static bool emit_cf_list(struct ir2_context *ctx, struct exec_list *list);
910 
911 static bool
emit_block(struct ir2_context * ctx,nir_block * block)912 emit_block(struct ir2_context *ctx, nir_block *block)
913 {
914    struct ir2_instr *instr;
915    nir_block *succs = block->successors[0];
916 
917    ctx->block_idx = block->index;
918 
919    nir_foreach_instr (instr, block)
920       emit_instr(ctx, instr);
921 
922    if (!succs || !succs->index)
923       return false;
924 
925    /* we want to be smart and always jump and have the backend cleanup
926     * but we are not, so there are two cases where jump is needed:
927     *  loops (succs index lower)
928     *  jumps (jump instruction seen in block)
929     */
930    if (succs->index > block->index && !ctx->block_has_jump[block->index])
931       return false;
932 
933    assert(block->successors[1] == NULL);
934 
935    instr = ir2_instr_create(ctx, IR2_CF);
936    instr->cf.block_idx = succs->index;
937    /* XXX can't jump to a block with different predicate */
938    return true;
939 }
940 
941 static void
emit_if(struct ir2_context * ctx,nir_if * nif)942 emit_if(struct ir2_context *ctx, nir_if *nif)
943 {
944    unsigned pred = ctx->pred, pred_idx = ctx->pred_idx;
945    struct ir2_instr *instr;
946 
947    /* XXX: blob seems to always use same register for condition */
948 
949    instr = ir2_instr_create(ctx, IR2_ALU);
950    instr->src[0] = make_src(ctx, nif->condition);
951    instr->src_count = 1;
952    instr->ssa.ncomp = 1;
953    instr->alu.vector_opc = VECTOR_NONE;
954    instr->alu.scalar_opc = SCALAR_NONE;
955    instr->alu.export = -1;
956    instr->alu.write_mask = 1;
957    instr->pred = 0;
958 
959    /* if nested, use PRED_SETNE_PUSHv */
960    if (pred) {
961       instr->alu.vector_opc = PRED_SETNE_PUSHv;
962       instr->src[1] = instr->src[0];
963       instr->src[0] = ir2_src(pred_idx, 0, IR2_SRC_SSA);
964       instr->src[0].swizzle = IR2_SWIZZLE_XXXX;
965       instr->src[1].swizzle = IR2_SWIZZLE_XXXX;
966       instr->src_count = 2;
967    } else {
968       instr->alu.scalar_opc = PRED_SETNEs;
969    }
970 
971    ctx->pred_idx = instr->idx;
972    ctx->pred = 3;
973 
974    emit_cf_list(ctx, &nif->then_list);
975 
976    /* TODO: if these is no else branch we don't need this
977     * and if the else branch is simple, can just flip ctx->pred instead
978     */
979    instr = ir2_instr_create(ctx, IR2_ALU);
980    instr->src[0] = ir2_src(ctx->pred_idx, 0, IR2_SRC_SSA);
981    instr->src_count = 1;
982    instr->ssa.ncomp = 1;
983    instr->alu.vector_opc = VECTOR_NONE;
984    instr->alu.scalar_opc = PRED_SET_INVs;
985    instr->alu.export = -1;
986    instr->alu.write_mask = 1;
987    instr->pred = 0;
988    ctx->pred_idx = instr->idx;
989 
990    emit_cf_list(ctx, &nif->else_list);
991 
992    /* restore predicate for nested predicates */
993    if (pred) {
994       instr = ir2_instr_create(ctx, IR2_ALU);
995       instr->src[0] = ir2_src(ctx->pred_idx, 0, IR2_SRC_SSA);
996       instr->src_count = 1;
997       instr->ssa.ncomp = 1;
998       instr->alu.vector_opc = VECTOR_NONE;
999       instr->alu.scalar_opc = PRED_SET_POPs;
1000       instr->alu.export = -1;
1001       instr->alu.write_mask = 1;
1002       instr->pred = 0;
1003       ctx->pred_idx = instr->idx;
1004    }
1005 
1006    /* restore ctx->pred */
1007    ctx->pred = pred;
1008 }
1009 
1010 /* get the highest block idx in the loop, so we know when
1011  * we can free registers that are allocated outside the loop
1012  */
1013 static unsigned
loop_last_block(struct exec_list * list)1014 loop_last_block(struct exec_list *list)
1015 {
1016    nir_cf_node *node =
1017       exec_node_data(nir_cf_node, exec_list_get_tail(list), node);
1018    switch (node->type) {
1019    case nir_cf_node_block:
1020       return nir_cf_node_as_block(node)->index;
1021    case nir_cf_node_if:
1022       assert(0); /* XXX could this ever happen? */
1023       return 0;
1024    case nir_cf_node_loop:
1025       return loop_last_block(&nir_cf_node_as_loop(node)->body);
1026    default:
1027       compile_error(ctx, "Not supported\n");
1028       return 0;
1029    }
1030 }
1031 
1032 static void
emit_loop(struct ir2_context * ctx,nir_loop * nloop)1033 emit_loop(struct ir2_context *ctx, nir_loop *nloop)
1034 {
1035    assert(!nir_loop_has_continue_construct(nloop));
1036    ctx->loop_last_block[++ctx->loop_depth] = loop_last_block(&nloop->body);
1037    emit_cf_list(ctx, &nloop->body);
1038    ctx->loop_depth--;
1039 }
1040 
1041 static bool
emit_cf_list(struct ir2_context * ctx,struct exec_list * list)1042 emit_cf_list(struct ir2_context *ctx, struct exec_list *list)
1043 {
1044    bool ret = false;
1045    foreach_list_typed (nir_cf_node, node, node, list) {
1046       ret = false;
1047       switch (node->type) {
1048       case nir_cf_node_block:
1049          ret = emit_block(ctx, nir_cf_node_as_block(node));
1050          break;
1051       case nir_cf_node_if:
1052          emit_if(ctx, nir_cf_node_as_if(node));
1053          break;
1054       case nir_cf_node_loop:
1055          emit_loop(ctx, nir_cf_node_as_loop(node));
1056          break;
1057       case nir_cf_node_function:
1058          compile_error(ctx, "Not supported\n");
1059          break;
1060       }
1061    }
1062    return ret;
1063 }
1064 
1065 static void
cleanup_binning(struct ir2_context * ctx)1066 cleanup_binning(struct ir2_context *ctx)
1067 {
1068    assert(ctx->so->type == MESA_SHADER_VERTEX);
1069 
1070    /* kill non-position outputs for binning variant */
1071    nir_foreach_block (block, nir_shader_get_entrypoint(ctx->nir)) {
1072       nir_foreach_instr_safe (instr, block) {
1073          if (instr->type != nir_instr_type_intrinsic)
1074             continue;
1075 
1076          nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1077          if (intr->intrinsic != nir_intrinsic_store_output)
1078             continue;
1079 
1080          if (output_slot(ctx, intr) != VARYING_SLOT_POS)
1081             nir_instr_remove(instr);
1082       }
1083    }
1084 
1085    ir2_optimize_nir(ctx->nir, false);
1086 }
1087 
1088 static bool
ir2_alu_to_scalar_filter_cb(const nir_instr * instr,const void * data)1089 ir2_alu_to_scalar_filter_cb(const nir_instr *instr, const void *data)
1090 {
1091    if (instr->type != nir_instr_type_alu)
1092       return false;
1093 
1094    nir_alu_instr *alu = nir_instr_as_alu(instr);
1095    switch (alu->op) {
1096    case nir_op_frsq:
1097    case nir_op_frcp:
1098    case nir_op_flog2:
1099    case nir_op_fexp2:
1100    case nir_op_fsqrt:
1101    case nir_op_fcos:
1102    case nir_op_fsin:
1103       return true;
1104    default:
1105       break;
1106    }
1107 
1108    return false;
1109 }
1110 
1111 void
ir2_nir_compile(struct ir2_context * ctx,bool binning)1112 ir2_nir_compile(struct ir2_context *ctx, bool binning)
1113 {
1114    struct fd2_shader_stateobj *so = ctx->so;
1115 
1116    memset(ctx->ssa_map, 0xff, sizeof(ctx->ssa_map));
1117 
1118    ctx->nir = nir_shader_clone(NULL, so->nir);
1119 
1120    if (binning)
1121       cleanup_binning(ctx);
1122 
1123    OPT_V(ctx->nir, nir_copy_prop);
1124    OPT_V(ctx->nir, nir_opt_dce);
1125    OPT_V(ctx->nir, nir_opt_move, nir_move_comparisons);
1126 
1127    OPT_V(ctx->nir, nir_lower_int_to_float);
1128    OPT_V(ctx->nir, nir_lower_bool_to_float, true);
1129    while (OPT(ctx->nir, nir_opt_algebraic))
1130       ;
1131    OPT_V(ctx->nir, nir_opt_algebraic_late);
1132    OPT_V(ctx->nir, nir_lower_alu_to_scalar, ir2_alu_to_scalar_filter_cb, NULL);
1133 
1134    OPT_V(ctx->nir, nir_convert_from_ssa, true);
1135 
1136    OPT_V(ctx->nir, nir_move_vec_src_uses_to_dest, false);
1137    OPT_V(ctx->nir, nir_lower_vec_to_regs, NULL, NULL);
1138 
1139    OPT_V(ctx->nir, nir_legacy_trivialize, true);
1140 
1141    OPT_V(ctx->nir, nir_opt_dce);
1142 
1143    nir_sweep(ctx->nir);
1144 
1145    if (FD_DBG(DISASM)) {
1146       debug_printf("----------------------\n");
1147       nir_print_shader(ctx->nir, stdout);
1148       debug_printf("----------------------\n");
1149    }
1150 
1151    /* fd2_shader_stateobj init */
1152    if (so->type == MESA_SHADER_FRAGMENT) {
1153       ctx->f->fragcoord = -1;
1154       ctx->f->inputs_count = 0;
1155       memset(ctx->f->inputs, 0, sizeof(ctx->f->inputs));
1156    }
1157 
1158    /* Setup inputs: */
1159    nir_foreach_shader_in_variable (in, ctx->nir)
1160       setup_input(ctx, in);
1161 
1162    if (so->type == MESA_SHADER_FRAGMENT) {
1163       unsigned idx;
1164       for (idx = 0; idx < ctx->f->inputs_count; idx++) {
1165          ctx->input[idx].ncomp = ctx->f->inputs[idx].ncomp;
1166          update_range(ctx, &ctx->input[idx]);
1167       }
1168       /* assume we have param input and kill it later if not */
1169       ctx->input[idx].ncomp = 4;
1170       update_range(ctx, &ctx->input[idx]);
1171    } else {
1172       ctx->input[0].ncomp = 1;
1173       ctx->input[2].ncomp = 1;
1174       update_range(ctx, &ctx->input[0]);
1175       update_range(ctx, &ctx->input[2]);
1176    }
1177 
1178    /* And emit the body: */
1179    nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->nir);
1180 
1181    nir_foreach_reg_decl (decl, fxn) {
1182       assert(decl->def.index < ARRAY_SIZE(ctx->reg));
1183       ctx->reg[decl->def.index].ncomp = nir_intrinsic_num_components(decl);
1184       ctx->reg_count = MAX2(ctx->reg_count, decl->def.index + 1);
1185    }
1186 
1187    nir_metadata_require(fxn, nir_metadata_block_index);
1188    emit_cf_list(ctx, &fxn->body);
1189    /* TODO emit_block(ctx, fxn->end_block); */
1190 
1191    if (so->type == MESA_SHADER_VERTEX)
1192       extra_position_exports(ctx, binning);
1193 
1194    ralloc_free(ctx->nir);
1195 
1196    /* kill unused param input */
1197    if (so->type == MESA_SHADER_FRAGMENT && !so->need_param)
1198       ctx->input[ctx->f->inputs_count].initialized = false;
1199 }
1200