1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdio.h>
27 #include "c11/threads.h"
28 #include "dev/intel_device_info.h"
29 #include "isl/isl.h"
30 #include "util/macros.h"
31 #include "util/mesa-sha1.h"
32 #include "util/enum_operators.h"
33 #include "util/ralloc.h"
34 #include "util/u_math.h"
35 #include "util/u_printf.h"
36 #include "brw_isa_info.h"
37 #include "intel_shader_enums.h"
38
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42
43 struct ra_regs;
44 struct nir_shader;
45 struct shader_info;
46
47 struct nir_shader_compiler_options;
48 typedef struct nir_shader nir_shader;
49
50 #define REG_CLASS_COUNT 20
51
52 struct brw_compiler {
53 const struct intel_device_info *devinfo;
54
55 /* This lock must be taken if the compiler is to be modified in any way,
56 * including adding something to the ralloc child list.
57 */
58 mtx_t mutex;
59
60 struct brw_isa_info isa;
61
62 struct {
63 struct ra_regs *regs;
64
65 /**
66 * Array of the ra classes for the unaligned contiguous register
67 * block sizes used, indexed by register size.
68 */
69 struct ra_class *classes[REG_CLASS_COUNT];
70 } fs_reg_set;
71
72 void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
73 void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
74
75 bool use_tcs_multi_patch;
76 struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES];
77
78 /**
79 * Apply workarounds for SIN and COS output range problems.
80 * This can negatively impact performance.
81 */
82 bool precise_trig;
83
84 /**
85 * Whether indirect UBO loads should use the sampler or go through the
86 * data/constant cache. For the sampler, UBO surface states have to be set
87 * up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
88 * constant or data cache, UBOs must use VK_FORMAT_RAW.
89 */
90 bool indirect_ubos_use_sampler;
91
92 /**
93 * Gfx12.5+ has a bit in the SEND instruction extending the bindless
94 * surface offset range from 20 to 26 bits, effectively giving us 4Gb of
95 * bindless surface descriptors instead of 64Mb previously.
96 */
97 bool extended_bindless_surface_offset;
98
99 /**
100 * Gfx11+ has a bit in the dword 3 of the sampler message header that
101 * indicates whether the sampler handle is relative to the dynamic state
102 * base address (0) or the bindless sampler base address (1). The driver
103 * can select this.
104 */
105 bool use_bindless_sampler_offset;
106
107 /**
108 * Should DPAS instructions be lowered?
109 *
110 * This will be set for all platforms before Gfx12.5. It may also be set
111 * platforms that support DPAS for testing purposes.
112 */
113 bool lower_dpas;
114
115 /**
116 * Calling the ra_allocate function after each register spill can take
117 * several minutes. This option speeds up shader compilation by spilling
118 * more registers after the ra_allocate failure. Required for
119 * Cyberpunk 2077, which uses a watchdog thread to terminate the process
120 * in case the render thread hasn't responded within 2 minutes.
121 */
122 int spilling_rate;
123
124 struct nir_shader *clc_shader;
125
126 struct {
127 unsigned mue_header_packing;
128 bool mue_compaction;
129 } mesh;
130 };
131
132 #define brw_shader_debug_log(compiler, data, fmt, ... ) do { \
133 static unsigned id = 0; \
134 compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__); \
135 } while (0)
136
137 #define brw_shader_perf_log(compiler, data, fmt, ... ) do { \
138 static unsigned id = 0; \
139 compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__); \
140 } while (0)
141
142 /**
143 * We use a constant subgroup size of 32. It really only needs to be a
144 * maximum and, since we do SIMD32 for compute shaders in some cases, it
145 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
146 * subgroup size of 32 but will act as if 16 or 24 of those channels are
147 * disabled.
148 */
149 #define BRW_SUBGROUP_SIZE 32
150
151 static inline bool
brw_shader_stage_is_bindless(gl_shader_stage stage)152 brw_shader_stage_is_bindless(gl_shader_stage stage)
153 {
154 return stage >= MESA_SHADER_RAYGEN &&
155 stage <= MESA_SHADER_CALLABLE;
156 }
157
158 static inline bool
brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)159 brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)
160 {
161 return brw_shader_stage_is_bindless(stage) || gl_shader_stage_is_mesh(stage);
162 }
163
164 static inline bool
brw_shader_stage_has_inline_data(const struct intel_device_info * devinfo,gl_shader_stage stage)165 brw_shader_stage_has_inline_data(const struct intel_device_info *devinfo,
166 gl_shader_stage stage)
167 {
168 return stage == MESA_SHADER_MESH || stage == MESA_SHADER_TASK ||
169 (stage == MESA_SHADER_COMPUTE && devinfo->verx10 >= 125);
170 }
171
172 /**
173 * Program key structures.
174 *
175 * When drawing, we look for the currently bound shaders in the program
176 * cache. This is essentially a hash table lookup, and these are the keys.
177 *
178 * Sometimes OpenGL features specified as state need to be simulated via
179 * shader code, due to a mismatch between the API and the hardware. This
180 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
181 * in the program key so it's considered when searching for a program. If
182 * we haven't seen a particular combination before, we have to recompile a
183 * new specialized version.
184 *
185 * Shader compilation should not look up state in gl_context directly, but
186 * instead use the copy in the program key. This guarantees recompiles will
187 * happen correctly.
188 *
189 * @{
190 */
191
192 #define BRW_MAX_SAMPLERS 32
193
194 /* Provide explicit padding for each member, to ensure that the compiler
195 * initializes every bit in the shader cache keys. The keys will be compared
196 * with memcmp.
197 */
198 PRAGMA_DIAGNOSTIC_PUSH
199 PRAGMA_DIAGNOSTIC_ERROR(-Wpadded)
200
201 enum brw_robustness_flags {
202 BRW_ROBUSTNESS_UBO = BITFIELD_BIT(0),
203 BRW_ROBUSTNESS_SSBO = BITFIELD_BIT(1),
204 };
205
206 struct brw_base_prog_key {
207 unsigned program_string_id;
208
209 enum brw_robustness_flags robust_flags:2;
210
211 unsigned padding:22;
212
213 /**
214 * Apply workarounds for SIN and COS input range problems.
215 * This limits input range for SIN and COS to [-2p : 2p] to
216 * avoid precision issues.
217 */
218 bool limit_trig_input_range;
219 };
220
221 /**
222 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
223 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
224 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
225 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
226 */
227 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
228 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
229
230 /** The program key for Vertex Shaders. */
231 struct brw_vs_prog_key {
232 struct brw_base_prog_key base;
233 };
234
235 /** The program key for Tessellation Control Shaders. */
236 struct brw_tcs_prog_key
237 {
238 struct brw_base_prog_key base;
239
240 /** A bitfield of per-vertex outputs written. */
241 uint64_t outputs_written;
242
243 enum tess_primitive_mode _tes_primitive_mode;
244
245 /** Number of input vertices, 0 means dynamic */
246 unsigned input_vertices;
247
248 /** A bitfield of per-patch outputs written. */
249 uint32_t patch_outputs_written;
250
251 uint32_t padding;
252 };
253
254 #define BRW_MAX_TCS_INPUT_VERTICES (32)
255
256 static inline uint32_t
brw_tcs_prog_key_input_vertices(const struct brw_tcs_prog_key * key)257 brw_tcs_prog_key_input_vertices(const struct brw_tcs_prog_key *key)
258 {
259 return key->input_vertices != 0 ?
260 key->input_vertices : BRW_MAX_TCS_INPUT_VERTICES;
261 }
262
263 /** The program key for Tessellation Evaluation Shaders. */
264 struct brw_tes_prog_key
265 {
266 struct brw_base_prog_key base;
267
268 /** A bitfield of per-vertex inputs read. */
269 uint64_t inputs_read;
270
271 /** A bitfield of per-patch inputs read. */
272 uint32_t patch_inputs_read;
273
274 uint32_t padding;
275 };
276
277 /** The program key for Geometry Shaders. */
278 struct brw_gs_prog_key
279 {
280 struct brw_base_prog_key base;
281 };
282
283 struct brw_task_prog_key
284 {
285 struct brw_base_prog_key base;
286 };
287
288 struct brw_mesh_prog_key
289 {
290 struct brw_base_prog_key base;
291
292 bool compact_mue:1;
293 unsigned padding:31;
294 };
295
296 /** The program key for Fragment/Pixel Shaders. */
297 struct brw_wm_prog_key {
298 struct brw_base_prog_key base;
299
300 uint64_t input_slots_valid;
301 uint8_t color_outputs_valid;
302
303 /* Some collection of BRW_WM_IZ_* */
304 bool flat_shade:1;
305 unsigned nr_color_regions:5;
306 bool alpha_test_replicate_alpha:1;
307 enum intel_sometimes alpha_to_coverage:2;
308 bool clamp_fragment_color:1;
309
310 bool force_dual_color_blend:1;
311
312 /** Whether or inputs are interpolated at sample rate by default
313 *
314 * This corresponds to the sample shading API bit in Vulkan or OpenGL which
315 * controls how inputs with no interpolation qualifier are interpolated.
316 * This is distinct from the way that using gl_SampleID or similar requires
317 * us to run per-sample. Even when running per-sample due to gl_SampleID,
318 * we may still interpolate unqualified inputs at the pixel center.
319 */
320 enum intel_sometimes persample_interp:2;
321
322 /* Whether or not we are running on a multisampled framebuffer */
323 enum intel_sometimes multisample_fbo:2;
324
325 /* Whether the preceding shader stage is mesh */
326 enum intel_sometimes mesh_input:2;
327
328 bool coherent_fb_fetch:1;
329 bool ignore_sample_mask_out:1;
330 bool coarse_pixel:1;
331 bool null_push_constant_tbimr_workaround:1;
332
333 uint64_t padding:35;
334 };
335
336 struct brw_cs_prog_key {
337 struct brw_base_prog_key base;
338 };
339
340 struct brw_bs_prog_key {
341 struct brw_base_prog_key base;
342
343 /* Represents enum enum brw_rt_ray_flags values given at pipeline creation
344 * to be combined with ray_flags handed to the traceRayEXT() calls by the
345 * shader.
346 */
347 uint32_t pipeline_ray_flags;
348 };
349
350 /* brw_any_prog_key is any of the keys that map to an API stage */
351 union brw_any_prog_key {
352 struct brw_base_prog_key base;
353 struct brw_vs_prog_key vs;
354 struct brw_tcs_prog_key tcs;
355 struct brw_tes_prog_key tes;
356 struct brw_gs_prog_key gs;
357 struct brw_wm_prog_key wm;
358 struct brw_cs_prog_key cs;
359 struct brw_bs_prog_key bs;
360 struct brw_task_prog_key task;
361 struct brw_mesh_prog_key mesh;
362 };
363
364 PRAGMA_DIAGNOSTIC_POP
365
366 /** Max number of render targets in a shader */
367 #define BRW_MAX_DRAW_BUFFERS 8
368
369 struct brw_ubo_range
370 {
371 uint16_t block;
372
373 /* In units of 32-byte registers */
374 uint8_t start;
375 uint8_t length;
376 };
377
378 /* We reserve the first 2^16 values for builtins */
379 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
380
381 enum brw_param_builtin {
382 BRW_PARAM_BUILTIN_ZERO,
383
384 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
385 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
386 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
387 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
388 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
389 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
390 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
391 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
392 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
393 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
394 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
395 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
396 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
397 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
398 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
399 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
400 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
401 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
402 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
403 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
404 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
405 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
406 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
407 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
408 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
409 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
410 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
411 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
412 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
413 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
414 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
415 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
416
417 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
418 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
419 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
420 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
421 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
422 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
423
424 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
425
426 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
427 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
428 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
429 BRW_PARAM_BUILTIN_SUBGROUP_ID,
430 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
431 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
432 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
433 BRW_PARAM_BUILTIN_WORK_DIM,
434 };
435
436 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
437 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
438
439 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
440 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
441 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
442
443 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
444 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
445
446 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
447 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
448
449 #define BRW_MAX_EMBEDDED_SAMPLERS (4096)
450
451 enum brw_shader_reloc_id {
452 BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
453 BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
454 BRW_SHADER_RELOC_SHADER_START_OFFSET,
455 BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
456 BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
457 BRW_SHADER_RELOC_DESCRIPTORS_ADDR_HIGH,
458 BRW_SHADER_RELOC_DESCRIPTORS_BUFFER_ADDR_HIGH,
459 BRW_SHADER_RELOC_EMBEDDED_SAMPLER_HANDLE,
460 BRW_SHADER_RELOC_LAST_EMBEDDED_SAMPLER_HANDLE =
461 BRW_SHADER_RELOC_EMBEDDED_SAMPLER_HANDLE + BRW_MAX_EMBEDDED_SAMPLERS - 1,
462 BRW_SHADER_RELOC_PRINTF_BUFFER_ADDR_LOW,
463 BRW_SHADER_RELOC_PRINTF_BUFFER_ADDR_HIGH,
464 BRW_SHADER_RELOC_PRINTF_BASE_IDENTIFIER,
465 BRW_SHADER_RELOC_PRINTF_BUFFER_SIZE,
466 };
467
468 enum brw_shader_reloc_type {
469 /** An arbitrary 32-bit value */
470 BRW_SHADER_RELOC_TYPE_U32,
471 /** A MOV instruction with an immediate source */
472 BRW_SHADER_RELOC_TYPE_MOV_IMM,
473 };
474
475 /** Represents a code relocation
476 *
477 * Relocatable constants are immediates in the code which we want to be able
478 * to replace post-compile with the actual value.
479 */
480 struct brw_shader_reloc {
481 /** The 32-bit ID of the relocatable constant */
482 uint32_t id;
483
484 /** Type of this relocation */
485 enum brw_shader_reloc_type type;
486
487 /** The offset in the shader to the relocated value
488 *
489 * For MOV_IMM relocs, this is an offset to the MOV instruction. This
490 * allows us to do some sanity checking while we update the value.
491 */
492 uint32_t offset;
493
494 /** Value to be added to the relocated value before it is written */
495 uint32_t delta;
496 };
497
498 /** A value to write to a relocation */
499 struct brw_shader_reloc_value {
500 /** The 32-bit ID of the relocatable constant */
501 uint32_t id;
502
503 /** The value with which to replace the relocated immediate */
504 uint32_t value;
505 };
506
507 struct brw_stage_prog_data {
508 struct brw_ubo_range ubo_ranges[4];
509
510 unsigned nr_params; /**< number of float params/constants */
511
512 gl_shader_stage stage;
513
514 /* zero_push_reg is a bitfield which indicates what push registers (if any)
515 * should be zeroed by SW at the start of the shader. The corresponding
516 * push_reg_mask_param specifies the param index (in 32-bit units) where
517 * the actual runtime 64-bit mask will be pushed. The shader will zero
518 * push reg i if
519 *
520 * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
521 *
522 * If this field is set, brw_compiler::compact_params must be false.
523 */
524 uint64_t zero_push_reg;
525 unsigned push_reg_mask_param;
526
527 unsigned curb_read_length;
528 unsigned total_scratch;
529 unsigned total_shared;
530
531 unsigned program_size;
532
533 unsigned const_data_size;
534 unsigned const_data_offset;
535
536 unsigned num_relocs;
537 const struct brw_shader_reloc *relocs;
538
539 /** Does this program pull from any UBO or other constant buffers? */
540 bool has_ubo_pull;
541
542 /** How many ray queries objects in this shader. */
543 unsigned ray_queries;
544
545 /**
546 * Register where the thread expects to find input data from the URB
547 * (typically uniforms, followed by vertex or fragment attributes).
548 */
549 unsigned dispatch_grf_start_reg;
550
551 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
552
553 /* 32-bit identifiers for all push/pull parameters. These can be anything
554 * the driver wishes them to be; the core of the back-end compiler simply
555 * re-arranges them. The one restriction is that the bottom 2^16 values
556 * are reserved for builtins defined in the brw_param_builtin enum defined
557 * above.
558 */
559 uint32_t *param;
560
561 /* Whether shader uses atomic operations. */
562 bool uses_atomic_load_store;
563
564 /* Printf descriptions contained by the shader */
565 uint32_t printf_info_count;
566 u_printf_info *printf_info;
567 };
568
569 static inline uint32_t *
brw_stage_prog_data_add_params(struct brw_stage_prog_data * prog_data,unsigned nr_new_params)570 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
571 unsigned nr_new_params)
572 {
573 unsigned old_nr_params = prog_data->nr_params;
574 prog_data->nr_params += nr_new_params;
575 prog_data->param = reralloc(ralloc_parent(prog_data->param),
576 prog_data->param, uint32_t,
577 prog_data->nr_params);
578 return prog_data->param + old_nr_params;
579 }
580
581 void
582 brw_stage_prog_data_add_printf(struct brw_stage_prog_data *prog_data,
583 void *mem_ctx,
584 const u_printf_info *print);
585
586 enum brw_pixel_shader_computed_depth_mode {
587 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
588 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
589 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
590 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
591 };
592
593 /* Data about a particular attempt to compile a program. Note that
594 * there can be many of these, each in a different GL state
595 * corresponding to a different brw_wm_prog_key struct, with different
596 * compiled programs.
597 */
598 struct brw_wm_prog_data {
599 struct brw_stage_prog_data base;
600
601 unsigned num_per_primitive_inputs;
602 unsigned num_varying_inputs;
603
604 uint8_t dispatch_grf_start_reg_16;
605 uint8_t dispatch_grf_start_reg_32;
606 uint32_t prog_offset_16;
607 uint32_t prog_offset_32;
608
609 uint8_t computed_depth_mode;
610
611 /**
612 * Number of polygons handled in parallel by the multi-polygon PS
613 * kernel.
614 */
615 uint8_t max_polygons;
616
617 /**
618 * Dispatch width of the multi-polygon PS kernel, or 0 if no
619 * multi-polygon kernel was built.
620 */
621 uint8_t dispatch_multi;
622
623 bool computed_stencil;
624 bool early_fragment_tests;
625 bool post_depth_coverage;
626 bool inner_coverage;
627 bool dispatch_8;
628 bool dispatch_16;
629 bool dispatch_32;
630 bool dual_src_blend;
631 bool uses_pos_offset;
632 bool uses_omask;
633 bool uses_kill;
634 bool uses_src_depth;
635 bool uses_src_w;
636 bool uses_depth_w_coefficients;
637 bool uses_pc_bary_coefficients;
638 bool uses_npc_bary_coefficients;
639 bool uses_sample_offsets;
640 bool uses_sample_mask;
641 bool uses_vmask;
642 bool has_side_effects;
643 bool pulls_bary;
644
645 bool contains_flat_varying;
646 bool contains_noperspective_varying;
647
648 /** True if the shader wants sample shading
649 *
650 * This corresponds to whether or not a gl_SampleId, gl_SamplePosition, or
651 * a sample-qualified input are used in the shader. It is independent of
652 * GL_MIN_SAMPLE_SHADING_VALUE in GL or minSampleShading in Vulkan.
653 */
654 bool sample_shading;
655
656 /** Min sample shading value
657 *
658 * Not used by the compiler, but useful for restore from the cache. The
659 * driver is expected to write the value it wants.
660 */
661 float min_sample_shading;
662
663 /** Should this shader be dispatched per-sample */
664 enum intel_sometimes persample_dispatch;
665
666 /**
667 * Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS).
668 */
669 enum intel_sometimes coarse_pixel_dispatch;
670
671 /**
672 * Shader writes the SampleMask and this is AND-ed with the API's
673 * SampleMask to generate a new coverage mask.
674 */
675 enum intel_sometimes alpha_to_coverage;
676
677 unsigned msaa_flags_param;
678
679 /**
680 * Mask of which interpolation modes are required by the fragment shader.
681 * Those interpolations are delivered as part of the thread payload. Used
682 * in hardware setup on gfx6+.
683 */
684 uint32_t barycentric_interp_modes;
685
686 /**
687 * Whether nonperspective interpolation modes are used by the
688 * barycentric_interp_modes or fragment shader through interpolator messages.
689 */
690 bool uses_nonperspective_interp_modes;
691
692 /**
693 * Mask of which FS inputs are marked flat by the shader source. This is
694 * needed for setting up 3DSTATE_SF/SBE.
695 */
696 uint32_t flat_inputs;
697
698 /**
699 * The FS inputs
700 */
701 uint64_t inputs;
702
703 /**
704 * Map from gl_varying_slot to the position within the FS setup data
705 * payload where the varying's attribute vertex deltas should be delivered.
706 * For varying slots that are not used by the FS, the value is -1.
707 */
708 int urb_setup[VARYING_SLOT_MAX];
709 int urb_setup_channel[VARYING_SLOT_MAX];
710
711 /**
712 * Cache structure into the urb_setup array above that contains the
713 * attribute numbers of active varyings out of urb_setup.
714 * The actual count is stored in urb_setup_attribs_count.
715 */
716 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
717 uint8_t urb_setup_attribs_count;
718 };
719
720 #ifdef GFX_VERx10
721
722 #if GFX_VERx10 >= 200
723
724 /** Returns the SIMD width corresponding to a given KSP index
725 *
726 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
727 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
728 * kernel start pointer (KSP) indices that is based on what dispatch widths
729 * are enabled. This function provides, effectively, the reverse mapping.
730 *
731 * If the given KSP is enabled, a SIMD width of 8, 16, or 32 is
732 * returned. Note that for a multipolygon dispatch kernel 8 is always
733 * returned, since multipolygon kernels use the "_8" fields from
734 * brw_wm_prog_data regardless of their SIMD width. If the KSP is
735 * invalid, 0 is returned.
736 */
737 static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx,bool enabled,unsigned width_sel)738 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool enabled, unsigned width_sel)
739 {
740 assert(ksp_idx < 2);
741 return !enabled ? 0 :
742 width_sel ? 32 :
743 16;
744 }
745
746 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
747 (ksp_idx == 0 && (wm_state).Kernel0MaximumPolysperThread ? 8 : \
748 ksp_idx == 0 ? brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel0Enable, \
749 (wm_state).Kernel0SIMDWidth): \
750 brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel1Enable, \
751 (wm_state).Kernel1SIMDWidth))
752
753 #else
754
755 /** Returns the SIMD width corresponding to a given KSP index
756 *
757 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
758 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
759 * kernel start pointer (KSP) indices that is based on what dispatch widths
760 * are enabled. This function provides, effectively, the reverse mapping.
761 *
762 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
763 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
764 */
765 static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx,bool simd8_enabled,bool simd16_enabled,bool simd32_enabled)766 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
767 bool simd16_enabled, bool simd32_enabled)
768 {
769 /* This function strictly ignores contiguous dispatch */
770 switch (ksp_idx) {
771 case 0:
772 return simd8_enabled ? 8 :
773 (simd16_enabled && !simd32_enabled) ? 16 :
774 (simd32_enabled && !simd16_enabled) ? 32 : 0;
775 case 1:
776 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
777 case 2:
778 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
779 default:
780 unreachable("Invalid KSP index");
781 }
782 }
783
784 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
785 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
786 (wm_state)._16PixelDispatchEnable, \
787 (wm_state)._32PixelDispatchEnable)
788
789 #endif
790
791 #endif
792
793 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
794 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
795
796 static inline uint32_t
_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data * prog_data,unsigned simd_width)797 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
798 unsigned simd_width)
799 {
800 switch (simd_width) {
801 case 8: return 0;
802 case 16: return prog_data->prog_offset_16;
803 case 32: return prog_data->prog_offset_32;
804 default: return 0;
805 }
806 }
807
808 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
809 _brw_wm_prog_data_prog_offset(prog_data, \
810 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
811
812 static inline uint8_t
_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data * prog_data,unsigned simd_width)813 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
814 unsigned simd_width)
815 {
816 switch (simd_width) {
817 case 8: return prog_data->base.dispatch_grf_start_reg;
818 case 16: return prog_data->dispatch_grf_start_reg_16;
819 case 32: return prog_data->dispatch_grf_start_reg_32;
820 default: return 0;
821 }
822 }
823
824 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
825 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
826 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
827
828 static inline bool
brw_wm_prog_data_is_persample(const struct brw_wm_prog_data * prog_data,enum intel_msaa_flags pushed_msaa_flags)829 brw_wm_prog_data_is_persample(const struct brw_wm_prog_data *prog_data,
830 enum intel_msaa_flags pushed_msaa_flags)
831 {
832 return intel_fs_is_persample(prog_data->persample_dispatch,
833 prog_data->sample_shading,
834 pushed_msaa_flags);
835 }
836
837 static inline uint32_t
wm_prog_data_barycentric_modes(const struct brw_wm_prog_data * prog_data,enum intel_msaa_flags pushed_msaa_flags)838 wm_prog_data_barycentric_modes(const struct brw_wm_prog_data *prog_data,
839 enum intel_msaa_flags pushed_msaa_flags)
840 {
841 return intel_fs_barycentric_modes(prog_data->persample_dispatch,
842 prog_data->barycentric_interp_modes,
843 pushed_msaa_flags);
844 }
845
846 static inline bool
brw_wm_prog_data_is_coarse(const struct brw_wm_prog_data * prog_data,enum intel_msaa_flags pushed_msaa_flags)847 brw_wm_prog_data_is_coarse(const struct brw_wm_prog_data *prog_data,
848 enum intel_msaa_flags pushed_msaa_flags)
849 {
850 return intel_fs_is_coarse(prog_data->coarse_pixel_dispatch,
851 pushed_msaa_flags);
852 }
853
854 struct brw_push_const_block {
855 unsigned dwords; /* Dword count, not reg aligned */
856 unsigned regs;
857 unsigned size; /* Bytes, register aligned */
858 };
859
860 struct brw_cs_prog_data {
861 struct brw_stage_prog_data base;
862
863 unsigned local_size[3];
864
865 /* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
866 * kept when using variable group size, and the right one can only be
867 * decided at dispatch time.
868 */
869 unsigned prog_offset[3];
870
871 /* Bitmask indicating which program offsets are valid. */
872 unsigned prog_mask;
873
874 /* Bitmask indicating which programs have spilled. */
875 unsigned prog_spilled;
876
877 bool uses_barrier;
878 bool uses_num_work_groups;
879 bool uses_inline_data;
880 bool uses_btd_stack_ids;
881 bool uses_systolic;
882 uint8_t generate_local_id;
883 enum intel_compute_walk_order walk_order;
884
885 /* True if shader has any sample operation */
886 bool uses_sampler;
887
888 struct {
889 struct brw_push_const_block cross_thread;
890 struct brw_push_const_block per_thread;
891 } push;
892 };
893
894 static inline uint32_t
brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data * prog_data,unsigned dispatch_width)895 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
896 unsigned dispatch_width)
897 {
898 assert(dispatch_width == 8 ||
899 dispatch_width == 16 ||
900 dispatch_width == 32);
901 const unsigned index = dispatch_width / 16;
902 assert(prog_data->prog_mask & (1 << index));
903 return prog_data->prog_offset[index];
904 }
905
906 struct brw_bs_prog_data {
907 struct brw_stage_prog_data base;
908
909 /** SIMD size of the root shader */
910 uint8_t simd_size;
911
912 /** Maximum stack size of all shaders */
913 uint32_t max_stack_size;
914
915 /** Offset into the shader where the resume SBT is located */
916 uint32_t resume_sbt_offset;
917
918 /** Number of resume shaders */
919 uint32_t num_resume_shaders;
920 };
921
922 /**
923 * Enum representing the i965-specific vertex results that don't correspond
924 * exactly to any element of gl_varying_slot. The values of this enum are
925 * assigned such that they don't conflict with gl_varying_slot.
926 */
927 typedef enum
928 {
929 BRW_VARYING_SLOT_PAD = VARYING_SLOT_MAX,
930 BRW_VARYING_SLOT_COUNT
931 } brw_varying_slot;
932
933 /**
934 * Bitmask indicating which fragment shader inputs represent varyings (and
935 * hence have to be delivered to the fragment shader by the SF/SBE stage).
936 */
937 #define BRW_FS_VARYING_INPUT_MASK \
938 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
939 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
940
941 void brw_print_vue_map(FILE *fp, const struct intel_vue_map *vue_map,
942 gl_shader_stage stage);
943
944 /**
945 * Convert a VUE slot number into a byte offset within the VUE.
946 */
brw_vue_slot_to_offset(unsigned slot)947 static inline unsigned brw_vue_slot_to_offset(unsigned slot)
948 {
949 return 16*slot;
950 }
951
952 /**
953 * Convert a vertex output (brw_varying_slot) into a byte offset within the
954 * VUE.
955 */
956 static inline unsigned
brw_varying_to_offset(const struct intel_vue_map * vue_map,unsigned varying)957 brw_varying_to_offset(const struct intel_vue_map *vue_map, unsigned varying)
958 {
959 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
960 }
961
962 void brw_compute_vue_map(const struct intel_device_info *devinfo,
963 struct intel_vue_map *vue_map,
964 uint64_t slots_valid,
965 bool separate_shader,
966 uint32_t pos_slots);
967
968 void brw_compute_tess_vue_map(struct intel_vue_map *const vue_map,
969 uint64_t slots_valid,
970 uint32_t is_patch);
971
972 struct brw_vue_prog_data {
973 struct brw_stage_prog_data base;
974 struct intel_vue_map vue_map;
975
976 /** Should the hardware deliver input VUE handles for URB pull loads? */
977 bool include_vue_handles;
978
979 unsigned urb_read_length;
980 unsigned total_grf;
981
982 uint32_t clip_distance_mask;
983 uint32_t cull_distance_mask;
984
985 /* Used for calculating urb partitions. In the VS, this is the size of the
986 * URB entry used for both input and output to the thread. In the GS, this
987 * is the size of the URB entry used for output.
988 */
989 unsigned urb_entry_size;
990
991 enum intel_shader_dispatch_mode dispatch_mode;
992 };
993
994 struct brw_vs_prog_data {
995 struct brw_vue_prog_data base;
996
997 uint64_t inputs_read;
998 uint64_t double_inputs_read;
999
1000 unsigned nr_attribute_slots;
1001
1002 bool uses_vertexid;
1003 bool uses_instanceid;
1004 bool uses_is_indexed_draw;
1005 bool uses_firstvertex;
1006 bool uses_baseinstance;
1007 bool uses_drawid;
1008 };
1009
1010 struct brw_tcs_prog_data
1011 {
1012 struct brw_vue_prog_data base;
1013
1014 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1015 bool include_primitive_id;
1016
1017 /** Number vertices in output patch */
1018 int instances;
1019
1020 /** Track patch count threshold */
1021 int patch_count_threshold;
1022 };
1023
1024
1025 struct brw_tes_prog_data
1026 {
1027 struct brw_vue_prog_data base;
1028
1029 enum intel_tess_partitioning partitioning;
1030 enum intel_tess_output_topology output_topology;
1031 enum intel_tess_domain domain;
1032 bool include_primitive_id;
1033 };
1034
1035 struct brw_gs_prog_data
1036 {
1037 struct brw_vue_prog_data base;
1038
1039 unsigned vertices_in;
1040
1041 /**
1042 * Size of an output vertex, measured in HWORDS (32 bytes).
1043 */
1044 unsigned output_vertex_size_hwords;
1045
1046 unsigned output_topology;
1047
1048 /**
1049 * Size of the control data (cut bits or StreamID bits), in hwords (32
1050 * bytes). 0 if there is no control data.
1051 */
1052 unsigned control_data_header_size_hwords;
1053
1054 /**
1055 * Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1056 * if the control data is StreamID bits, or
1057 * GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1058 * Ignored if control_data_header_size is 0.
1059 */
1060 unsigned control_data_format;
1061
1062 bool include_primitive_id;
1063
1064 /**
1065 * The number of vertices emitted, if constant - otherwise -1.
1066 */
1067 int static_vertex_count;
1068
1069 int invocations;
1070 };
1071
1072 struct brw_tue_map {
1073 uint32_t size_dw;
1074
1075 uint32_t per_task_data_start_dw;
1076 };
1077
1078 struct brw_mue_map {
1079 int32_t start_dw[VARYING_SLOT_MAX];
1080 uint32_t len_dw[VARYING_SLOT_MAX];
1081 uint32_t per_primitive_indices_dw;
1082
1083 uint32_t size_dw;
1084
1085 uint32_t max_primitives;
1086 uint32_t per_primitive_start_dw;
1087 uint32_t per_primitive_header_size_dw;
1088 uint32_t per_primitive_data_size_dw;
1089 uint32_t per_primitive_pitch_dw;
1090 bool user_data_in_primitive_header;
1091
1092 uint32_t max_vertices;
1093 uint32_t per_vertex_start_dw;
1094 uint32_t per_vertex_header_size_dw;
1095 uint32_t per_vertex_data_size_dw;
1096 uint32_t per_vertex_pitch_dw;
1097 bool user_data_in_vertex_header;
1098 };
1099
1100 struct brw_task_prog_data {
1101 struct brw_cs_prog_data base;
1102 struct brw_tue_map map;
1103 bool uses_drawid;
1104 };
1105
1106 enum brw_mesh_index_format {
1107 BRW_INDEX_FORMAT_U32,
1108 BRW_INDEX_FORMAT_U888X,
1109 };
1110
1111 struct brw_mesh_prog_data {
1112 struct brw_cs_prog_data base;
1113 struct brw_mue_map map;
1114
1115 uint32_t clip_distance_mask;
1116 uint32_t cull_distance_mask;
1117 uint16_t primitive_type;
1118
1119 enum brw_mesh_index_format index_format;
1120
1121 bool uses_drawid;
1122 bool autostrip_enable;
1123 };
1124
1125 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1126 union brw_any_prog_data {
1127 struct brw_stage_prog_data base;
1128 struct brw_vue_prog_data vue;
1129 struct brw_vs_prog_data vs;
1130 struct brw_tcs_prog_data tcs;
1131 struct brw_tes_prog_data tes;
1132 struct brw_gs_prog_data gs;
1133 struct brw_wm_prog_data wm;
1134 struct brw_cs_prog_data cs;
1135 struct brw_bs_prog_data bs;
1136 struct brw_task_prog_data task;
1137 struct brw_mesh_prog_data mesh;
1138 };
1139
1140 #define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK) \
1141 static inline struct brw_##STAGE##_prog_data * \
1142 brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data) \
1143 { \
1144 if (prog_data) \
1145 assert(CHECK); \
1146 return (struct brw_##STAGE##_prog_data *) prog_data; \
1147 } \
1148 static inline const struct brw_##STAGE##_prog_data * \
1149 brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1150 { \
1151 if (prog_data) \
1152 assert(CHECK); \
1153 return (const struct brw_##STAGE##_prog_data *) prog_data; \
1154 }
1155
1156 DEFINE_PROG_DATA_DOWNCAST(vs, prog_data->stage == MESA_SHADER_VERTEX)
1157 DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
1158 DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
1159 DEFINE_PROG_DATA_DOWNCAST(gs, prog_data->stage == MESA_SHADER_GEOMETRY)
1160 DEFINE_PROG_DATA_DOWNCAST(wm, prog_data->stage == MESA_SHADER_FRAGMENT)
1161 DEFINE_PROG_DATA_DOWNCAST(cs, gl_shader_stage_uses_workgroup(prog_data->stage))
1162 DEFINE_PROG_DATA_DOWNCAST(bs, brw_shader_stage_is_bindless(prog_data->stage))
1163
1164 DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
1165 prog_data->stage == MESA_SHADER_TESS_CTRL ||
1166 prog_data->stage == MESA_SHADER_TESS_EVAL ||
1167 prog_data->stage == MESA_SHADER_GEOMETRY)
1168
1169 DEFINE_PROG_DATA_DOWNCAST(task, prog_data->stage == MESA_SHADER_TASK)
1170 DEFINE_PROG_DATA_DOWNCAST(mesh, prog_data->stage == MESA_SHADER_MESH)
1171
1172 #undef DEFINE_PROG_DATA_DOWNCAST
1173
1174 struct brw_compile_stats {
1175 uint32_t dispatch_width; /**< 0 for vec4 */
1176 uint32_t max_polygons;
1177 uint32_t max_dispatch_width;
1178 uint32_t instructions;
1179 uint32_t sends;
1180 uint32_t loops;
1181 uint32_t cycles;
1182 uint32_t spills;
1183 uint32_t fills;
1184 uint32_t max_live_registers;
1185 uint32_t non_ssa_registers_after_nir;
1186 };
1187
1188 /** @} */
1189
1190 struct brw_compiler *
1191 brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
1192
1193 /**
1194 * Returns a compiler configuration for use with disk shader cache
1195 *
1196 * This value only needs to change for settings that can cause different
1197 * program generation between two runs on the same hardware.
1198 *
1199 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1200 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1201 */
1202 uint64_t
1203 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1204
1205 /* Provides a string sha1 hash of all device information fields that could
1206 * affect shader compilation.
1207 */
1208 void
1209 brw_device_sha1(char *hex, const struct intel_device_info *devinfo);
1210
1211 /* For callers computing their own UUID or hash. Hashes all device
1212 * information fields that could affect shader compilation into the provided
1213 * sha1_ctx.
1214 */
1215 void
1216 brw_device_sha1_update(struct mesa_sha1 *sha1_ctx,
1217 const struct intel_device_info *devinfo);
1218
1219 unsigned
1220 brw_prog_data_size(gl_shader_stage stage);
1221
1222 unsigned
1223 brw_prog_key_size(gl_shader_stage stage);
1224
1225 struct brw_compile_params {
1226 void *mem_ctx;
1227
1228 nir_shader *nir;
1229
1230 struct brw_compile_stats *stats;
1231
1232 void *log_data;
1233
1234 char *error_str;
1235
1236 uint64_t debug_flag;
1237
1238 uint32_t source_hash;
1239 };
1240
1241 /**
1242 * Parameters for compiling a vertex shader.
1243 *
1244 * Some of these will be modified during the shader compilation.
1245 */
1246 struct brw_compile_vs_params {
1247 struct brw_compile_params base;
1248
1249 const struct brw_vs_prog_key *key;
1250 struct brw_vs_prog_data *prog_data;
1251 };
1252
1253 /**
1254 * Compile a vertex shader.
1255 *
1256 * Returns the final assembly and updates the parameters structure.
1257 */
1258 const unsigned *
1259 brw_compile_vs(const struct brw_compiler *compiler,
1260 struct brw_compile_vs_params *params);
1261
1262 /**
1263 * Parameters for compiling a tessellation control shader.
1264 *
1265 * Some of these will be modified during the shader compilation.
1266 */
1267 struct brw_compile_tcs_params {
1268 struct brw_compile_params base;
1269
1270 const struct brw_tcs_prog_key *key;
1271 struct brw_tcs_prog_data *prog_data;
1272 };
1273
1274 /**
1275 * Compile a tessellation control shader.
1276 *
1277 * Returns the final assembly and updates the parameters structure.
1278 */
1279 const unsigned *
1280 brw_compile_tcs(const struct brw_compiler *compiler,
1281 struct brw_compile_tcs_params *params);
1282
1283 /**
1284 * Parameters for compiling a tessellation evaluation shader.
1285 *
1286 * Some of these will be modified during the shader compilation.
1287 */
1288 struct brw_compile_tes_params {
1289 struct brw_compile_params base;
1290
1291 const struct brw_tes_prog_key *key;
1292 struct brw_tes_prog_data *prog_data;
1293 const struct intel_vue_map *input_vue_map;
1294 };
1295
1296 /**
1297 * Compile a tessellation evaluation shader.
1298 *
1299 * Returns the final assembly and updates the parameters structure.
1300 */
1301 const unsigned *
1302 brw_compile_tes(const struct brw_compiler *compiler,
1303 struct brw_compile_tes_params *params);
1304
1305 /**
1306 * Parameters for compiling a geometry shader.
1307 *
1308 * Some of these will be modified during the shader compilation.
1309 */
1310 struct brw_compile_gs_params {
1311 struct brw_compile_params base;
1312
1313 const struct brw_gs_prog_key *key;
1314 struct brw_gs_prog_data *prog_data;
1315 };
1316
1317 /**
1318 * Compile a geometry shader.
1319 *
1320 * Returns the final assembly and updates the parameters structure.
1321 */
1322 const unsigned *
1323 brw_compile_gs(const struct brw_compiler *compiler,
1324 struct brw_compile_gs_params *params);
1325
1326 struct brw_compile_task_params {
1327 struct brw_compile_params base;
1328
1329 const struct brw_task_prog_key *key;
1330 struct brw_task_prog_data *prog_data;
1331 };
1332
1333 const unsigned *
1334 brw_compile_task(const struct brw_compiler *compiler,
1335 struct brw_compile_task_params *params);
1336
1337 struct brw_compile_mesh_params {
1338 struct brw_compile_params base;
1339
1340 const struct brw_mesh_prog_key *key;
1341 struct brw_mesh_prog_data *prog_data;
1342 const struct brw_tue_map *tue_map;
1343 };
1344
1345 const unsigned *
1346 brw_compile_mesh(const struct brw_compiler *compiler,
1347 struct brw_compile_mesh_params *params);
1348
1349 /**
1350 * Parameters for compiling a fragment shader.
1351 *
1352 * Some of these will be modified during the shader compilation.
1353 */
1354 struct brw_compile_fs_params {
1355 struct brw_compile_params base;
1356
1357 const struct brw_wm_prog_key *key;
1358 struct brw_wm_prog_data *prog_data;
1359
1360 const struct intel_vue_map *vue_map;
1361 const struct brw_mue_map *mue_map;
1362
1363 bool allow_spilling;
1364 bool use_rep_send;
1365 uint8_t max_polygons;
1366 };
1367
1368 /**
1369 * Compile a fragment shader.
1370 *
1371 * Returns the final assembly and updates the parameters structure.
1372 */
1373 const unsigned *
1374 brw_compile_fs(const struct brw_compiler *compiler,
1375 struct brw_compile_fs_params *params);
1376
1377 /**
1378 * Parameters for compiling a compute shader.
1379 *
1380 * Some of these will be modified during the shader compilation.
1381 */
1382 struct brw_compile_cs_params {
1383 struct brw_compile_params base;
1384
1385 const struct brw_cs_prog_key *key;
1386 struct brw_cs_prog_data *prog_data;
1387 };
1388
1389 /**
1390 * Compile a compute shader.
1391 *
1392 * Returns the final assembly and updates the parameters structure.
1393 */
1394 const unsigned *
1395 brw_compile_cs(const struct brw_compiler *compiler,
1396 struct brw_compile_cs_params *params);
1397
1398 /**
1399 * Parameters for compiling a Bindless shader.
1400 *
1401 * Some of these will be modified during the shader compilation.
1402 */
1403 struct brw_compile_bs_params {
1404 struct brw_compile_params base;
1405
1406 const struct brw_bs_prog_key *key;
1407 struct brw_bs_prog_data *prog_data;
1408
1409 unsigned num_resume_shaders;
1410 struct nir_shader **resume_shaders;
1411 };
1412
1413 /**
1414 * Compile a Bindless shader.
1415 *
1416 * Returns the final assembly and updates the parameters structure.
1417 */
1418 const unsigned *
1419 brw_compile_bs(const struct brw_compiler *compiler,
1420 struct brw_compile_bs_params *params);
1421
1422 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1423 gl_shader_stage stage,
1424 const struct brw_base_prog_key *old_key,
1425 const struct brw_base_prog_key *key);
1426
1427 unsigned
1428 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1429 unsigned threads);
1430
1431 void
1432 brw_write_shader_relocs(const struct brw_isa_info *isa,
1433 void *program,
1434 const struct brw_stage_prog_data *prog_data,
1435 struct brw_shader_reloc_value *values,
1436 unsigned num_values);
1437
1438 /**
1439 * Get the dispatch information for a shader to be used with GPGPU_WALKER and
1440 * similar instructions.
1441 *
1442 * If override_local_size is not NULL, it must to point to a 3-element that
1443 * will override the value from prog_data->local_size. This is used by
1444 * ARB_compute_variable_group_size, where the size is set only at dispatch
1445 * time (so prog_data is outdated).
1446 */
1447 struct intel_cs_dispatch_info
1448 brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
1449 const struct brw_cs_prog_data *prog_data,
1450 const unsigned *override_local_size);
1451
1452 /**
1453 * Return true if the given shader stage is dispatched contiguously by the
1454 * relevant fixed function starting from channel 0 of the SIMD thread, which
1455 * implies that the dispatch mask of a thread can be assumed to have the form
1456 * '2^n - 1' for some n.
1457 */
1458 static inline bool
brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info * devinfo,gl_shader_stage stage,unsigned max_polygons,const struct brw_stage_prog_data * prog_data)1459 brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
1460 gl_shader_stage stage, unsigned max_polygons,
1461 const struct brw_stage_prog_data *prog_data)
1462 {
1463 /* The code below makes assumptions about the hardware's thread dispatch
1464 * behavior that could be proven wrong in future generations -- Make sure
1465 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1466 * the NIR front-end before changing this assertion. It can be temporarily
1467 * enabled by setting the macro below to true.
1468 */
1469 #define ENABLE_FS_TEST_DISPATCH_PACKING false
1470 assert(devinfo->ver <= 30);
1471
1472 switch (stage) {
1473 case MESA_SHADER_FRAGMENT: {
1474 /* The PSD discards subspans coming in with no lit samples, which in the
1475 * per-pixel shading case implies that each subspan will either be fully
1476 * lit (due to the VMask being used to allow derivative computations),
1477 * or not dispatched at all. In per-sample dispatch mode individual
1478 * samples from the same subspan have a fixed relative location within
1479 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1480 * general and we should return false.
1481 */
1482 const struct brw_wm_prog_data *wm_prog_data =
1483 (const struct brw_wm_prog_data *)prog_data;
1484 return devinfo->verx10 < 125 &&
1485 !wm_prog_data->persample_dispatch &&
1486 wm_prog_data->uses_vmask &&
1487 max_polygons < 2;
1488 }
1489 case MESA_SHADER_COMPUTE:
1490 /* Compute shaders will be spawned with either a fully enabled dispatch
1491 * mask or with whatever bottom/right execution mask was given to the
1492 * GPGPU walker command to be used along the workgroup edges -- In both
1493 * cases the dispatch mask is required to be tightly packed for our
1494 * invocation index calculations to work.
1495 */
1496 return true;
1497 default:
1498 /* Most remaining fixed functions are limited to use a packed dispatch
1499 * mask due to the hardware representation of the dispatch mask as a
1500 * single counter representing the number of enabled channels.
1501 */
1502 return true;
1503 }
1504 }
1505
1506 /**
1507 * Computes the first varying slot in the URB produced by the previous stage
1508 * that is used in the next stage. We do this by testing the varying slots in
1509 * the previous stage's vue map against the inputs read in the next stage.
1510 *
1511 * Note that:
1512 *
1513 * - Each URB offset contains two varying slots and we can only skip a
1514 * full offset if both slots are unused, so the value we return here is always
1515 * rounded down to the closest multiple of two.
1516 *
1517 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1518 * part of the vue header, so if these are read we can't skip anything.
1519 */
1520 static inline int
brw_compute_first_urb_slot_required(uint64_t inputs_read,const struct intel_vue_map * prev_stage_vue_map)1521 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1522 const struct intel_vue_map *prev_stage_vue_map)
1523 {
1524 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) {
1525 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1526 int varying = prev_stage_vue_map->slot_to_varying[i];
1527 if (varying != BRW_VARYING_SLOT_PAD && varying > 0 &&
1528 (inputs_read & BITFIELD64_BIT(varying)) != 0) {
1529 return ROUND_DOWN_TO(i, 2);
1530 }
1531 }
1532 }
1533
1534 return 0;
1535 }
1536
1537 /* From InlineData in 3DSTATE_TASK_SHADER_DATA and 3DSTATE_MESH_SHADER_DATA. */
1538 #define BRW_TASK_MESH_INLINE_DATA_SIZE_DW 8
1539
1540 /* InlineData[0-1] is used for Vulkan descriptor. */
1541 #define BRW_TASK_MESH_PUSH_CONSTANTS_START_DW 2
1542
1543 #define BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW \
1544 (BRW_TASK_MESH_INLINE_DATA_SIZE_DW - BRW_TASK_MESH_PUSH_CONSTANTS_START_DW)
1545
1546 /**
1547 * This enum is used as the base indice of the nir_load_topology_id_intel
1548 * intrinsic. This is used to return different values based on some aspect of
1549 * the topology of the device.
1550 */
1551 enum brw_topology_id
1552 {
1553 /* A value based of the DSS identifier the shader is currently running on.
1554 * Be mindful that the DSS ID can be higher than the total number of DSS on
1555 * the device. This is because of the fusing that can occur on different
1556 * parts.
1557 */
1558 BRW_TOPOLOGY_ID_DSS,
1559
1560 /* A value composed of EU ID, thread ID & SIMD lane ID. */
1561 BRW_TOPOLOGY_ID_EU_THREAD_SIMD,
1562 };
1563
1564 #ifdef __cplusplus
1565 } /* extern "C" */
1566 #endif
1567