1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file elk_fs_copy_propagation.cpp
25 *
26 * Support for global copy propagation in two passes: A local pass that does
27 * intra-block copy (and constant) propagation, and a global pass that uses
28 * dataflow analysis on the copies available at the end of each block to re-do
29 * local copy propagation with more copies available.
30 *
31 * See Muchnick's Advanced Compiler Design and Implementation, section
32 * 12.5 (p356).
33 */
34
35 #include "util/bitset.h"
36 #include "util/u_math.h"
37 #include "util/rb_tree.h"
38 #include "elk_fs.h"
39 #include "elk_fs_live_variables.h"
40 #include "elk_cfg.h"
41 #include "elk_eu.h"
42
43 using namespace elk;
44
45 namespace { /* avoid conflict with opt_copy_propagation_elements */
46 struct acp_entry {
47 struct rb_node by_dst;
48 struct rb_node by_src;
49 elk_fs_reg dst;
50 elk_fs_reg src;
51 unsigned global_idx;
52 unsigned size_written;
53 unsigned size_read;
54 enum elk_opcode opcode;
55 bool is_partial_write;
56 bool force_writemask_all;
57 };
58
59 /**
60 * Compare two acp_entry::src.nr
61 *
62 * This is intended to be used as the comparison function for rb_tree.
63 */
64 static int
cmp_entry_dst_entry_dst(const struct rb_node * a_node,const struct rb_node * b_node)65 cmp_entry_dst_entry_dst(const struct rb_node *a_node, const struct rb_node *b_node)
66 {
67 const struct acp_entry *a_entry =
68 rb_node_data(struct acp_entry, a_node, by_dst);
69
70 const struct acp_entry *b_entry =
71 rb_node_data(struct acp_entry, b_node, by_dst);
72
73 return a_entry->dst.nr - b_entry->dst.nr;
74 }
75
76 static int
cmp_entry_dst_nr(const struct rb_node * a_node,const void * b_key)77 cmp_entry_dst_nr(const struct rb_node *a_node, const void *b_key)
78 {
79 const struct acp_entry *a_entry =
80 rb_node_data(struct acp_entry, a_node, by_dst);
81
82 return a_entry->dst.nr - (uintptr_t) b_key;
83 }
84
85 static int
cmp_entry_src_entry_src(const struct rb_node * a_node,const struct rb_node * b_node)86 cmp_entry_src_entry_src(const struct rb_node *a_node, const struct rb_node *b_node)
87 {
88 const struct acp_entry *a_entry =
89 rb_node_data(struct acp_entry, a_node, by_src);
90
91 const struct acp_entry *b_entry =
92 rb_node_data(struct acp_entry, b_node, by_src);
93
94 return a_entry->src.nr - b_entry->src.nr;
95 }
96
97 /**
98 * Compare an acp_entry::src.nr with a raw nr.
99 *
100 * This is intended to be used as the comparison function for rb_tree.
101 */
102 static int
cmp_entry_src_nr(const struct rb_node * a_node,const void * b_key)103 cmp_entry_src_nr(const struct rb_node *a_node, const void *b_key)
104 {
105 const struct acp_entry *a_entry =
106 rb_node_data(struct acp_entry, a_node, by_src);
107
108 return a_entry->src.nr - (uintptr_t) b_key;
109 }
110
111 class acp_forward_iterator {
112 public:
acp_forward_iterator(struct rb_node * n,unsigned offset)113 acp_forward_iterator(struct rb_node *n, unsigned offset)
114 : curr(n), next(nullptr), offset(offset)
115 {
116 next = rb_node_next_or_null(curr);
117 }
118
operator ++()119 acp_forward_iterator &operator++()
120 {
121 curr = next;
122 next = rb_node_next_or_null(curr);
123
124 return *this;
125 }
126
operator !=(const acp_forward_iterator & other) const127 bool operator!=(const acp_forward_iterator &other) const
128 {
129 return curr != other.curr;
130 }
131
operator *() const132 struct acp_entry *operator*() const
133 {
134 /* This open-codes part of rb_node_data. */
135 return curr != NULL ? (struct acp_entry *)(((char *)curr) - offset)
136 : NULL;
137 }
138
139 private:
140 struct rb_node *curr;
141 struct rb_node *next;
142 unsigned offset;
143 };
144
145 struct acp {
146 DECLARE_LINEAR_ALLOC_CXX_OPERATORS(acp);
147
148 struct rb_tree by_dst;
149 struct rb_tree by_src;
150
acp__anon4a7ce22c0111::acp151 acp()
152 {
153 rb_tree_init(&by_dst);
154 rb_tree_init(&by_src);
155 }
156
begin__anon4a7ce22c0111::acp157 acp_forward_iterator begin()
158 {
159 return acp_forward_iterator(rb_tree_first(&by_src),
160 rb_tree_offsetof(struct acp_entry, by_src, 0));
161 }
162
end__anon4a7ce22c0111::acp163 const acp_forward_iterator end() const
164 {
165 return acp_forward_iterator(nullptr, 0);
166 }
167
length__anon4a7ce22c0111::acp168 unsigned length()
169 {
170 unsigned l = 0;
171
172 for (rb_node *iter = rb_tree_first(&by_src);
173 iter != NULL; iter = rb_node_next(iter))
174 l++;
175
176 return l;
177 }
178
add__anon4a7ce22c0111::acp179 void add(acp_entry *entry)
180 {
181 rb_tree_insert(&by_dst, &entry->by_dst, cmp_entry_dst_entry_dst);
182 rb_tree_insert(&by_src, &entry->by_src, cmp_entry_src_entry_src);
183 }
184
remove__anon4a7ce22c0111::acp185 void remove(acp_entry *entry)
186 {
187 rb_tree_remove(&by_dst, &entry->by_dst);
188 rb_tree_remove(&by_src, &entry->by_src);
189 }
190
find_by_src__anon4a7ce22c0111::acp191 acp_forward_iterator find_by_src(unsigned nr)
192 {
193 struct rb_node *rbn = rb_tree_search(&by_src,
194 (void *)(uintptr_t) nr,
195 cmp_entry_src_nr);
196
197 return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry,
198 by_src, rbn));
199 }
200
find_by_dst__anon4a7ce22c0111::acp201 acp_forward_iterator find_by_dst(unsigned nr)
202 {
203 struct rb_node *rbn = rb_tree_search(&by_dst,
204 (void *)(uintptr_t) nr,
205 cmp_entry_dst_nr);
206
207 return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry,
208 by_dst, rbn));
209 }
210 };
211
212 struct block_data {
213 /**
214 * Which entries in the fs_copy_prop_dataflow acp table are live at the
215 * start of this block. This is the useful output of the analysis, since
216 * it lets us plug those into the local copy propagation on the second
217 * pass.
218 */
219 BITSET_WORD *livein;
220
221 /**
222 * Which entries in the fs_copy_prop_dataflow acp table are live at the end
223 * of this block. This is done in initial setup from the per-block acps
224 * returned by the first local copy prop pass.
225 */
226 BITSET_WORD *liveout;
227
228 /**
229 * Which entries in the fs_copy_prop_dataflow acp table are generated by
230 * instructions in this block which reach the end of the block without
231 * being killed.
232 */
233 BITSET_WORD *copy;
234
235 /**
236 * Which entries in the fs_copy_prop_dataflow acp table are killed over the
237 * course of this block.
238 */
239 BITSET_WORD *kill;
240
241 /**
242 * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
243 * have a fully uninitialized destination at the end of this block.
244 */
245 BITSET_WORD *undef;
246
247 /**
248 * Which entries in the fs_copy_prop_dataflow acp table can the
249 * start of this block be reached from. Note that this is a weaker
250 * condition than livein.
251 */
252 BITSET_WORD *reachin;
253
254 /**
255 * Which entries in the fs_copy_prop_dataflow acp table are
256 * overwritten by an instruction with channel masks inconsistent
257 * with the copy instruction (e.g. due to force_writemask_all).
258 * Such an overwrite can cause the copy entry to become invalid
259 * even if the copy instruction is subsequently re-executed for any
260 * given channel i, since the execution of the overwrite for
261 * channel i may corrupt other channels j!=i inactive for the
262 * subsequent copy.
263 */
264 BITSET_WORD *exec_mismatch;
265 };
266
267 class fs_copy_prop_dataflow
268 {
269 public:
270 fs_copy_prop_dataflow(linear_ctx *lin_ctx, elk_cfg_t *cfg,
271 const fs_live_variables &live,
272 struct acp *out_acp);
273
274 void setup_initial_values();
275 void run();
276
277 void dump_block_data() const UNUSED;
278
279 elk_cfg_t *cfg;
280 const fs_live_variables &live;
281
282 acp_entry **acp;
283 int num_acp;
284 int bitset_words;
285
286 struct block_data *bd;
287 };
288 } /* anonymous namespace */
289
fs_copy_prop_dataflow(linear_ctx * lin_ctx,elk_cfg_t * cfg,const fs_live_variables & live,struct acp * out_acp)290 fs_copy_prop_dataflow::fs_copy_prop_dataflow(linear_ctx *lin_ctx, elk_cfg_t *cfg,
291 const fs_live_variables &live,
292 struct acp *out_acp)
293 : cfg(cfg), live(live)
294 {
295 bd = linear_zalloc_array(lin_ctx, struct block_data, cfg->num_blocks);
296
297 num_acp = 0;
298 foreach_block (block, cfg)
299 num_acp += out_acp[block->num].length();
300
301 bitset_words = BITSET_WORDS(num_acp);
302
303 foreach_block (block, cfg) {
304 bd[block->num].livein = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
305 bd[block->num].liveout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
306 bd[block->num].copy = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
307 bd[block->num].kill = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
308 bd[block->num].undef = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
309 bd[block->num].reachin = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
310 bd[block->num].exec_mismatch = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
311 }
312
313 acp = linear_zalloc_array(lin_ctx, struct acp_entry *, num_acp);
314
315 int next_acp = 0;
316 foreach_block (block, cfg) {
317 for (auto iter = out_acp[block->num].begin();
318 iter != out_acp[block->num].end(); ++iter) {
319 acp[next_acp] = *iter;
320
321 (*iter)->global_idx = next_acp;
322
323 /* opt_copy_propagation_local populates out_acp with copies created
324 * in a block which are still live at the end of the block. This
325 * is exactly what we want in the COPY set.
326 */
327 BITSET_SET(bd[block->num].copy, next_acp);
328
329 next_acp++;
330 }
331 }
332
333 assert(next_acp == num_acp);
334
335 setup_initial_values();
336 run();
337 }
338
339 /**
340 * Like reg_offset, but register must be VGRF or FIXED_GRF.
341 */
342 static inline unsigned
grf_reg_offset(const elk_fs_reg & r)343 grf_reg_offset(const elk_fs_reg &r)
344 {
345 return (r.file == VGRF ? 0 : r.nr) * REG_SIZE +
346 r.offset +
347 (r.file == FIXED_GRF ? r.subnr : 0);
348 }
349
350 /**
351 * Like regions_overlap, but register must be VGRF or FIXED_GRF.
352 */
353 static inline bool
grf_regions_overlap(const elk_fs_reg & r,unsigned dr,const elk_fs_reg & s,unsigned ds)354 grf_regions_overlap(const elk_fs_reg &r, unsigned dr, const elk_fs_reg &s, unsigned ds)
355 {
356 return reg_space(r) == reg_space(s) &&
357 !(grf_reg_offset(r) + dr <= grf_reg_offset(s) ||
358 grf_reg_offset(s) + ds <= grf_reg_offset(r));
359 }
360
361 /**
362 * Set up initial values for each of the data flow sets, prior to running
363 * the fixed-point algorithm.
364 */
365 void
setup_initial_values()366 fs_copy_prop_dataflow::setup_initial_values()
367 {
368 /* Initialize the COPY and KILL sets. */
369 {
370 struct acp acp_table;
371
372 /* First, get all the KILLs for instructions which overwrite ACP
373 * destinations.
374 */
375 for (int i = 0; i < num_acp; i++)
376 acp_table.add(acp[i]);
377
378 foreach_block (block, cfg) {
379 foreach_inst_in_block(elk_fs_inst, inst, block) {
380 if (inst->dst.file != VGRF &&
381 inst->dst.file != FIXED_GRF)
382 continue;
383
384 for (auto iter = acp_table.find_by_src(inst->dst.nr);
385 iter != acp_table.end() && (*iter)->src.nr == inst->dst.nr;
386 ++iter) {
387 if (grf_regions_overlap(inst->dst, inst->size_written,
388 (*iter)->src, (*iter)->size_read)) {
389 BITSET_SET(bd[block->num].kill, (*iter)->global_idx);
390 if (inst->force_writemask_all && !(*iter)->force_writemask_all)
391 BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx);
392 }
393 }
394
395 if (inst->dst.file != VGRF)
396 continue;
397
398 for (auto iter = acp_table.find_by_dst(inst->dst.nr);
399 iter != acp_table.end() && (*iter)->dst.nr == inst->dst.nr;
400 ++iter) {
401 if (grf_regions_overlap(inst->dst, inst->size_written,
402 (*iter)->dst, (*iter)->size_written)) {
403 BITSET_SET(bd[block->num].kill, (*iter)->global_idx);
404 if (inst->force_writemask_all && !(*iter)->force_writemask_all)
405 BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx);
406 }
407 }
408 }
409 }
410 }
411
412 /* Populate the initial values for the livein and liveout sets. For the
413 * block at the start of the program, livein = 0 and liveout = copy.
414 * For the others, set liveout and livein to ~0 (the universal set).
415 */
416 foreach_block (block, cfg) {
417 if (block->parents.is_empty()) {
418 for (int i = 0; i < bitset_words; i++) {
419 bd[block->num].livein[i] = 0u;
420 bd[block->num].liveout[i] = bd[block->num].copy[i];
421 }
422 } else {
423 for (int i = 0; i < bitset_words; i++) {
424 bd[block->num].liveout[i] = ~0u;
425 bd[block->num].livein[i] = ~0u;
426 }
427 }
428 }
429
430 /* Initialize the undef set. */
431 foreach_block (block, cfg) {
432 for (int i = 0; i < num_acp; i++) {
433 BITSET_SET(bd[block->num].undef, i);
434 for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
435 if (BITSET_TEST(live.block_data[block->num].defout,
436 live.var_from_reg(byte_offset(acp[i]->dst, off))))
437 BITSET_CLEAR(bd[block->num].undef, i);
438 }
439 }
440 }
441 }
442
443 /**
444 * Walk the set of instructions in the block, marking which entries in the acp
445 * are killed by the block.
446 */
447 void
run()448 fs_copy_prop_dataflow::run()
449 {
450 bool progress;
451
452 do {
453 progress = false;
454
455 foreach_block (block, cfg) {
456 if (block->parents.is_empty())
457 continue;
458
459 for (int i = 0; i < bitset_words; i++) {
460 const BITSET_WORD old_liveout = bd[block->num].liveout[i];
461 const BITSET_WORD old_reachin = bd[block->num].reachin[i];
462 BITSET_WORD livein_from_any_block = 0;
463
464 /* Update livein for this block. If a copy is live out of all
465 * parent blocks, it's live coming in to this block.
466 */
467 bd[block->num].livein[i] = ~0u;
468 foreach_list_typed(elk_bblock_link, parent_link, link, &block->parents) {
469 elk_bblock_t *parent = parent_link->block;
470 /* Consider ACP entries with a known-undefined destination to
471 * be available from the parent. This is valid because we're
472 * free to set the undefined variable equal to the source of
473 * the ACP entry without breaking the application's
474 * expectations, since the variable is undefined.
475 */
476 bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
477 bd[parent->num].undef[i]);
478 livein_from_any_block |= bd[parent->num].liveout[i];
479
480 /* Update reachin for this block. If the end of any
481 * parent block is reachable from the copy, the start
482 * of this block is reachable from it as well.
483 */
484 bd[block->num].reachin[i] |= (bd[parent->num].reachin[i] |
485 bd[parent->num].copy[i]);
486 }
487
488 /* Limit to the set of ACP entries that can possibly be available
489 * at the start of the block, since propagating from a variable
490 * which is guaranteed to be undefined (rather than potentially
491 * undefined for some dynamic control-flow paths) doesn't seem
492 * particularly useful.
493 */
494 bd[block->num].livein[i] &= livein_from_any_block;
495
496 /* Update liveout for this block. */
497 bd[block->num].liveout[i] =
498 bd[block->num].copy[i] | (bd[block->num].livein[i] &
499 ~bd[block->num].kill[i]);
500
501 if (old_liveout != bd[block->num].liveout[i] ||
502 old_reachin != bd[block->num].reachin[i])
503 progress = true;
504 }
505 }
506 } while (progress);
507
508 /* Perform a second fixed-point pass in order to propagate the
509 * exec_mismatch bitsets. Note that this requires an accurate
510 * value of the reachin bitsets as input, which isn't available
511 * until the end of the first propagation pass, so this loop cannot
512 * be folded into the previous one.
513 */
514 do {
515 progress = false;
516
517 foreach_block (block, cfg) {
518 for (int i = 0; i < bitset_words; i++) {
519 const BITSET_WORD old_exec_mismatch = bd[block->num].exec_mismatch[i];
520
521 /* Update exec_mismatch for this block. If the end of a
522 * parent block is reachable by an overwrite with
523 * inconsistent execution masking, the start of this block
524 * is reachable by such an overwrite as well.
525 */
526 foreach_list_typed(elk_bblock_link, parent_link, link, &block->parents) {
527 elk_bblock_t *parent = parent_link->block;
528 bd[block->num].exec_mismatch[i] |= (bd[parent->num].exec_mismatch[i] &
529 bd[parent->num].reachin[i]);
530 }
531
532 /* Only consider overwrites with inconsistent execution
533 * masking if they are reachable from the copy, since
534 * overwrites unreachable from a copy are harmless to that
535 * copy.
536 */
537 bd[block->num].exec_mismatch[i] &= bd[block->num].reachin[i];
538 if (old_exec_mismatch != bd[block->num].exec_mismatch[i])
539 progress = true;
540 }
541 }
542 } while (progress);
543 }
544
545 void
dump_block_data() const546 fs_copy_prop_dataflow::dump_block_data() const
547 {
548 foreach_block (block, cfg) {
549 fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
550 block->start_ip, block->end_ip);
551 foreach_list_typed(elk_bblock_link, link, link, &block->parents) {
552 elk_bblock_t *parent = link->block;
553 fprintf(stderr, "%d ", parent->num);
554 }
555 fprintf(stderr, "):\n");
556 fprintf(stderr, " livein = 0x");
557 for (int i = 0; i < bitset_words; i++)
558 fprintf(stderr, "%08x", bd[block->num].livein[i]);
559 fprintf(stderr, ", liveout = 0x");
560 for (int i = 0; i < bitset_words; i++)
561 fprintf(stderr, "%08x", bd[block->num].liveout[i]);
562 fprintf(stderr, ",\n copy = 0x");
563 for (int i = 0; i < bitset_words; i++)
564 fprintf(stderr, "%08x", bd[block->num].copy[i]);
565 fprintf(stderr, ", kill = 0x");
566 for (int i = 0; i < bitset_words; i++)
567 fprintf(stderr, "%08x", bd[block->num].kill[i]);
568 fprintf(stderr, "\n");
569 }
570 }
571
572 static bool
is_logic_op(enum elk_opcode opcode)573 is_logic_op(enum elk_opcode opcode)
574 {
575 return (opcode == ELK_OPCODE_AND ||
576 opcode == ELK_OPCODE_OR ||
577 opcode == ELK_OPCODE_XOR ||
578 opcode == ELK_OPCODE_NOT);
579 }
580
581 static bool
can_take_stride(elk_fs_inst * inst,elk_reg_type dst_type,unsigned arg,unsigned stride,const struct elk_compiler * compiler)582 can_take_stride(elk_fs_inst *inst, elk_reg_type dst_type,
583 unsigned arg, unsigned stride,
584 const struct elk_compiler *compiler)
585 {
586 const struct intel_device_info *devinfo = compiler->devinfo;
587
588 if (stride > 4)
589 return false;
590
591 /* Bail if the channels of the source need to be aligned to the byte offset
592 * of the corresponding channel of the destination, and the provided stride
593 * would break this restriction.
594 */
595 if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
596 !(type_sz(inst->src[arg].type) * stride ==
597 type_sz(dst_type) * inst->dst.stride ||
598 stride == 0))
599 return false;
600
601 /* 3-source instructions can only be Align16, which restricts what strides
602 * they can take. They can only take a stride of 1 (the usual case), or 0
603 * with a special "repctrl" bit. But the repctrl bit doesn't work for
604 * 64-bit datatypes, so if the source type is 64-bit then only a stride of
605 * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
606 * 944:
607 *
608 * This is applicable to 32b datatypes and 16b datatype. 64b datatypes
609 * cannot use the replicate control.
610 */
611 if (inst->elk_is_3src(compiler)) {
612 if (type_sz(inst->src[arg].type) > 4)
613 return stride == 1;
614 else
615 return stride == 1 || stride == 0;
616 }
617
618 /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
619 * page 391 ("Extended Math Function"):
620 *
621 * The following restrictions apply for align1 mode: Scalar source is
622 * supported. Source and destination horizontal stride must be the
623 * same.
624 *
625 * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
626 * 134 ("Extended Math Function"):
627 *
628 * Scalar source is supported. Source and destination horizontal stride
629 * must be 1.
630 *
631 * and similar language exists for IVB and SNB. Pre-SNB, math instructions
632 * are sends, so the sources are moved to MRF's and there are no
633 * restrictions.
634 */
635 if (inst->is_math()) {
636 if (devinfo->ver == 6 || devinfo->ver == 7) {
637 assert(inst->dst.stride == 1);
638 return stride == 1 || stride == 0;
639 } else if (devinfo->ver >= 8) {
640 return stride == inst->dst.stride || stride == 0;
641 }
642 }
643
644 return true;
645 }
646
647 static bool
instruction_requires_packed_data(elk_fs_inst * inst)648 instruction_requires_packed_data(elk_fs_inst *inst)
649 {
650 switch (inst->opcode) {
651 case ELK_FS_OPCODE_DDX_FINE:
652 case ELK_FS_OPCODE_DDX_COARSE:
653 case ELK_FS_OPCODE_DDY_FINE:
654 case ELK_FS_OPCODE_DDY_COARSE:
655 case ELK_SHADER_OPCODE_QUAD_SWIZZLE:
656 return true;
657 default:
658 return false;
659 }
660 }
661
662 static bool
try_copy_propagate(const elk_compiler * compiler,elk_fs_inst * inst,acp_entry * entry,int arg,const elk::simple_allocator & alloc)663 try_copy_propagate(const elk_compiler *compiler, elk_fs_inst *inst,
664 acp_entry *entry, int arg,
665 const elk::simple_allocator &alloc)
666 {
667 if (inst->src[arg].file != VGRF)
668 return false;
669
670 const struct intel_device_info *devinfo = compiler->devinfo;
671
672 assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
673 entry->src.file == ATTR || entry->src.file == FIXED_GRF);
674
675 /* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a
676 * good chance that we'll be able to eliminate the latter through register
677 * coalescing. If only part of the sources of the second LOAD_PAYLOAD can
678 * be simplified through copy propagation we would be making register
679 * coalescing impossible, ending up with unnecessary copies in the program.
680 * This is also the case for is_multi_copy_payload() copies that can only
681 * be coalesced when the instruction is lowered into a sequence of MOVs.
682 *
683 * Worse -- In cases where the ACP entry was the result of CSE combining
684 * multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD
685 * into the second would undo the work of CSE, leading to an infinite
686 * optimization loop. Avoid this by detecting LOAD_PAYLOAD copies from CSE
687 * temporaries which should match is_coalescing_payload().
688 */
689 if (entry->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD &&
690 (is_coalescing_payload(alloc, inst) || is_multi_copy_payload(inst)))
691 return false;
692
693 assert(entry->dst.file == VGRF);
694 if (inst->src[arg].nr != entry->dst.nr)
695 return false;
696
697 /* Bail if inst is reading a range that isn't contained in the range
698 * that entry is writing.
699 */
700 if (!region_contained_in(inst->src[arg], inst->size_read(arg),
701 entry->dst, entry->size_written))
702 return false;
703
704 /* Send messages with EOT set are restricted to use g112-g127 (and we
705 * sometimes need g127 for other purposes), so avoid copy propagating
706 * anything that would make it impossible to satisfy that restriction.
707 */
708 if (inst->eot) {
709 /* Avoid propagating a FIXED_GRF register, as that's already pinned. */
710 if (entry->src.file == FIXED_GRF)
711 return false;
712
713 /* We might be propagating from a large register, while the SEND only
714 * is reading a portion of it (say the .A channel in an RGBA value).
715 * We need to pin both split SEND sources in g112-g126/127, so only
716 * allow this if the registers aren't too large.
717 */
718 if (inst->opcode == ELK_SHADER_OPCODE_SEND && entry->src.file == VGRF) {
719 unsigned prop_src_size = alloc.sizes[entry->src.nr];
720 if (prop_src_size > 15)
721 return false;
722 }
723 }
724
725 /* Avoid propagating odd-numbered FIXED_GRF registers into the first source
726 * of a LINTERP instruction on platforms where the PLN instruction has
727 * register alignment restrictions.
728 */
729 if (devinfo->has_pln && devinfo->ver <= 6 &&
730 entry->src.file == FIXED_GRF && (entry->src.nr & 1) &&
731 inst->opcode == ELK_FS_OPCODE_LINTERP && arg == 0)
732 return false;
733
734 /* we can't generally copy-propagate UD negations because we
735 * can end up accessing the resulting values as signed integers
736 * instead. See also resolve_ud_negate() and comment in
737 * elk_fs_generator::generate_code.
738 */
739 if (entry->src.type == ELK_REGISTER_TYPE_UD &&
740 entry->src.negate)
741 return false;
742
743 bool has_source_modifiers = entry->src.abs || entry->src.negate;
744
745 if (has_source_modifiers && !inst->can_do_source_mods(devinfo))
746 return false;
747
748 /* Reject cases that would violate register regioning restrictions. */
749 if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) &&
750 ((devinfo->ver == 6 && inst->is_math()) ||
751 inst->is_send_from_grf() ||
752 inst->uses_indirect_addressing())) {
753 return false;
754 }
755
756 if (has_source_modifiers &&
757 inst->opcode == ELK_SHADER_OPCODE_GFX4_SCRATCH_WRITE)
758 return false;
759
760 /* Some instructions implemented in the generator backend, such as
761 * derivatives, assume that their operands are packed so we can't
762 * generally propagate strided regions to them.
763 */
764 const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 :
765 entry->src.stride);
766 if (instruction_requires_packed_data(inst) && entry_stride != 1)
767 return false;
768
769 const elk_reg_type dst_type = (has_source_modifiers &&
770 entry->dst.type != inst->src[arg].type) ?
771 entry->dst.type : inst->dst.type;
772
773 /* Bail if the result of composing both strides would exceed the
774 * hardware limit.
775 */
776 if (!can_take_stride(inst, dst_type, arg,
777 entry_stride * inst->src[arg].stride,
778 compiler))
779 return false;
780
781 /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU:
782 * EU Overview
783 * Register Region Restrictions
784 * Special Requirements for Handling Double Precision Data Types :
785 *
786 * "When source or destination datatype is 64b or operation is integer
787 * DWord multiply, regioning in Align1 must follow these rules:
788 *
789 * 1. Source and Destination horizontal stride must be aligned to the
790 * same qword.
791 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
792 * 3. Source and Destination offset must be the same, except the case
793 * of scalar source."
794 *
795 * Most of this is already checked in can_take_stride(), we're only left
796 * with checking 3.
797 */
798 if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
799 entry_stride != 0 &&
800 (reg_offset(inst->dst) % REG_SIZE) != (reg_offset(entry->src) % REG_SIZE))
801 return false;
802
803 /* Bail if the source FIXED_GRF region of the copy cannot be trivially
804 * composed with the source region of the instruction -- E.g. because the
805 * copy uses some extended stride greater than 4 not supported natively by
806 * the hardware as a horizontal stride, or because instruction compression
807 * could require us to use a vertical stride shorter than a GRF.
808 */
809 if (entry->src.file == FIXED_GRF &&
810 (inst->src[arg].stride > 4 ||
811 inst->dst.component_size(inst->exec_size) >
812 inst->src[arg].component_size(inst->exec_size)))
813 return false;
814
815 /* Bail if the instruction type is larger than the execution type of the
816 * copy, what implies that each channel is reading multiple channels of the
817 * destination of the copy, and simply replacing the sources would give a
818 * program with different semantics.
819 */
820 if ((type_sz(entry->dst.type) < type_sz(inst->src[arg].type) ||
821 entry->is_partial_write) &&
822 inst->opcode != ELK_OPCODE_MOV) {
823 return false;
824 }
825
826 /* Bail if the result of composing both strides cannot be expressed
827 * as another stride. This avoids, for example, trying to transform
828 * this:
829 *
830 * MOV (8) rX<1>UD rY<0;1,0>UD
831 * FOO (8) ... rX<8;8,1>UW
832 *
833 * into this:
834 *
835 * FOO (8) ... rY<0;1,0>UW
836 *
837 * Which would have different semantics.
838 */
839 if (entry_stride != 1 &&
840 (inst->src[arg].stride *
841 type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
842 return false;
843
844 /* Since semantics of source modifiers are type-dependent we need to
845 * ensure that the meaning of the instruction remains the same if we
846 * change the type. If the sizes of the types are different the new
847 * instruction will read a different amount of data than the original
848 * and the semantics will always be different.
849 */
850 if (has_source_modifiers &&
851 entry->dst.type != inst->src[arg].type &&
852 (!inst->can_change_types() ||
853 type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
854 return false;
855
856 if (devinfo->ver >= 8 && (entry->src.negate || entry->src.abs) &&
857 is_logic_op(inst->opcode)) {
858 return false;
859 }
860
861 /* Save the offset of inst->src[arg] relative to entry->dst for it to be
862 * applied later.
863 */
864 const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
865
866 /* Fold the copy into the instruction consuming it. */
867 inst->src[arg].file = entry->src.file;
868 inst->src[arg].nr = entry->src.nr;
869 inst->src[arg].subnr = entry->src.subnr;
870 inst->src[arg].offset = entry->src.offset;
871
872 /* Compose the strides of both regions. */
873 if (entry->src.file == FIXED_GRF) {
874 if (inst->src[arg].stride) {
875 const unsigned orig_width = 1 << entry->src.width;
876 const unsigned reg_width = REG_SIZE / (type_sz(inst->src[arg].type) *
877 inst->src[arg].stride);
878 inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1;
879 inst->src[arg].hstride = cvt(inst->src[arg].stride);
880 inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width;
881 } else {
882 inst->src[arg].vstride = inst->src[arg].hstride =
883 inst->src[arg].width = 0;
884 }
885
886 inst->src[arg].stride = 1;
887
888 /* Hopefully no Align16 around here... */
889 assert(entry->src.swizzle == ELK_SWIZZLE_XYZW);
890 inst->src[arg].swizzle = entry->src.swizzle;
891 } else {
892 inst->src[arg].stride *= entry->src.stride;
893 }
894
895 /* Compute the first component of the copy that the instruction is
896 * reading, and the base byte offset within that component.
897 */
898 assert((entry->dst.offset % REG_SIZE == 0 || inst->opcode == ELK_OPCODE_MOV) &&
899 entry->dst.stride == 1);
900 const unsigned component = rel_offset / type_sz(entry->dst.type);
901 const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
902
903 /* Calculate the byte offset at the origin of the copy of the given
904 * component and suboffset.
905 */
906 inst->src[arg] = byte_offset(inst->src[arg],
907 component * entry_stride * type_sz(entry->src.type) + suboffset);
908
909 if (has_source_modifiers) {
910 if (entry->dst.type != inst->src[arg].type) {
911 /* We are propagating source modifiers from a MOV with a different
912 * type. If we got here, then we can just change the source and
913 * destination types of the instruction and keep going.
914 */
915 for (int i = 0; i < inst->sources; i++) {
916 inst->src[i].type = entry->dst.type;
917 }
918 inst->dst.type = entry->dst.type;
919 }
920
921 if (!inst->src[arg].abs) {
922 inst->src[arg].abs = entry->src.abs;
923 inst->src[arg].negate ^= entry->src.negate;
924 }
925 }
926
927 return true;
928 }
929
930
931 static bool
try_constant_propagate(const elk_compiler * compiler,elk_fs_inst * inst,acp_entry * entry,int arg)932 try_constant_propagate(const elk_compiler *compiler, elk_fs_inst *inst,
933 acp_entry *entry, int arg)
934 {
935 const struct intel_device_info *devinfo = compiler->devinfo;
936 bool progress = false;
937
938 if (type_sz(entry->src.type) > 4)
939 return false;
940
941 if (inst->src[arg].file != VGRF)
942 return false;
943
944 assert(entry->dst.file == VGRF);
945 if (inst->src[arg].nr != entry->dst.nr)
946 return false;
947
948 /* Bail if inst is reading a range that isn't contained in the range
949 * that entry is writing.
950 */
951 if (!region_contained_in(inst->src[arg], inst->size_read(arg),
952 entry->dst, entry->size_written))
953 return false;
954
955 /* If the size of the use type is larger than the size of the entry
956 * type, the entry doesn't contain all of the data that the user is
957 * trying to use.
958 */
959 if (type_sz(inst->src[arg].type) > type_sz(entry->dst.type))
960 return false;
961
962 elk_fs_reg val = entry->src;
963
964 /* If the size of the use type is smaller than the size of the entry,
965 * clamp the value to the range of the use type. This enables constant
966 * copy propagation in cases like
967 *
968 *
969 * mov(8) g12<1>UD 0x0000000cUD
970 * ...
971 * mul(8) g47<1>D g86<8,8,1>D g12<16,8,2>W
972 */
973 if (type_sz(inst->src[arg].type) < type_sz(entry->dst.type)) {
974 if (type_sz(inst->src[arg].type) != 2 || type_sz(entry->dst.type) != 4)
975 return false;
976
977 assert(inst->src[arg].subnr == 0 || inst->src[arg].subnr == 2);
978
979 /* When subnr is 0, we want the lower 16-bits, and when it's 2, we
980 * want the upper 16-bits. No other values of subnr are valid for a
981 * UD source.
982 */
983 const uint16_t v = inst->src[arg].subnr == 2 ? val.ud >> 16 : val.ud;
984
985 val.ud = v | (uint32_t(v) << 16);
986 }
987
988 val.type = inst->src[arg].type;
989
990 if (inst->src[arg].abs) {
991 if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
992 !elk_abs_immediate(val.type, &val.as_elk_reg())) {
993 return false;
994 }
995 }
996
997 if (inst->src[arg].negate) {
998 if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
999 !elk_negate_immediate(val.type, &val.as_elk_reg())) {
1000 return false;
1001 }
1002 }
1003
1004 switch (inst->opcode) {
1005 case ELK_OPCODE_MOV:
1006 case ELK_SHADER_OPCODE_LOAD_PAYLOAD:
1007 case ELK_FS_OPCODE_PACK:
1008 inst->src[arg] = val;
1009 progress = true;
1010 break;
1011
1012 case ELK_SHADER_OPCODE_POW:
1013 /* Allow constant propagation into src1 (except on Gen 6 which
1014 * doesn't support scalar source math), and let constant combining
1015 * promote the constant on Gen < 8.
1016 */
1017 if (devinfo->ver == 6)
1018 break;
1019
1020 if (arg == 1) {
1021 inst->src[arg] = val;
1022 progress = true;
1023 }
1024 break;
1025
1026 case ELK_OPCODE_SUBB:
1027 if (arg == 1) {
1028 inst->src[arg] = val;
1029 progress = true;
1030 }
1031 break;
1032
1033 case ELK_OPCODE_MACH:
1034 case ELK_OPCODE_MUL:
1035 case ELK_SHADER_OPCODE_MULH:
1036 case ELK_OPCODE_ADD:
1037 case ELK_OPCODE_XOR:
1038 case ELK_OPCODE_ADDC:
1039 if (arg == 1) {
1040 inst->src[arg] = val;
1041 progress = true;
1042 } else if (arg == 0 && inst->src[1].file != IMM) {
1043 /* Don't copy propagate the constant in situations like
1044 *
1045 * mov(8) g8<1>D 0x7fffffffD
1046 * mul(8) g16<1>D g8<8,8,1>D g15<16,8,2>W
1047 *
1048 * On platforms that only have a 32x16 multiplier, this will
1049 * result in lowering the multiply to
1050 *
1051 * mul(8) g15<1>D g14<8,8,1>D 0xffffUW
1052 * mul(8) g16<1>D g14<8,8,1>D 0x7fffUW
1053 * add(8) g15.1<2>UW g15.1<16,8,2>UW g16<16,8,2>UW
1054 *
1055 * On Gfx8 and Gfx9, which have the full 32x32 multiplier, it
1056 * results in
1057 *
1058 * mul(8) g16<1>D g15<16,8,2>W 0x7fffffffD
1059 *
1060 * Volume 2a of the Skylake PRM says:
1061 *
1062 * When multiplying a DW and any lower precision integer, the
1063 * DW operand must on src0.
1064 */
1065 if (inst->opcode == ELK_OPCODE_MUL &&
1066 type_sz(inst->src[1].type) < 4 &&
1067 type_sz(val.type) == 4)
1068 break;
1069
1070 /* Fit this constant in by commuting the operands.
1071 * Exception: we can't do this for 32-bit integer MUL/MACH
1072 * because it's asymmetric.
1073 *
1074 * The BSpec says for Broadwell that
1075 *
1076 * "When multiplying DW x DW, the dst cannot be accumulator."
1077 *
1078 * Integer MUL with a non-accumulator destination will be lowered
1079 * by lower_integer_multiplication(), so don't restrict it.
1080 */
1081 if (((inst->opcode == ELK_OPCODE_MUL &&
1082 inst->dst.is_accumulator()) ||
1083 inst->opcode == ELK_OPCODE_MACH) &&
1084 (inst->src[1].type == ELK_REGISTER_TYPE_D ||
1085 inst->src[1].type == ELK_REGISTER_TYPE_UD))
1086 break;
1087 inst->src[0] = inst->src[1];
1088 inst->src[1] = val;
1089 progress = true;
1090 }
1091 break;
1092
1093 case ELK_OPCODE_CMP:
1094 case ELK_OPCODE_IF:
1095 if (arg == 1) {
1096 inst->src[arg] = val;
1097 progress = true;
1098 } else if (arg == 0 && inst->src[1].file != IMM) {
1099 enum elk_conditional_mod new_cmod;
1100
1101 new_cmod = elk_swap_cmod(inst->conditional_mod);
1102 if (new_cmod != ELK_CONDITIONAL_NONE) {
1103 /* Fit this constant in by swapping the operands and
1104 * flipping the test
1105 */
1106 inst->src[0] = inst->src[1];
1107 inst->src[1] = val;
1108 inst->conditional_mod = new_cmod;
1109 progress = true;
1110 }
1111 }
1112 break;
1113
1114 case ELK_OPCODE_SEL:
1115 if (arg == 1) {
1116 inst->src[arg] = val;
1117 progress = true;
1118 } else if (arg == 0) {
1119 if (inst->src[1].file != IMM &&
1120 (inst->conditional_mod == ELK_CONDITIONAL_NONE ||
1121 /* Only GE and L are commutative. */
1122 inst->conditional_mod == ELK_CONDITIONAL_GE ||
1123 inst->conditional_mod == ELK_CONDITIONAL_L)) {
1124 inst->src[0] = inst->src[1];
1125 inst->src[1] = val;
1126
1127 /* If this was predicated, flipping operands means
1128 * we also need to flip the predicate.
1129 */
1130 if (inst->conditional_mod == ELK_CONDITIONAL_NONE) {
1131 inst->predicate_inverse =
1132 !inst->predicate_inverse;
1133 }
1134 } else {
1135 inst->src[0] = val;
1136 }
1137
1138 progress = true;
1139 }
1140 break;
1141
1142 case ELK_FS_OPCODE_FB_WRITE_LOGICAL:
1143 /* The omask source of ELK_FS_OPCODE_FB_WRITE_LOGICAL is
1144 * bit-cast using a strided region so they cannot be immediates.
1145 */
1146 if (arg != FB_WRITE_LOGICAL_SRC_OMASK) {
1147 inst->src[arg] = val;
1148 progress = true;
1149 }
1150 break;
1151
1152 case ELK_SHADER_OPCODE_INT_QUOTIENT:
1153 case ELK_SHADER_OPCODE_INT_REMAINDER:
1154 /* Allow constant propagation into either source (except on Gen 6
1155 * which doesn't support scalar source math). Constant combining
1156 * promote the src1 constant on Gen < 8, and it will promote the src0
1157 * constant on all platforms.
1158 */
1159 if (devinfo->ver == 6)
1160 break;
1161
1162 FALLTHROUGH;
1163 case ELK_OPCODE_AND:
1164 case ELK_OPCODE_ASR:
1165 case ELK_OPCODE_BFE:
1166 case ELK_OPCODE_BFI1:
1167 case ELK_OPCODE_BFI2:
1168 case ELK_OPCODE_SHL:
1169 case ELK_OPCODE_SHR:
1170 case ELK_OPCODE_OR:
1171 case ELK_SHADER_OPCODE_TEX_LOGICAL:
1172 case ELK_SHADER_OPCODE_TXD_LOGICAL:
1173 case ELK_SHADER_OPCODE_TXF_LOGICAL:
1174 case ELK_SHADER_OPCODE_TXL_LOGICAL:
1175 case ELK_SHADER_OPCODE_TXS_LOGICAL:
1176 case ELK_FS_OPCODE_TXB_LOGICAL:
1177 case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL:
1178 case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL:
1179 case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
1180 case ELK_SHADER_OPCODE_TXF_UMS_LOGICAL:
1181 case ELK_SHADER_OPCODE_TXF_MCS_LOGICAL:
1182 case ELK_SHADER_OPCODE_LOD_LOGICAL:
1183 case ELK_SHADER_OPCODE_TG4_LOGICAL:
1184 case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL:
1185 case ELK_SHADER_OPCODE_SAMPLEINFO_LOGICAL:
1186 case ELK_SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
1187 case ELK_SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
1188 case ELK_SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
1189 case ELK_SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
1190 case ELK_SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
1191 case ELK_SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
1192 case ELK_SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
1193 case ELK_SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
1194 case ELK_SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
1195 case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1196 case ELK_SHADER_OPCODE_BROADCAST:
1197 case ELK_OPCODE_MAD:
1198 case ELK_OPCODE_LRP:
1199 case ELK_FS_OPCODE_PACK_HALF_2x16_SPLIT:
1200 case ELK_SHADER_OPCODE_SHUFFLE:
1201 inst->src[arg] = val;
1202 progress = true;
1203 break;
1204
1205 default:
1206 break;
1207 }
1208
1209 return progress;
1210 }
1211
1212 static bool
can_propagate_from(elk_fs_inst * inst)1213 can_propagate_from(elk_fs_inst *inst)
1214 {
1215 return (inst->opcode == ELK_OPCODE_MOV &&
1216 inst->dst.file == VGRF &&
1217 ((inst->src[0].file == VGRF &&
1218 !grf_regions_overlap(inst->dst, inst->size_written,
1219 inst->src[0], inst->size_read(0))) ||
1220 inst->src[0].file == ATTR ||
1221 inst->src[0].file == UNIFORM ||
1222 inst->src[0].file == IMM ||
1223 (inst->src[0].file == FIXED_GRF &&
1224 inst->src[0].is_contiguous())) &&
1225 inst->src[0].type == inst->dst.type &&
1226 !inst->saturate &&
1227 /* Subset of !is_partial_write() conditions. */
1228 !inst->predicate && inst->dst.is_contiguous()) ||
1229 is_identity_payload(FIXED_GRF, inst);
1230 }
1231
1232 /* Walks a basic block and does copy propagation on it using the acp
1233 * list.
1234 */
1235 static bool
opt_copy_propagation_local(const elk_compiler * compiler,linear_ctx * lin_ctx,elk_bblock_t * block,struct acp & acp,const elk::simple_allocator & alloc)1236 opt_copy_propagation_local(const elk_compiler *compiler, linear_ctx *lin_ctx,
1237 elk_bblock_t *block, struct acp &acp,
1238 const elk::simple_allocator &alloc)
1239 {
1240 bool progress = false;
1241
1242 foreach_inst_in_block(elk_fs_inst, inst, block) {
1243 /* Try propagating into this instruction. */
1244 bool instruction_progress = false;
1245 for (int i = inst->sources - 1; i >= 0; i--) {
1246 if (inst->src[i].file != VGRF)
1247 continue;
1248
1249 for (auto iter = acp.find_by_dst(inst->src[i].nr);
1250 iter != acp.end() && (*iter)->dst.nr == inst->src[i].nr;
1251 ++iter) {
1252 if ((*iter)->src.file == IMM) {
1253 if (try_constant_propagate(compiler, inst, *iter, i)) {
1254 instruction_progress = true;
1255 break;
1256 }
1257 } else {
1258 if (try_copy_propagate(compiler, inst, *iter, i, alloc)) {
1259 instruction_progress = true;
1260 break;
1261 }
1262 }
1263 }
1264 }
1265
1266 if (instruction_progress) {
1267 progress = true;
1268
1269 /* If only one of the sources of a 2-source, commutative instruction (e.g.,
1270 * AND) is immediate, it must be src1. If both are immediate, opt_algebraic
1271 * should fold it away.
1272 */
1273 if (inst->sources == 2 && inst->is_commutative() &&
1274 inst->src[0].file == IMM && inst->src[1].file != IMM) {
1275 const auto src1 = inst->src[1];
1276 inst->src[1] = inst->src[0];
1277 inst->src[0] = src1;
1278 }
1279 }
1280
1281 /* kill the destination from the ACP */
1282 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1283 for (auto iter = acp.find_by_dst(inst->dst.nr);
1284 iter != acp.end() && (*iter)->dst.nr == inst->dst.nr;
1285 ++iter) {
1286 if (grf_regions_overlap((*iter)->dst, (*iter)->size_written,
1287 inst->dst, inst->size_written))
1288 acp.remove(*iter);
1289 }
1290
1291 for (auto iter = acp.find_by_src(inst->dst.nr);
1292 iter != acp.end() && (*iter)->src.nr == inst->dst.nr;
1293 ++iter) {
1294 /* Make sure we kill the entry if this instruction overwrites
1295 * _any_ of the registers that it reads
1296 */
1297 if (grf_regions_overlap((*iter)->src, (*iter)->size_read,
1298 inst->dst, inst->size_written))
1299 acp.remove(*iter);
1300 }
1301 }
1302
1303 /* If this instruction's source could potentially be folded into the
1304 * operand of another instruction, add it to the ACP.
1305 */
1306 if (can_propagate_from(inst)) {
1307 acp_entry *entry = linear_zalloc(lin_ctx, acp_entry);
1308 entry->dst = inst->dst;
1309 entry->src = inst->src[0];
1310 entry->size_written = inst->size_written;
1311 for (unsigned i = 0; i < inst->sources; i++)
1312 entry->size_read += inst->size_read(i);
1313 entry->opcode = inst->opcode;
1314 entry->is_partial_write = inst->is_partial_write();
1315 entry->force_writemask_all = inst->force_writemask_all;
1316 acp.add(entry);
1317 } else if (inst->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD &&
1318 inst->dst.file == VGRF) {
1319 int offset = 0;
1320 for (int i = 0; i < inst->sources; i++) {
1321 int effective_width = i < inst->header_size ? 8 : inst->exec_size;
1322 const unsigned size_written = effective_width *
1323 type_sz(inst->src[i].type);
1324 if (inst->src[i].file == VGRF ||
1325 (inst->src[i].file == FIXED_GRF &&
1326 inst->src[i].is_contiguous())) {
1327 const elk_reg_type t = i < inst->header_size ?
1328 ELK_REGISTER_TYPE_UD : inst->src[i].type;
1329 elk_fs_reg dst = byte_offset(retype(inst->dst, t), offset);
1330 if (!dst.equals(inst->src[i])) {
1331 acp_entry *entry = linear_zalloc(lin_ctx, acp_entry);
1332 entry->dst = dst;
1333 entry->src = retype(inst->src[i], t);
1334 entry->size_written = size_written;
1335 entry->size_read = inst->size_read(i);
1336 entry->opcode = inst->opcode;
1337 entry->force_writemask_all = inst->force_writemask_all;
1338 acp.add(entry);
1339 }
1340 }
1341 offset += size_written;
1342 }
1343 }
1344 }
1345
1346 return progress;
1347 }
1348
1349 bool
opt_copy_propagation()1350 elk_fs_visitor::opt_copy_propagation()
1351 {
1352 bool progress = false;
1353 void *copy_prop_ctx = ralloc_context(NULL);
1354 linear_ctx *lin_ctx = linear_context(copy_prop_ctx);
1355 struct acp *out_acp = new (lin_ctx) acp[cfg->num_blocks];
1356
1357 const fs_live_variables &live = live_analysis.require();
1358
1359 /* First, walk through each block doing local copy propagation and getting
1360 * the set of copies available at the end of the block.
1361 */
1362 foreach_block (block, cfg) {
1363 progress = opt_copy_propagation_local(compiler, lin_ctx, block,
1364 out_acp[block->num], alloc) || progress;
1365
1366 /* If the destination of an ACP entry exists only within this block,
1367 * then there's no need to keep it for dataflow analysis. We can delete
1368 * it from the out_acp table and avoid growing the bitsets any bigger
1369 * than we absolutely have to.
1370 *
1371 * Because nothing in opt_copy_propagation_local touches the block
1372 * start/end IPs and opt_copy_propagation_local is incapable of
1373 * extending the live range of an ACP destination beyond the block,
1374 * it's safe to use the liveness information in this way.
1375 */
1376 for (auto iter = out_acp[block->num].begin();
1377 iter != out_acp[block->num].end(); ++iter) {
1378 assert((*iter)->dst.file == VGRF);
1379 if (block->start_ip <= live.vgrf_start[(*iter)->dst.nr] &&
1380 live.vgrf_end[(*iter)->dst.nr] <= block->end_ip) {
1381 out_acp[block->num].remove(*iter);
1382 }
1383 }
1384 }
1385
1386 /* Do dataflow analysis for those available copies. */
1387 fs_copy_prop_dataflow dataflow(lin_ctx, cfg, live, out_acp);
1388
1389 /* Next, re-run local copy propagation, this time with the set of copies
1390 * provided by the dataflow analysis available at the start of a block.
1391 */
1392 foreach_block (block, cfg) {
1393 struct acp in_acp;
1394
1395 for (int i = 0; i < dataflow.num_acp; i++) {
1396 if (BITSET_TEST(dataflow.bd[block->num].livein, i) &&
1397 !BITSET_TEST(dataflow.bd[block->num].exec_mismatch, i)) {
1398 struct acp_entry *entry = dataflow.acp[i];
1399 in_acp.add(entry);
1400 }
1401 }
1402
1403 progress = opt_copy_propagation_local(compiler, lin_ctx, block,
1404 in_acp, alloc) ||
1405 progress;
1406 }
1407
1408 ralloc_free(copy_prop_ctx);
1409
1410 if (progress)
1411 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
1412 DEPENDENCY_INSTRUCTION_DETAIL);
1413
1414 return progress;
1415 }
1416