1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "elk_eu.h"
29 #include "elk_fs.h"
30 #include "elk_fs_builder.h"
31 #include "elk_cfg.h"
32 #include "util/set.h"
33 #include "util/register_allocate.h"
34
35 using namespace elk;
36
37 static void
assign_reg(const struct intel_device_info * devinfo,unsigned * reg_hw_locations,elk_fs_reg * reg)38 assign_reg(const struct intel_device_info *devinfo,
39 unsigned *reg_hw_locations, elk_fs_reg *reg)
40 {
41 if (reg->file == VGRF) {
42 reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
43 reg->offset %= REG_SIZE;
44 }
45 }
46
47 void
assign_regs_trivial()48 elk_fs_visitor::assign_regs_trivial()
49 {
50 unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, this->alloc.count + 1);
51 unsigned i;
52 int reg_width = dispatch_width / 8;
53
54 /* Note that compressed instructions require alignment to 2 registers. */
55 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
56 for (i = 1; i <= this->alloc.count; i++) {
57 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
58 DIV_ROUND_UP(this->alloc.sizes[i - 1],
59 reg_unit(devinfo)));
60 }
61 this->grf_used = hw_reg_mapping[this->alloc.count];
62
63 foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
64 assign_reg(devinfo, hw_reg_mapping, &inst->dst);
65 for (i = 0; i < inst->sources; i++) {
66 assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
67 }
68 }
69
70 if (this->grf_used >= max_grf) {
71 fail("Ran out of regs on trivial allocator (%d/%d)\n",
72 this->grf_used, max_grf);
73 } else {
74 this->alloc.count = this->grf_used;
75 }
76
77 ralloc_free(hw_reg_mapping);
78 }
79
80 /**
81 * Size of a register from the aligned_bary_class register class.
82 */
83 static unsigned
aligned_bary_size(unsigned dispatch_width)84 aligned_bary_size(unsigned dispatch_width)
85 {
86 return (dispatch_width == 8 ? 2 : 4);
87 }
88
89 static void
elk_alloc_reg_set(struct elk_compiler * compiler,int dispatch_width)90 elk_alloc_reg_set(struct elk_compiler *compiler, int dispatch_width)
91 {
92 const struct intel_device_info *devinfo = compiler->devinfo;
93 int base_reg_count = ELK_MAX_GRF;
94 const int index = util_logbase2(dispatch_width / 8);
95
96 if (dispatch_width > 8 && devinfo->ver >= 7) {
97 /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
98 * SIMD16. Therefore, we can use the exact same register sets for
99 * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
100 */
101 compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
102 return;
103 }
104
105 /* The registers used to make up almost all values handled in the compiler
106 * are a scalar value occupying a single register (or 2 registers in the
107 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
108 * multiplying allocated register numbers by 2). Things that were
109 * aggregates of scalar values at the GLSL level were split to scalar
110 * values by split_virtual_grfs().
111 *
112 * However, texture SEND messages return a series of contiguous registers
113 * to write into. We currently always ask for 4 registers, but we may
114 * convert that to use less some day.
115 *
116 * Additionally, on gfx5 we need aligned pairs of registers for the PLN
117 * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
118 * texturing.
119 */
120 assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo));
121 int class_sizes[REG_CLASS_COUNT];
122 for (unsigned i = 0; i < REG_CLASS_COUNT; i++)
123 class_sizes[i] = i + 1;
124
125 struct ra_regs *regs = ra_alloc_reg_set(compiler, ELK_MAX_GRF, false);
126 if (devinfo->ver >= 6)
127 ra_set_allocate_round_robin(regs);
128 struct ra_class **classes = ralloc_array(compiler, struct ra_class *,
129 REG_CLASS_COUNT);
130 struct ra_class *aligned_bary_class = NULL;
131
132 /* Now, make the register classes for each size of contiguous register
133 * allocation we might need to make.
134 */
135 for (int i = 0; i < REG_CLASS_COUNT; i++) {
136 classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
137
138 if (devinfo->ver <= 5 && dispatch_width >= 16) {
139 /* From the G45 PRM:
140 *
141 * In order to reduce the hardware complexity, the following
142 * rules and restrictions apply to the compressed instruction:
143 * ...
144 * * Operand Alignment Rule: With the exceptions listed below, a
145 * source/destination operand in general should be aligned to
146 * even 256-bit physical register with a region size equal to
147 * two 256-bit physical register
148 */
149 for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg += 2)
150 ra_class_add_reg(classes[i], reg);
151 } else {
152 for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
153 ra_class_add_reg(classes[i], reg);
154 }
155 }
156
157 /* Add a special class for aligned barycentrics, which we'll put the
158 * first source of LINTERP on so that we can do PLN on Gen <= 6.
159 */
160 if (devinfo->has_pln && (devinfo->ver == 6 ||
161 (dispatch_width == 8 && devinfo->ver <= 5))) {
162 int contig_len = aligned_bary_size(dispatch_width);
163 aligned_bary_class = ra_alloc_contig_reg_class(regs, contig_len);
164
165 for (int i = 0; i <= base_reg_count - contig_len; i += 2)
166 ra_class_add_reg(aligned_bary_class, i);
167 }
168
169 ra_set_finalize(regs, NULL);
170
171 compiler->fs_reg_sets[index].regs = regs;
172 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
173 compiler->fs_reg_sets[index].classes[i] = NULL;
174 for (int i = 0; i < REG_CLASS_COUNT; i++)
175 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
176 compiler->fs_reg_sets[index].aligned_bary_class = aligned_bary_class;
177 }
178
179 void
elk_fs_alloc_reg_sets(struct elk_compiler * compiler)180 elk_fs_alloc_reg_sets(struct elk_compiler *compiler)
181 {
182 elk_alloc_reg_set(compiler, 8);
183 elk_alloc_reg_set(compiler, 16);
184 elk_alloc_reg_set(compiler, 32);
185 }
186
187 static int
count_to_loop_end(const elk_bblock_t * block)188 count_to_loop_end(const elk_bblock_t *block)
189 {
190 if (block->end()->opcode == ELK_OPCODE_WHILE)
191 return block->end_ip;
192
193 int depth = 1;
194 /* Skip the first block, since we don't want to count the do the calling
195 * function found.
196 */
197 for (block = block->next();
198 depth > 0;
199 block = block->next()) {
200 if (block->start()->opcode == ELK_OPCODE_DO)
201 depth++;
202 if (block->end()->opcode == ELK_OPCODE_WHILE) {
203 depth--;
204 if (depth == 0)
205 return block->end_ip;
206 }
207 }
208 unreachable("not reached");
209 }
210
calculate_payload_ranges(unsigned payload_node_count,int * payload_last_use_ip) const211 void elk_fs_visitor::calculate_payload_ranges(unsigned payload_node_count,
212 int *payload_last_use_ip) const
213 {
214 int loop_depth = 0;
215 int loop_end_ip = 0;
216
217 for (unsigned i = 0; i < payload_node_count; i++)
218 payload_last_use_ip[i] = -1;
219
220 int ip = 0;
221 foreach_block_and_inst(block, elk_fs_inst, inst, cfg) {
222 switch (inst->opcode) {
223 case ELK_OPCODE_DO:
224 loop_depth++;
225
226 /* Since payload regs are deffed only at the start of the shader
227 * execution, any uses of the payload within a loop mean the live
228 * interval extends to the end of the outermost loop. Find the ip of
229 * the end now.
230 */
231 if (loop_depth == 1)
232 loop_end_ip = count_to_loop_end(block);
233 break;
234 case ELK_OPCODE_WHILE:
235 loop_depth--;
236 break;
237 default:
238 break;
239 }
240
241 int use_ip;
242 if (loop_depth > 0)
243 use_ip = loop_end_ip;
244 else
245 use_ip = ip;
246
247 /* Note that UNIFORM args have been turned into FIXED_GRF by
248 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
249 * the start (see interp_reg()).
250 */
251 for (int i = 0; i < inst->sources; i++) {
252 if (inst->src[i].file == FIXED_GRF) {
253 unsigned reg_nr = inst->src[i].nr;
254 if (reg_nr / reg_unit(devinfo) >= payload_node_count)
255 continue;
256
257 for (unsigned j = reg_nr / reg_unit(devinfo);
258 j < DIV_ROUND_UP(reg_nr + regs_read(inst, i),
259 reg_unit(devinfo));
260 j++) {
261 payload_last_use_ip[j] = use_ip;
262 assert(j < payload_node_count);
263 }
264 }
265 }
266
267 if (inst->dst.file == FIXED_GRF) {
268 unsigned reg_nr = inst->dst.nr;
269 if (reg_nr / reg_unit(devinfo) < payload_node_count) {
270 for (unsigned j = reg_nr / reg_unit(devinfo);
271 j < DIV_ROUND_UP(reg_nr + regs_written(inst),
272 reg_unit(devinfo));
273 j++) {
274 payload_last_use_ip[j] = use_ip;
275 assert(j < payload_node_count);
276 }
277 }
278 }
279
280 /* Special case instructions which have extra implied registers used. */
281 switch (inst->opcode) {
282 case ELK_CS_OPCODE_CS_TERMINATE:
283 payload_last_use_ip[0] = use_ip;
284 break;
285
286 default:
287 if (inst->eot) {
288 /* We could omit this for the !inst->header_present case, except
289 * that the simulator apparently incorrectly reads from g0/g1
290 * instead of sideband. It also really freaks out driver
291 * developers to see g0 used in unusual places, so just always
292 * reserve it.
293 */
294 payload_last_use_ip[0] = use_ip;
295 payload_last_use_ip[1] = use_ip;
296 }
297 break;
298 }
299
300 ip++;
301 }
302 }
303
304 class elk_fs_reg_alloc {
305 public:
elk_fs_reg_alloc(elk_fs_visitor * fs)306 elk_fs_reg_alloc(elk_fs_visitor *fs):
307 fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
308 live(fs->live_analysis.require()), g(NULL),
309 have_spill_costs(false)
310 {
311 mem_ctx = ralloc_context(NULL);
312
313 /* Stash the number of instructions so we can sanity check that our
314 * counts still match liveness.
315 */
316 live_instr_count = fs->cfg->last_block()->end_ip + 1;
317
318 spill_insts = _mesa_pointer_set_create(mem_ctx);
319
320 /* Most of this allocation was written for a reg_width of 1
321 * (dispatch_width == 8). In extending to SIMD16, the code was
322 * left in place and it was converted to have the hardware
323 * registers it's allocating be contiguous physical pairs of regs
324 * for reg_width == 2.
325 */
326 int reg_width = fs->dispatch_width / 8;
327 rsi = util_logbase2(reg_width);
328 payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
329
330 /* Get payload IP information */
331 payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
332
333 node_count = 0;
334 first_payload_node = 0;
335 first_mrf_hack_node = 0;
336 grf127_send_hack_node = 0;
337 first_vgrf_node = 0;
338 last_vgrf_node = 0;
339 first_spill_node = 0;
340
341 spill_vgrf_ip = NULL;
342 spill_vgrf_ip_alloc = 0;
343 spill_node_count = 0;
344 }
345
346 elk_fs_reg_alloc(const elk_fs_reg_alloc &) = delete;
347 elk_fs_reg_alloc & operator=(const elk_fs_reg_alloc &) = delete;
348
~elk_fs_reg_alloc()349 ~elk_fs_reg_alloc()
350 {
351 ralloc_free(mem_ctx);
352 }
353
354 bool assign_regs(bool allow_spilling, bool spill_all);
355
356 private:
357 void setup_live_interference(unsigned node,
358 int node_start_ip, int node_end_ip);
359 void setup_inst_interference(const elk_fs_inst *inst);
360
361 void build_interference_graph(bool allow_spilling);
362 void discard_interference_graph();
363
364 elk_fs_reg build_lane_offsets(const fs_builder &bld,
365 uint32_t spill_offset, int ip);
366 elk_fs_reg build_single_offset(const fs_builder &bld,
367 uint32_t spill_offset, int ip);
368
369 void emit_unspill(const fs_builder &bld, struct elk_shader_stats *stats,
370 elk_fs_reg dst, uint32_t spill_offset, unsigned count, int ip);
371 void emit_spill(const fs_builder &bld, struct elk_shader_stats *stats,
372 elk_fs_reg src, uint32_t spill_offset, unsigned count, int ip);
373
374 void set_spill_costs();
375 int choose_spill_reg();
376 elk_fs_reg alloc_spill_reg(unsigned size, int ip);
377 void spill_reg(unsigned spill_reg);
378
379 void *mem_ctx;
380 elk_fs_visitor *fs;
381 const intel_device_info *devinfo;
382 const elk_compiler *compiler;
383 const fs_live_variables &live;
384 int live_instr_count;
385
386 set *spill_insts;
387
388 /* Which compiler->fs_reg_sets[] to use */
389 int rsi;
390
391 ra_graph *g;
392 bool have_spill_costs;
393
394 int payload_node_count;
395 int *payload_last_use_ip;
396
397 int node_count;
398 int first_payload_node;
399 int first_mrf_hack_node;
400 int grf127_send_hack_node;
401 int first_vgrf_node;
402 int last_vgrf_node;
403 int first_spill_node;
404
405 int *spill_vgrf_ip;
406 int spill_vgrf_ip_alloc;
407 int spill_node_count;
408
409 elk_fs_reg scratch_header;
410 };
411
412 /**
413 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
414 *
415 * This is used in assign_regs() to decide which of the GRFs that we use as
416 * MRFs on gfx7 get normally register allocated, and in register spilling to
417 * see if we can actually use MRFs to do spills without overwriting normal MRF
418 * contents.
419 */
420 static void
get_used_mrfs(const elk_fs_visitor * v,bool * mrf_used)421 get_used_mrfs(const elk_fs_visitor *v, bool *mrf_used)
422 {
423 int reg_width = v->dispatch_width / 8;
424
425 memset(mrf_used, 0, ELK_MAX_MRF(v->devinfo->ver) * sizeof(bool));
426
427 foreach_block_and_inst(block, elk_fs_inst, inst, v->cfg) {
428 if (inst->dst.file == MRF) {
429 int reg = inst->dst.nr & ~ELK_MRF_COMPR4;
430 mrf_used[reg] = true;
431 if (reg_width == 2) {
432 if (inst->dst.nr & ELK_MRF_COMPR4) {
433 mrf_used[reg + 4] = true;
434 } else {
435 mrf_used[reg + 1] = true;
436 }
437 }
438 }
439
440 if (inst->mlen > 0) {
441 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
442 mrf_used[inst->base_mrf + i] = true;
443 }
444 }
445 }
446 }
447
448 namespace {
449 /**
450 * Maximum spill block size we expect to encounter in 32B units.
451 *
452 * This is somewhat arbitrary and doesn't necessarily limit the maximum
453 * variable size that can be spilled -- A higher value will allow a
454 * variable of a given size to be spilled more efficiently with a smaller
455 * number of scratch messages, but will increase the likelihood of a
456 * collision between the MRFs reserved for spilling and other MRFs used by
457 * the program (and possibly increase GRF register pressure on platforms
458 * without hardware MRFs), what could cause register allocation to fail.
459 *
460 * For the moment reserve just enough space so a register of 32 bit
461 * component type and natural region width can be spilled without splitting
462 * into multiple (force_writemask_all) scratch messages.
463 */
464 unsigned
spill_max_size(const elk_backend_shader * s)465 spill_max_size(const elk_backend_shader *s)
466 {
467 /* LSC is limited to SIMD16 sends */
468 assert(!s->devinfo->has_lsc);
469
470 /* FINISHME - On Gfx7+ it should be possible to avoid this limit
471 * altogether by spilling directly from the temporary GRF
472 * allocated to hold the result of the instruction (and the
473 * scratch write header).
474 */
475 /* FINISHME - The shader's dispatch width probably belongs in
476 * elk_backend_shader (or some nonexistent fs_shader class?)
477 * rather than in the visitor class.
478 */
479 return static_cast<const elk_fs_visitor *>(s)->dispatch_width / 8;
480 }
481
482 /**
483 * First MRF register available for spilling.
484 */
485 unsigned
spill_base_mrf(const elk_backend_shader * s)486 spill_base_mrf(const elk_backend_shader *s)
487 {
488 return ELK_MAX_MRF(s->devinfo->ver) - spill_max_size(s) - 1;
489 }
490 }
491
492 void
setup_live_interference(unsigned node,int node_start_ip,int node_end_ip)493 elk_fs_reg_alloc::setup_live_interference(unsigned node,
494 int node_start_ip, int node_end_ip)
495 {
496 /* Mark any virtual grf that is live between the start of the program and
497 * the last use of a payload node interfering with that payload node.
498 */
499 for (int i = 0; i < payload_node_count; i++) {
500 if (payload_last_use_ip[i] == -1)
501 continue;
502
503 /* Note that we use a <= comparison, unlike vgrfs_interfere(),
504 * in order to not have to worry about the uniform issue described in
505 * calculate_live_intervals().
506 */
507 if (node_start_ip <= payload_last_use_ip[i])
508 ra_add_node_interference(g, node, first_payload_node + i);
509 }
510
511 /* If we have the MRF hack enabled, mark this node as interfering with all
512 * MRF registers.
513 */
514 if (first_mrf_hack_node >= 0) {
515 for (int i = spill_base_mrf(fs); i < ELK_MAX_MRF(devinfo->ver); i++)
516 ra_add_node_interference(g, node, first_mrf_hack_node + i);
517 }
518
519 /* Add interference with every vgrf whose live range intersects this
520 * node's. We only need to look at nodes below this one as the reflexivity
521 * of interference will take care of the rest.
522 */
523 for (unsigned n2 = first_vgrf_node;
524 n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
525 unsigned vgrf = n2 - first_vgrf_node;
526 if (!(node_end_ip <= live.vgrf_start[vgrf] ||
527 live.vgrf_end[vgrf] <= node_start_ip))
528 ra_add_node_interference(g, node, n2);
529 }
530 }
531
532 void
setup_inst_interference(const elk_fs_inst * inst)533 elk_fs_reg_alloc::setup_inst_interference(const elk_fs_inst *inst)
534 {
535 /* Certain instructions can't safely use the same register for their
536 * sources and destination. Add interference.
537 */
538 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
539 for (unsigned i = 0; i < inst->sources; i++) {
540 if (inst->src[i].file == VGRF) {
541 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
542 first_vgrf_node + inst->src[i].nr);
543 }
544 }
545 }
546
547 /* A compressed instruction is actually two instructions executed
548 * simultaneously. On most platforms, it ok to have the source and
549 * destination registers be the same. In this case, each instruction
550 * over-writes its own source and there's no problem. The real problem
551 * here is if the source and destination registers are off by one. Then
552 * you can end up in a scenario where the first instruction over-writes the
553 * source of the second instruction. Since the compiler doesn't know about
554 * this level of granularity, we simply make the source and destination
555 * interfere.
556 */
557 if (inst->dst.component_size(inst->exec_size) > REG_SIZE &&
558 inst->dst.file == VGRF) {
559 for (int i = 0; i < inst->sources; ++i) {
560 if (inst->src[i].file == VGRF) {
561 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
562 first_vgrf_node + inst->src[i].nr);
563 }
564 }
565 }
566
567 if (grf127_send_hack_node >= 0) {
568 /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
569 * subsection "EUISA Instructions", Send Message (page 990):
570 *
571 * "r127 must not be used for return address when there is a src and
572 * dest overlap in send instruction."
573 *
574 * We are avoiding using grf127 as part of the destination of send
575 * messages adding a node interference to the grf127_send_hack_node.
576 * This node has a fixed assignment to grf127.
577 *
578 * We don't apply it to SIMD16 instructions because previous code avoids
579 * any register overlap between sources and destination.
580 */
581 if (inst->exec_size < 16 && inst->is_send_from_grf() &&
582 inst->dst.file == VGRF)
583 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
584 grf127_send_hack_node);
585
586 /* Spilling instruction are generated as SEND messages from MRF but as
587 * Gfx7+ supports sending from GRF the driver will maps assingn these
588 * MRF registers to a GRF. Implementations reuses the dest of the send
589 * message as source. So as we will have an overlap for sure, we create
590 * an interference between destination and grf127.
591 */
592 if ((inst->opcode == ELK_SHADER_OPCODE_GFX7_SCRATCH_READ ||
593 inst->opcode == ELK_SHADER_OPCODE_GFX4_SCRATCH_READ) &&
594 inst->dst.file == VGRF)
595 ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
596 grf127_send_hack_node);
597 }
598
599 /* When we do send-from-GRF for FB writes, we need to ensure that the last
600 * write instruction sends from a high register. This is because the
601 * vertex fetcher wants to start filling the low payload registers while
602 * the pixel data port is still working on writing out the memory. If we
603 * don't do this, we get rendering artifacts.
604 *
605 * We could just do "something high". Instead, we just pick the highest
606 * register that works.
607 */
608 if (inst->eot) {
609 const int vgrf = inst->opcode == ELK_SHADER_OPCODE_SEND ?
610 inst->src[1].nr : inst->src[0].nr;
611 const int size = DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
612 int reg = ELK_MAX_GRF - size;
613
614 if (first_mrf_hack_node >= 0) {
615 /* If something happened to spill, we want to push the EOT send
616 * register early enough in the register file that we don't
617 * conflict with any used MRF hack registers.
618 */
619 reg -= ELK_MAX_MRF(devinfo->ver) - spill_base_mrf(fs);
620 } else if (grf127_send_hack_node >= 0) {
621 /* Avoid r127 which might be unusable if the node was previously
622 * written by a SIMD8 SEND message with source/destination overlap.
623 */
624 reg--;
625 }
626
627 ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
628 }
629 }
630
631 void
build_interference_graph(bool allow_spilling)632 elk_fs_reg_alloc::build_interference_graph(bool allow_spilling)
633 {
634 /* Compute the RA node layout */
635 node_count = 0;
636 first_payload_node = node_count;
637 node_count += payload_node_count;
638 if (devinfo->ver >= 7 && allow_spilling) {
639 first_mrf_hack_node = node_count;
640 node_count += ELK_MAX_GRF - GFX7_MRF_HACK_START;
641 } else {
642 first_mrf_hack_node = -1;
643 }
644 if (devinfo->ver >= 8) {
645 grf127_send_hack_node = node_count;
646 node_count ++;
647 } else {
648 grf127_send_hack_node = -1;
649 }
650 first_vgrf_node = node_count;
651 node_count += fs->alloc.count;
652 last_vgrf_node = node_count - 1;
653 first_spill_node = node_count;
654
655 fs->calculate_payload_ranges(payload_node_count,
656 payload_last_use_ip);
657
658 assert(g == NULL);
659 g = ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
660 ralloc_steal(mem_ctx, g);
661
662 /* Set up the payload nodes */
663 for (int i = 0; i < payload_node_count; i++)
664 ra_set_node_reg(g, first_payload_node + i, i);
665
666 if (first_mrf_hack_node >= 0) {
667 /* Mark each MRF reg node as being allocated to its physical
668 * register.
669 *
670 * The alternative would be to have per-physical-register classes,
671 * which would just be silly.
672 */
673 for (int i = 0; i < ELK_MAX_MRF(devinfo->ver); i++) {
674 ra_set_node_reg(g, first_mrf_hack_node + i,
675 GFX7_MRF_HACK_START + i);
676 }
677 }
678
679 if (grf127_send_hack_node >= 0)
680 ra_set_node_reg(g, grf127_send_hack_node, 127);
681
682 /* Specify the classes of each virtual register. */
683 for (unsigned i = 0; i < fs->alloc.count; i++) {
684 unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo));
685
686 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
687 "Register allocation relies on split_virtual_grfs()");
688
689 ra_set_node_class(g, first_vgrf_node + i,
690 compiler->fs_reg_sets[rsi].classes[size - 1]);
691 }
692
693 /* Special case: on pre-Gfx7 hardware that supports PLN, the second operand
694 * of a PLN instruction needs to be an even-numbered register, so we have a
695 * special register class aligned_bary_class to handle this case.
696 */
697 if (compiler->fs_reg_sets[rsi].aligned_bary_class) {
698 foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg) {
699 if (inst->opcode == ELK_FS_OPCODE_LINTERP && inst->src[0].file == VGRF &&
700 fs->alloc.sizes[inst->src[0].nr] ==
701 aligned_bary_size(fs->dispatch_width)) {
702 ra_set_node_class(g, first_vgrf_node + inst->src[0].nr,
703 compiler->fs_reg_sets[rsi].aligned_bary_class);
704 }
705 }
706 }
707
708 /* Add interference based on the live range of the register */
709 for (unsigned i = 0; i < fs->alloc.count; i++) {
710 setup_live_interference(first_vgrf_node + i,
711 live.vgrf_start[i],
712 live.vgrf_end[i]);
713 }
714
715 /* Add interference based on the instructions in which a register is used.
716 */
717 foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg)
718 setup_inst_interference(inst);
719 }
720
721 void
discard_interference_graph()722 elk_fs_reg_alloc::discard_interference_graph()
723 {
724 ralloc_free(g);
725 g = NULL;
726 have_spill_costs = false;
727 }
728
729 elk_fs_reg
build_single_offset(const fs_builder & bld,uint32_t spill_offset,int ip)730 elk_fs_reg_alloc::build_single_offset(const fs_builder &bld, uint32_t spill_offset, int ip)
731 {
732 elk_fs_reg offset = retype(alloc_spill_reg(1, ip), ELK_REGISTER_TYPE_UD);
733 elk_fs_inst *inst = bld.MOV(offset, elk_imm_ud(spill_offset));
734 _mesa_set_add(spill_insts, inst);
735 return offset;
736 }
737
738 elk_fs_reg
build_lane_offsets(const fs_builder & bld,uint32_t spill_offset,int ip)739 elk_fs_reg_alloc::build_lane_offsets(const fs_builder &bld, uint32_t spill_offset, int ip)
740 {
741 /* LSC messages are limited to SIMD16 */
742 assert(bld.dispatch_width() <= 16);
743
744 const fs_builder ubld = bld.exec_all();
745 const unsigned reg_count = ubld.dispatch_width() / 8;
746
747 elk_fs_reg offset = retype(alloc_spill_reg(reg_count, ip), ELK_REGISTER_TYPE_UD);
748 elk_fs_inst *inst;
749
750 /* Build an offset per lane in SIMD8 */
751 inst = ubld.group(8, 0).MOV(retype(offset, ELK_REGISTER_TYPE_UW),
752 elk_imm_uv(0x76543210));
753 _mesa_set_add(spill_insts, inst);
754 inst = ubld.group(8, 0).MOV(offset, retype(offset, ELK_REGISTER_TYPE_UW));
755 _mesa_set_add(spill_insts, inst);
756
757 /* Build offsets in the upper 8 lanes of SIMD16 */
758 if (ubld.dispatch_width() > 8) {
759 inst = ubld.group(8, 0).ADD(
760 byte_offset(offset, REG_SIZE),
761 byte_offset(offset, 0),
762 elk_imm_ud(8));
763 _mesa_set_add(spill_insts, inst);
764 }
765
766 /* Make the offset a dword */
767 inst = ubld.SHL(offset, offset, elk_imm_ud(2));
768 _mesa_set_add(spill_insts, inst);
769
770 /* Add the base offset */
771 inst = ubld.ADD(offset, offset, elk_imm_ud(spill_offset));
772 _mesa_set_add(spill_insts, inst);
773
774 return offset;
775 }
776
777 void
emit_unspill(const fs_builder & bld,struct elk_shader_stats * stats,elk_fs_reg dst,uint32_t spill_offset,unsigned count,int ip)778 elk_fs_reg_alloc::emit_unspill(const fs_builder &bld,
779 struct elk_shader_stats *stats,
780 elk_fs_reg dst,
781 uint32_t spill_offset, unsigned count, int ip)
782 {
783 const intel_device_info *devinfo = bld.shader->devinfo;
784 const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
785 REG_SIZE;
786 assert(count % reg_size == 0);
787
788 for (unsigned i = 0; i < count / reg_size; i++) {
789 ++stats->fill_count;
790
791 elk_fs_inst *unspill_inst;
792 if (devinfo->ver >= 7 && spill_offset < (1 << 12) * REG_SIZE) {
793 /* The Gfx7 descriptor-based offset is 12 bits of HWORD units.
794 * Because the Gfx7-style scratch block read is hardwired to BTI 255,
795 * on Gfx9+ it would cause the DC to do an IA-coherent read, what
796 * largely outweighs the slight advantage from not having to provide
797 * the address as part of the message header, so we're better off
798 * using plain old oword block reads.
799 */
800 unspill_inst = bld.emit(ELK_SHADER_OPCODE_GFX7_SCRATCH_READ, dst);
801 unspill_inst->offset = spill_offset;
802 } else {
803 unspill_inst = bld.emit(ELK_SHADER_OPCODE_GFX4_SCRATCH_READ, dst);
804 unspill_inst->offset = spill_offset;
805 unspill_inst->base_mrf = spill_base_mrf(bld.shader);
806 unspill_inst->mlen = 1; /* header contains offset */
807 }
808 _mesa_set_add(spill_insts, unspill_inst);
809
810 dst.offset += reg_size * REG_SIZE;
811 spill_offset += reg_size * REG_SIZE;
812 }
813 }
814
815 void
emit_spill(const fs_builder & bld,struct elk_shader_stats * stats,elk_fs_reg src,uint32_t spill_offset,unsigned count,int ip)816 elk_fs_reg_alloc::emit_spill(const fs_builder &bld,
817 struct elk_shader_stats *stats,
818 elk_fs_reg src,
819 uint32_t spill_offset, unsigned count, int ip)
820 {
821 const unsigned reg_size = src.component_size(bld.dispatch_width()) /
822 REG_SIZE;
823 assert(count % reg_size == 0);
824
825 for (unsigned i = 0; i < count / reg_size; i++) {
826 ++stats->spill_count;
827
828 elk_fs_inst *spill_inst = bld.emit(ELK_SHADER_OPCODE_GFX4_SCRATCH_WRITE,
829 bld.null_reg_f(), src);
830 spill_inst->offset = spill_offset;
831 spill_inst->mlen = 1 + reg_size; /* header, value */
832 spill_inst->base_mrf = spill_base_mrf(bld.shader);
833 _mesa_set_add(spill_insts, spill_inst);
834
835 src.offset += reg_size * REG_SIZE;
836 spill_offset += reg_size * REG_SIZE;
837 }
838 }
839
840 void
set_spill_costs()841 elk_fs_reg_alloc::set_spill_costs()
842 {
843 float block_scale = 1.0;
844 float *spill_costs = rzalloc_array(NULL, float, fs->alloc.count);
845
846 /* Calculate costs for spilling nodes. Call it a cost of 1 per
847 * spill/unspill we'll have to do, and guess that the insides of
848 * loops run 10 times.
849 */
850 foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg) {
851 for (unsigned int i = 0; i < inst->sources; i++) {
852 if (inst->src[i].file == VGRF)
853 spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
854 }
855
856 if (inst->dst.file == VGRF)
857 spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
858
859 /* Don't spill anything we generated while spilling */
860 if (_mesa_set_search(spill_insts, inst)) {
861 for (unsigned int i = 0; i < inst->sources; i++) {
862 if (inst->src[i].file == VGRF)
863 spill_costs[inst->src[i].nr] = INFINITY;
864 }
865 if (inst->dst.file == VGRF)
866 spill_costs[inst->dst.nr] = INFINITY;
867 }
868
869 switch (inst->opcode) {
870
871 case ELK_OPCODE_DO:
872 block_scale *= 10;
873 break;
874
875 case ELK_OPCODE_WHILE:
876 block_scale /= 10;
877 break;
878
879 case ELK_OPCODE_IF:
880 case ELK_OPCODE_IFF:
881 block_scale *= 0.5;
882 break;
883
884 case ELK_OPCODE_ENDIF:
885 block_scale /= 0.5;
886 break;
887
888 default:
889 break;
890 }
891 }
892
893 for (unsigned i = 0; i < fs->alloc.count; i++) {
894 /* Do the no_spill check first. Registers that are used as spill
895 * temporaries may have been allocated after we calculated liveness so
896 * we shouldn't look their liveness up. Fortunately, they're always
897 * used in SCRATCH_READ/WRITE instructions so they'll always be flagged
898 * no_spill.
899 */
900 if (isinf(spill_costs[i]))
901 continue;
902
903 int live_length = live.vgrf_end[i] - live.vgrf_start[i];
904 if (live_length <= 0)
905 continue;
906
907 /* Divide the cost (in number of spills/fills) by the log of the length
908 * of the live range of the register. This will encourage spill logic
909 * to spill long-living things before spilling short-lived things where
910 * spilling is less likely to actually do us any good. We use the log
911 * of the length because it will fall off very quickly and not cause us
912 * to spill medium length registers with more uses.
913 */
914 float adjusted_cost = spill_costs[i] / logf(live_length);
915 ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
916 }
917
918 have_spill_costs = true;
919
920 ralloc_free(spill_costs);
921 }
922
923 int
choose_spill_reg()924 elk_fs_reg_alloc::choose_spill_reg()
925 {
926 if (!have_spill_costs)
927 set_spill_costs();
928
929 int node = ra_get_best_spill_node(g);
930 if (node < 0)
931 return -1;
932
933 assert(node >= first_vgrf_node);
934 return node - first_vgrf_node;
935 }
936
937 elk_fs_reg
alloc_spill_reg(unsigned size,int ip)938 elk_fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
939 {
940 int vgrf = fs->alloc.allocate(ALIGN(size, reg_unit(devinfo)));
941 int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1;
942 int n = ra_add_node(g, compiler->fs_reg_sets[rsi].classes[class_idx]);
943 assert(n == first_vgrf_node + vgrf);
944 assert(n == first_spill_node + spill_node_count);
945
946 setup_live_interference(n, ip - 1, ip + 1);
947
948 /* Add interference between this spill node and any other spill nodes for
949 * the same instruction.
950 */
951 for (int s = 0; s < spill_node_count; s++) {
952 if (spill_vgrf_ip[s] == ip)
953 ra_add_node_interference(g, n, first_spill_node + s);
954 }
955
956 /* Add this spill node to the list for next time */
957 if (spill_node_count >= spill_vgrf_ip_alloc) {
958 if (spill_vgrf_ip_alloc == 0)
959 spill_vgrf_ip_alloc = 16;
960 else
961 spill_vgrf_ip_alloc *= 2;
962 spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
963 spill_vgrf_ip_alloc);
964 }
965 spill_vgrf_ip[spill_node_count++] = ip;
966
967 return elk_fs_reg(VGRF, vgrf);
968 }
969
970 void
spill_reg(unsigned spill_reg)971 elk_fs_reg_alloc::spill_reg(unsigned spill_reg)
972 {
973 int size = fs->alloc.sizes[spill_reg];
974 unsigned int spill_offset = fs->last_scratch;
975 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
976
977 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
978 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
979 * up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
980 * m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
981 * depth), starting from m1. In summary: We may not be able to spill in
982 * SIMD16 mode, because we'd stomp the FB writes.
983 */
984 if (!fs->spilled_any_registers) {
985 bool mrf_used[ELK_MAX_MRF_ALL];
986 assert(ARRAY_SIZE(mrf_used) >= ELK_MAX_MRF(devinfo->ver));
987 get_used_mrfs(fs, mrf_used);
988
989 for (int i = spill_base_mrf(fs); i < ELK_MAX_MRF(devinfo->ver); i++) {
990 if (mrf_used[i]) {
991 fs->fail("Register spilling not supported with m%d used", i);
992 return;
993 }
994 }
995
996 fs->spilled_any_registers = true;
997 }
998
999 fs->last_scratch += size * REG_SIZE;
1000
1001 /* We're about to replace all uses of this register. It no longer
1002 * conflicts with anything so we can get rid of its interference.
1003 */
1004 ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
1005 ra_reset_node_interference(g, first_vgrf_node + spill_reg);
1006
1007 /* Generate spill/unspill instructions for the objects being
1008 * spilled. Right now, we spill or unspill the whole thing to a
1009 * virtual grf of the same size. For most instructions, though, we
1010 * could just spill/unspill the GRF being accessed.
1011 */
1012 int ip = 0;
1013 foreach_block_and_inst (block, elk_fs_inst, inst, fs->cfg) {
1014 const fs_builder ibld = fs_builder(fs, block, inst);
1015 exec_node *before = inst->prev;
1016 exec_node *after = inst->next;
1017
1018 for (unsigned int i = 0; i < inst->sources; i++) {
1019 if (inst->src[i].file == VGRF &&
1020 inst->src[i].nr == spill_reg) {
1021 int count = regs_read(inst, i);
1022 int subset_spill_offset = spill_offset +
1023 ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
1024 elk_fs_reg unspill_dst = alloc_spill_reg(count, ip);
1025
1026 inst->src[i].nr = unspill_dst.nr;
1027 inst->src[i].offset %= REG_SIZE;
1028
1029 /* We read the largest power-of-two divisor of the register count
1030 * (because only POT scratch read blocks are allowed by the
1031 * hardware) up to the maximum supported block size.
1032 */
1033 const unsigned width =
1034 MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1035
1036 /* Set exec_all() on unspill messages under the (rather
1037 * pessimistic) assumption that there is no one-to-one
1038 * correspondence between channels of the spilled variable in
1039 * scratch space and the scratch read message, which operates on
1040 * 32 bit channels. It shouldn't hurt in any case because the
1041 * unspill destination is a block-local temporary.
1042 */
1043 emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats,
1044 unspill_dst, subset_spill_offset, count, ip);
1045 }
1046 }
1047
1048 if (inst->dst.file == VGRF &&
1049 inst->dst.nr == spill_reg &&
1050 inst->opcode != ELK_SHADER_OPCODE_UNDEF) {
1051 int subset_spill_offset = spill_offset +
1052 ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
1053 elk_fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
1054
1055 inst->dst.nr = spill_src.nr;
1056 inst->dst.offset %= REG_SIZE;
1057
1058 /* If we're immediately spilling the register, we should not use
1059 * destination dependency hints. Doing so will cause the GPU do
1060 * try to read and write the register at the same time and may
1061 * hang the GPU.
1062 */
1063 inst->no_dd_clear = false;
1064 inst->no_dd_check = false;
1065
1066 /* Calculate the execution width of the scratch messages (which work
1067 * in terms of 32 bit components so we have a fixed number of eight
1068 * channels per spilled register). We attempt to write one
1069 * exec_size-wide component of the variable at a time without
1070 * exceeding the maximum number of (fake) MRF registers reserved for
1071 * spills.
1072 */
1073 const unsigned width = 8 * reg_unit(devinfo) *
1074 DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size),
1075 spill_max_size(fs) * REG_SIZE),
1076 reg_unit(devinfo) * REG_SIZE);
1077
1078 /* Spills should only write data initialized by the instruction for
1079 * whichever channels are enabled in the execution mask. If that's
1080 * not possible we'll have to emit a matching unspill before the
1081 * instruction and set force_writemask_all on the spill.
1082 */
1083 const bool per_channel =
1084 inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
1085 inst->exec_size == width;
1086
1087 /* Builder used to emit the scratch messages. */
1088 const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1089
1090 /* If our write is going to affect just part of the
1091 * regs_written(inst), then we need to unspill the destination since
1092 * we write back out all of the regs_written(). If the original
1093 * instruction had force_writemask_all set and is not a partial
1094 * write, there should be no need for the unspill since the
1095 * instruction will be overwriting the whole destination in any case.
1096 */
1097 if (inst->is_partial_write() ||
1098 (!inst->force_writemask_all && !per_channel))
1099 emit_unspill(ubld, &fs->shader_stats, spill_src,
1100 subset_spill_offset, regs_written(inst), ip);
1101
1102 emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src,
1103 subset_spill_offset, regs_written(inst), ip);
1104 }
1105
1106 for (elk_fs_inst *inst = (elk_fs_inst *)before->next;
1107 inst != after; inst = (elk_fs_inst *)inst->next)
1108 setup_inst_interference(inst);
1109
1110 /* We don't advance the ip for scratch read/write instructions
1111 * because we consider them to have the same ip as instruction we're
1112 * spilling around for the purposes of interference. Also, we're
1113 * inserting spill instructions without re-running liveness analysis
1114 * and we don't want to mess up our IPs.
1115 */
1116 if (!_mesa_set_search(spill_insts, inst))
1117 ip++;
1118 }
1119
1120 assert(ip == live_instr_count);
1121 }
1122
1123 bool
assign_regs(bool allow_spilling,bool spill_all)1124 elk_fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1125 {
1126 build_interference_graph(fs->spilled_any_registers || spill_all);
1127
1128 unsigned spilled = 0;
1129 while (1) {
1130 /* Debug of register spilling: Go spill everything. */
1131 if (unlikely(spill_all)) {
1132 int reg = choose_spill_reg();
1133 if (reg != -1) {
1134 spill_reg(reg);
1135 continue;
1136 }
1137 }
1138
1139 if (ra_allocate(g))
1140 break;
1141
1142 if (!allow_spilling)
1143 return false;
1144
1145 /* Failed to allocate registers. Spill some regs, and the caller will
1146 * loop back into here to try again.
1147 */
1148 unsigned nr_spills = 1;
1149 if (compiler->spilling_rate)
1150 nr_spills = MAX2(1, spilled / compiler->spilling_rate);
1151
1152 for (unsigned j = 0; j < nr_spills; j++) {
1153 int reg = choose_spill_reg();
1154 if (reg == -1) {
1155 if (j == 0)
1156 return false; /* Nothing to spill */
1157 break;
1158 }
1159
1160 /* If we're going to spill but we've never spilled before, we need
1161 * to re-build the interference graph with MRFs enabled to allow
1162 * spilling.
1163 */
1164 if (!fs->spilled_any_registers) {
1165 discard_interference_graph();
1166 build_interference_graph(true);
1167 }
1168
1169 spill_reg(reg);
1170 spilled++;
1171 }
1172 }
1173
1174 if (spilled)
1175 fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
1176
1177 /* Get the chosen virtual registers for each node, and map virtual
1178 * regs in the register classes back down to real hardware reg
1179 * numbers.
1180 */
1181 unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, fs->alloc.count);
1182 fs->grf_used = fs->first_non_payload_grf;
1183 for (unsigned i = 0; i < fs->alloc.count; i++) {
1184 int reg = ra_get_node_reg(g, first_vgrf_node + i);
1185
1186 hw_reg_mapping[i] = reg;
1187 fs->grf_used = MAX2(fs->grf_used,
1188 hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i],
1189 reg_unit(devinfo)));
1190 }
1191
1192 foreach_block_and_inst(block, elk_fs_inst, inst, fs->cfg) {
1193 assign_reg(devinfo, hw_reg_mapping, &inst->dst);
1194 for (int i = 0; i < inst->sources; i++) {
1195 assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
1196 }
1197 }
1198
1199 fs->alloc.count = fs->grf_used;
1200
1201 ralloc_free(hw_reg_mapping);
1202
1203 return true;
1204 }
1205
1206 bool
assign_regs(bool allow_spilling,bool spill_all)1207 elk_fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
1208 {
1209 elk_fs_reg_alloc alloc(this);
1210 bool success = alloc.assign_regs(allow_spilling, spill_all);
1211 if (!success && allow_spilling) {
1212 fail("no register to spill:\n");
1213 dump_instructions(NULL);
1214 }
1215 return success;
1216 }
1217