1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23 #ifndef VK_UTIL_H
24 #define VK_UTIL_H
25
26 #include "compiler/shader_enums.h"
27 #include "util/bitscan.h"
28 #include "util/macros.h"
29 #include "c99_compat.h"
30
31 #include <stdlib.h>
32 #include <string.h>
33
34 #include "vk_struct_type_cast.h"
35
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39
40 /* common inlines and macros for vulkan drivers */
41
42 #include <vulkan/vulkan_core.h>
43
44 struct vk_pnext_iterator {
45 VkBaseOutStructure *pos;
46 #ifndef NDEBUG
47 VkBaseOutStructure *half_pos;
48 unsigned idx;
49 #endif
50 bool done;
51 };
52
53 static inline struct vk_pnext_iterator
vk_pnext_iterator_init(void * start)54 vk_pnext_iterator_init(void *start)
55 {
56 struct vk_pnext_iterator iter;
57
58 iter.pos = (VkBaseOutStructure *)start;
59 #ifndef NDEBUG
60 iter.half_pos = (VkBaseOutStructure *)start;
61 iter.idx = 0;
62 #endif
63 iter.done = false;
64
65 return iter;
66 }
67
68 static inline struct vk_pnext_iterator
vk_pnext_iterator_init_const(const void * start)69 vk_pnext_iterator_init_const(const void *start)
70 {
71 return vk_pnext_iterator_init((void *)start);
72 }
73
74 static inline VkBaseOutStructure *
vk_pnext_iterator_next(struct vk_pnext_iterator * iter)75 vk_pnext_iterator_next(struct vk_pnext_iterator *iter)
76 {
77 iter->pos = iter->pos->pNext;
78
79 #ifndef NDEBUG
80 if (iter->idx++ & 1) {
81 /** This the "tortoise and the hare" algorithm. We increment
82 * chaser->pNext every other time *iter gets incremented. Because *iter
83 * is incrementing twice as fast as chaser->pNext, the distance between
84 * them in the list increases by one for each time we get here. If we
85 * have a loop, eventually, both iterators will be inside the loop and
86 * this distance will be an integer multiple of the loop length, at
87 * which point the two pointers will be equal.
88 */
89 iter->half_pos = iter->half_pos->pNext;
90 if (iter->half_pos == iter->pos)
91 assert(!"Vulkan input pNext chain has a loop!");
92 }
93 #endif
94
95 return iter->pos;
96 }
97
98 /* Because the outer loop only executes once, independently of what happens in
99 * the inner loop, breaks and continues should work exactly the same as if
100 * there were only one for loop.
101 */
102 #define vk_foreach_struct(__e, __start) \
103 for (struct vk_pnext_iterator __iter = vk_pnext_iterator_init(__start); \
104 !__iter.done; __iter.done = true) \
105 for (VkBaseOutStructure *__e = __iter.pos; \
106 __e; __e = vk_pnext_iterator_next(&__iter))
107
108 #define vk_foreach_struct_const(__e, __start) \
109 for (struct vk_pnext_iterator __iter = \
110 vk_pnext_iterator_init_const(__start); \
111 !__iter.done; __iter.done = true) \
112 for (const VkBaseInStructure *__e = (VkBaseInStructure *)__iter.pos; \
113 __e; __e = (VkBaseInStructure *)vk_pnext_iterator_next(&__iter))
114
115 /**
116 * A wrapper for a Vulkan output array. A Vulkan output array is one that
117 * follows the convention of the parameters to
118 * vkGetPhysicalDeviceQueueFamilyProperties().
119 *
120 * Example Usage:
121 *
122 * VkResult
123 * vkGetPhysicalDeviceQueueFamilyProperties(
124 * VkPhysicalDevice physicalDevice,
125 * uint32_t* pQueueFamilyPropertyCount,
126 * VkQueueFamilyProperties* pQueueFamilyProperties)
127 * {
128 * VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties, props,
129 * pQueueFamilyProperties,
130 * pQueueFamilyPropertyCount);
131 *
132 * vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) {
133 * p->queueFlags = ...;
134 * p->queueCount = ...;
135 * }
136 *
137 * vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) {
138 * p->queueFlags = ...;
139 * p->queueCount = ...;
140 * }
141 *
142 * return vk_outarray_status(&props);
143 * }
144 */
145 struct __vk_outarray {
146 /** May be null. */
147 void *data;
148
149 /**
150 * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
151 * data is null.
152 */
153 uint32_t cap;
154
155 /**
156 * Count of elements successfully written to the array. Every write is
157 * considered successful if data is null.
158 */
159 uint32_t *filled_len;
160
161 /**
162 * Count of elements that would have been written to the array if its
163 * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
164 * when `*filled_len < wanted_len`.
165 */
166 uint32_t wanted_len;
167 };
168
169 static inline void
__vk_outarray_init(struct __vk_outarray * a,void * data,uint32_t * restrict len)170 __vk_outarray_init(struct __vk_outarray *a,
171 void *data, uint32_t *restrict len)
172 {
173 a->data = data;
174 a->cap = *len;
175 a->filled_len = len;
176 *a->filled_len = 0;
177 a->wanted_len = 0;
178
179 if (a->data == NULL)
180 a->cap = UINT32_MAX;
181 }
182
183 static inline VkResult
__vk_outarray_status(const struct __vk_outarray * a)184 __vk_outarray_status(const struct __vk_outarray *a)
185 {
186 if (*a->filled_len < a->wanted_len)
187 return VK_INCOMPLETE;
188 else
189 return VK_SUCCESS;
190 }
191
192 static inline void *
__vk_outarray_next(struct __vk_outarray * a,size_t elem_size)193 __vk_outarray_next(struct __vk_outarray *a, size_t elem_size)
194 {
195 void *p = NULL;
196
197 a->wanted_len += 1;
198
199 if (*a->filled_len >= a->cap)
200 return NULL;
201
202 if (a->data != NULL)
203 p = (uint8_t *)a->data + (*a->filled_len) * elem_size;
204
205 *a->filled_len += 1;
206
207 return p;
208 }
209
210 #define vk_outarray(elem_t) \
211 struct { \
212 struct __vk_outarray base; \
213 elem_t meta[]; \
214 }
215
216 #define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
217 #define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
218
219 #define vk_outarray_init(a, data, len) \
220 __vk_outarray_init(&(a)->base, (data), (len))
221
222 #define VK_OUTARRAY_MAKE_TYPED(type, name, data, len) \
223 vk_outarray(type) name; \
224 vk_outarray_init(&name, (data), (len))
225
226 #define vk_outarray_status(a) \
227 __vk_outarray_status(&(a)->base)
228
229 #define vk_outarray_next(a) \
230 vk_outarray_next_typed(vk_outarray_typeof_elem(a), a)
231 #define vk_outarray_next_typed(type, a) \
232 ((type *) \
233 __vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a)))
234
235 /**
236 * Append to a Vulkan output array.
237 *
238 * This is a block-based macro. For example:
239 *
240 * vk_outarray_append_typed(T, &a, elem) {
241 * elem->foo = ...;
242 * elem->bar = ...;
243 * }
244 *
245 * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
246 * VK_OUTARRAY_MAKE_TYPED(). The variable `elem` is block-scoped and has type
247 * `elem_t *`.
248 *
249 * The macro unconditionally increments the array's `wanted_len`. If the array
250 * is not full, then the macro also increment its `filled_len` and then
251 * executes the block. When the block is executed, `elem` is non-null and
252 * points to the newly appended element.
253 */
254 #define vk_outarray_append_typed(type, a, elem) \
255 for (type *elem = vk_outarray_next_typed(type, a); \
256 elem != NULL; elem = NULL)
257
258 static inline void *
__vk_find_struct(void * start,VkStructureType sType)259 __vk_find_struct(void *start, VkStructureType sType)
260 {
261 vk_foreach_struct(s, start) {
262 if (s->sType == sType)
263 return s;
264 }
265
266 return NULL;
267 }
268
269 #define vk_find_struct(__start, __sType) \
270 (VK_STRUCTURE_TYPE_##__sType##_cast *)__vk_find_struct( \
271 (__start), VK_STRUCTURE_TYPE_##__sType)
272
273 #define vk_find_struct_const(__start, __sType) \
274 (const VK_STRUCTURE_TYPE_##__sType##_cast *)__vk_find_struct( \
275 (void *)(__start), VK_STRUCTURE_TYPE_##__sType)
276
277 static inline void
__vk_append_struct(void * start,void * element)278 __vk_append_struct(void *start, void *element)
279 {
280 vk_foreach_struct(s, start) {
281 if (s->pNext)
282 continue;
283
284 s->pNext = (struct VkBaseOutStructure *) element;
285 break;
286 }
287 }
288
289 uint32_t vk_get_driver_version(void);
290
291 uint32_t vk_get_version_override(void);
292
293 void vk_warn_non_conformant_implementation(const char *driver_name);
294
295 struct vk_pipeline_cache_header {
296 uint32_t header_size;
297 uint32_t header_version;
298 uint32_t vendor_id;
299 uint32_t device_id;
300 uint8_t uuid[VK_UUID_SIZE];
301 };
302
303 #define VK_EXT_OFFSET (1000000000UL)
304 #define VK_ENUM_EXTENSION(__enum) \
305 ((__enum) >= VK_EXT_OFFSET ? ((((__enum) - VK_EXT_OFFSET) / 1000UL) + 1) : 0)
306 #define VK_ENUM_OFFSET(__enum) \
307 ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
308
309 #define typed_memcpy(dest, src, count) do { \
310 STATIC_ASSERT(sizeof(*(src)) == sizeof(*(dest))); \
311 if ((dest) != NULL && (src) != NULL && (count) > 0) { \
312 memcpy((dest), (src), (count) * sizeof(*(src))); \
313 } \
314 } while (0)
315
316 static inline gl_shader_stage
vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)317 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
318 {
319 assert(util_bitcount((uint32_t) vk_stage) == 1);
320 return (gl_shader_stage) (ffs((uint32_t) vk_stage) - 1);
321 }
322
323 static inline VkShaderStageFlagBits
mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)324 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
325 {
326 return (VkShaderStageFlagBits) (1 << ((uint32_t) mesa_stage));
327 }
328
329 /* iterate over a sequence of indexed multidraws for VK_EXT_multi_draw extension */
330 /* 'i' must be explicitly declared */
331 #define vk_foreach_multi_draw_indexed(_draw, _i, _pDrawInfo, _num_draws, _stride) \
332 for (const VkMultiDrawIndexedInfoEXT *_draw = (const VkMultiDrawIndexedInfoEXT*)(_pDrawInfo); \
333 (_i) < (_num_draws); \
334 (_i)++, (_draw) = (const VkMultiDrawIndexedInfoEXT*)((const uint8_t*)(_draw) + (_stride)))
335
336 /* iterate over a sequence of multidraws for VK_EXT_multi_draw extension */
337 /* 'i' must be explicitly declared */
338 #define vk_foreach_multi_draw(_draw, _i, _pDrawInfo, _num_draws, _stride) \
339 for (const VkMultiDrawInfoEXT *_draw = (const VkMultiDrawInfoEXT*)(_pDrawInfo); \
340 (_i) < (_num_draws); \
341 (_i)++, (_draw) = (const VkMultiDrawInfoEXT*)((const uint8_t*)(_draw) + (_stride)))
342
343
344 struct nir_spirv_specialization;
345
346 struct nir_spirv_specialization*
347 vk_spec_info_to_nir_spirv(const VkSpecializationInfo *spec_info,
348 uint32_t *out_num_spec_entries);
349
350 #define STACK_ARRAY_SIZE 8
351
352 /* Sometimes gcc may claim -Wmaybe-uninitialized for the stack array in some
353 * places it can't verify that when size is 0 nobody down the call chain reads
354 * the array. Please don't try to fix it by zero-initializing the array here
355 * since it's used in a lot of different places. An "if (size == 0) return;"
356 * may work for you.
357 */
358 #define STACK_ARRAY(type, name, size) \
359 type _stack_##name[STACK_ARRAY_SIZE]; \
360 type *const name = \
361 ((size) <= STACK_ARRAY_SIZE ? _stack_##name : (type *)malloc((size) * sizeof(type)))
362
363 #define STACK_ARRAY_FINISH(name) \
364 if (name != _stack_##name) free(name)
365
366 static inline uint8_t
vk_index_type_to_bytes(VkIndexType type)367 vk_index_type_to_bytes(VkIndexType type)
368 {
369 switch (type) {
370 case VK_INDEX_TYPE_NONE_KHR: return 0;
371 case VK_INDEX_TYPE_UINT8_KHR: return 1;
372 case VK_INDEX_TYPE_UINT16: return 2;
373 case VK_INDEX_TYPE_UINT32: return 4;
374 default: unreachable("Invalid index type");
375 }
376 }
377
378 static inline uint32_t
vk_index_to_restart(VkIndexType type)379 vk_index_to_restart(VkIndexType type)
380 {
381 switch (type) {
382 case VK_INDEX_TYPE_UINT8_KHR: return 0xff;
383 case VK_INDEX_TYPE_UINT16: return 0xffff;
384 case VK_INDEX_TYPE_UINT32: return 0xffffffff;
385 default: unreachable("unexpected index type");
386 }
387 }
388
389 static inline bool
vk_descriptor_type_is_dynamic(VkDescriptorType type)390 vk_descriptor_type_is_dynamic(VkDescriptorType type)
391 {
392 switch (type) {
393 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
394 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
395 return true;
396
397 default:
398 return false;
399 }
400 }
401
402 #ifdef __cplusplus
403 }
404 #endif
405
406 #endif /* VK_UTIL_H */
407