• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#
2# Copyright (c) 2008-2024 Stefan Krah. All rights reserved.
3#
4# Redistribution and use in source and binary forms, with or without
5# modification, are permitted provided that the following conditions
6# are met:
7#
8# 1. Redistributions of source code must retain the above copyright
9#    notice, this list of conditions and the following disclaimer.
10# 2. Redistributions in binary form must reproduce the above copyright
11#    notice, this list of conditions and the following disclaimer in the
12#    documentation and/or other materials provided with the distribution.
13#
14# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17# ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24# SUCH DAMAGE.
25#
26
27
28######################################################################
29#  This file lists and checks some of the constants and limits used  #
30#  in libmpdec's Number Theoretic Transform. At the end of the file  #
31#  there is an example function for the plain DFT transform.         #
32######################################################################
33
34
35#
36# Number theoretic transforms are done in subfields of F(p). P[i]
37# are the primes, D[i] = P[i] - 1 are highly composite and w[i]
38# are the respective primitive roots of F(p).
39#
40# The strategy is to convolute two coefficients modulo all three
41# primes, then use the Chinese Remainder Theorem on the three
42# result arrays to recover the result in the usual base RADIX
43# form.
44#
45
46# ======================================================================
47#                           Primitive roots
48# ======================================================================
49
50#
51# Verify primitive roots:
52#
53# For a prime field, r is a primitive root if and only if for all prime
54# factors f of p-1, r**((p-1)/f) =/= 1  (mod p).
55#
56def prod(F, E):
57    """Check that the factorization of P-1 is correct. F is the list of
58       factors of P-1, E lists the number of occurrences of each factor."""
59    x = 1
60    for y, z in zip(F, E):
61        x *= y**z
62    return x
63
64def is_primitive_root(r, p, factors, exponents):
65    """Check if r is a primitive root of F(p)."""
66    if p != prod(factors, exponents) + 1:
67        return False
68    for f in factors:
69        q, control = divmod(p-1, f)
70        if control != 0:
71            return False
72        if pow(r, q, p) == 1:
73            return False
74    return True
75
76
77# =================================================================
78#             Constants and limits for the 64-bit version
79# =================================================================
80
81RADIX = 10**19
82
83# Primes P1, P2 and P3:
84P = [2**64-2**32+1, 2**64-2**34+1, 2**64-2**40+1]
85
86# P-1, highly composite. The transform length d is variable and
87# must divide D = P-1. Since all D are divisible by 3 * 2**32,
88# transform lengths can be 2**n or 3 * 2**n (where n <= 32).
89D = [2**32 * 3    * (5 * 17 * 257 * 65537),
90     2**34 * 3**2 * (7 * 11 * 31 * 151 * 331),
91     2**40 * 3**2 * (5 * 7 * 13 * 17 * 241)]
92
93# Prime factors of P-1 and their exponents:
94F = [(2,3,5,17,257,65537), (2,3,7,11,31,151,331), (2,3,5,7,13,17,241)]
95E = [(32,1,1,1,1,1), (34,2,1,1,1,1,1), (40,2,1,1,1,1,1)]
96
97# Maximum transform length for 2**n. Above that only 3 * 2**31
98# or 3 * 2**32 are possible.
99MPD_MAXTRANSFORM_2N = 2**32
100
101
102# Limits in the terminology of Pollard's paper:
103m2 = (MPD_MAXTRANSFORM_2N * 3) // 2 # Maximum length of the smaller array.
104M1 = M2 = RADIX-1                   # Maximum value per single word.
105L = m2 * M1 * M2
106P[0] * P[1] * P[2] > 2 * L
107
108
109# Primitive roots of F(P1), F(P2) and F(P3):
110w = [7, 10, 19]
111
112# The primitive roots are correct:
113for i in range(3):
114    if not is_primitive_root(w[i], P[i], F[i], E[i]):
115        print("FAIL")
116
117
118# =================================================================
119#             Constants and limits for the 32-bit version
120# =================================================================
121
122RADIX = 10**9
123
124# Primes P1, P2 and P3:
125P = [2113929217, 2013265921, 1811939329]
126
127# P-1, highly composite. All D = P-1 are divisible by 3 * 2**25,
128# allowing for transform lengths up to 3 * 2**25 words.
129D = [2**25 * 3**2 * 7,
130     2**27 * 3    * 5,
131     2**26 * 3**3]
132
133# Prime factors of P-1 and their exponents:
134F = [(2,3,7), (2,3,5), (2,3)]
135E = [(25,2,1), (27,1,1), (26,3)]
136
137# Maximum transform length for 2**n. Above that only 3 * 2**24 or
138# 3 * 2**25 are possible.
139MPD_MAXTRANSFORM_2N = 2**25
140
141
142# Limits in the terminology of Pollard's paper:
143m2 = (MPD_MAXTRANSFORM_2N * 3) // 2 # Maximum length of the smaller array.
144M1 = M2 = RADIX-1                   # Maximum value per single word.
145L = m2 * M1 * M2
146P[0] * P[1] * P[2] > 2 * L
147
148
149# Primitive roots of F(P1), F(P2) and F(P3):
150w = [5, 31, 13]
151
152# The primitive roots are correct:
153for i in range(3):
154    if not is_primitive_root(w[i], P[i], F[i], E[i]):
155        print("FAIL")
156
157
158# ======================================================================
159#                 Example transform using a single prime
160# ======================================================================
161
162def ntt(lst, dir):
163    """Perform a transform on the elements of lst. len(lst) must
164       be 2**n or 3 * 2**n, where n <= 25. This is the slow DFT."""
165    p = 2113929217             # prime
166    d = len(lst)               # transform length
167    d_prime = pow(d, (p-2), p) # inverse of d
168    xi = (p-1)//d
169    w = 5                         # primitive root of F(p)
170    r = pow(w, xi, p)             # primitive root of the subfield
171    r_prime = pow(w, (p-1-xi), p) # inverse of r
172    if dir == 1:      # forward transform
173        a = lst       # input array
174        A = [0] * d   # transformed values
175        for i in range(d):
176            s = 0
177            for j in range(d):
178                s += a[j] * pow(r, i*j, p)
179            A[i] = s % p
180        return A
181    elif dir == -1: # backward transform
182        A = lst     # input array
183        a = [0] * d # transformed values
184        for j in range(d):
185            s = 0
186            for i in range(d):
187                s += A[i] * pow(r_prime, i*j, p)
188            a[j] = (d_prime * s) % p
189        return a
190
191def ntt_convolute(a, b):
192    """convolute arrays a and b."""
193    assert(len(a) == len(b))
194    x = ntt(a, 1)
195    y = ntt(b, 1)
196    for i in range(len(a)):
197        y[i] = y[i] * x[i]
198    r = ntt(y, -1)
199    return r
200
201
202# Example: Two arrays representing 21 and 81 in little-endian:
203a = [1, 2, 0, 0]
204b = [1, 8, 0, 0]
205
206assert(ntt_convolute(a, b) == [1,        10,        16,        0])
207assert(21 * 81             == (1*10**0 + 10*10**1 + 16*10**2 + 0*10**3))
208