• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2024 Stefan Krah. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 
28 #include <assert.h>
29 #include <limits.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 
34 
35 #include "bits.h"
36 #include "constants.h"
37 #include "mpdecimal.h"
38 #include "transpose.h"
39 #include "typearith.h"
40 
41 
42 #define BUFSIZE 4096
43 #define SIDE 128
44 
45 
46 /* Bignum: The transpose functions are used for very large transforms
47            in sixstep.c and fourstep.c. */
48 
49 
50 /* Definition of the matrix transpose */
51 void
std_trans(mpd_uint_t dest[],mpd_uint_t src[],mpd_size_t rows,mpd_size_t cols)52 std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
53 {
54     mpd_size_t idest, isrc;
55     mpd_size_t r, c;
56 
57     for (r = 0; r < rows; r++) {
58         isrc = r * cols;
59         idest = r;
60         for (c = 0; c < cols; c++) {
61             dest[idest] = src[isrc];
62             isrc += 1;
63             idest += rows;
64         }
65     }
66 }
67 
68 /*
69  * Swap half-rows of 2^n * (2*2^n) matrix.
70  * FORWARD_CYCLE: even/odd permutation of the halfrows.
71  * BACKWARD_CYCLE: reverse the even/odd permutation.
72  */
73 static int
swap_halfrows_pow2(mpd_uint_t * matrix,mpd_size_t rows,mpd_size_t cols,int dir)74 swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
75 {
76     mpd_uint_t buf1[BUFSIZE];
77     mpd_uint_t buf2[BUFSIZE];
78     mpd_uint_t *readbuf, *writebuf, *hp;
79     mpd_size_t *done, dbits;
80     mpd_size_t b = BUFSIZE, stride;
81     mpd_size_t hn, hmax; /* halfrow number */
82     mpd_size_t m, r=0;
83     mpd_size_t offset;
84     mpd_size_t next;
85 
86 
87     assert(cols == mul_size_t(2, rows));
88 
89     if (dir == FORWARD_CYCLE) {
90         r = rows;
91     }
92     else if (dir == BACKWARD_CYCLE) {
93         r = 2;
94     }
95     else {
96         abort(); /* GCOV_NOT_REACHED */
97     }
98 
99     m = cols - 1;
100     hmax = rows; /* cycles start at odd halfrows */
101     dbits = 8 * sizeof *done;
102     if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
103         return 0;
104     }
105 
106     for (hn = 1; hn <= hmax; hn += 2) {
107 
108         if (done[hn/dbits] & mpd_bits[hn%dbits]) {
109             continue;
110         }
111 
112         readbuf = buf1; writebuf = buf2;
113 
114         for (offset = 0; offset < cols/2; offset += b) {
115 
116             stride = (offset + b < cols/2) ? b : cols/2-offset;
117 
118             hp = matrix + hn*cols/2;
119             memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
120             pointerswap(&readbuf, &writebuf);
121 
122             next = mulmod_size_t(hn, r, m);
123             hp = matrix + next*cols/2;
124 
125             while (next != hn) {
126 
127                 memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
128                 memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
129                 pointerswap(&readbuf, &writebuf);
130 
131                 done[next/dbits] |= mpd_bits[next%dbits];
132 
133                 next = mulmod_size_t(next, r, m);
134                 hp = matrix + next*cols/2;
135 
136             }
137 
138             memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
139 
140             done[hn/dbits] |= mpd_bits[hn%dbits];
141         }
142     }
143 
144     mpd_free(done);
145     return 1;
146 }
147 
148 /* In-place transpose of a square matrix */
149 static inline void
squaretrans(mpd_uint_t * buf,mpd_size_t cols)150 squaretrans(mpd_uint_t *buf, mpd_size_t cols)
151 {
152     mpd_uint_t tmp;
153     mpd_size_t idest, isrc;
154     mpd_size_t r, c;
155 
156     for (r = 0; r < cols; r++) {
157         c = r+1;
158         isrc = r*cols + c;
159         idest = c*cols + r;
160         for (c = r+1; c < cols; c++) {
161             tmp = buf[isrc];
162             buf[isrc] = buf[idest];
163             buf[idest] = tmp;
164             isrc += 1;
165             idest += cols;
166         }
167     }
168 }
169 
170 /*
171  * Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
172  * square blocks with side length 'SIDE'. First, the blocks are transposed,
173  * then a square transposition is done on each individual block.
174  */
175 static void
squaretrans_pow2(mpd_uint_t * matrix,mpd_size_t size)176 squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
177 {
178     mpd_uint_t buf1[SIDE*SIDE];
179     mpd_uint_t buf2[SIDE*SIDE];
180     mpd_uint_t *to, *from;
181     mpd_size_t b = size;
182     mpd_size_t r, c;
183     mpd_size_t i;
184 
185     while (b > SIDE) b >>= 1;
186 
187     for (r = 0; r < size; r += b) {
188 
189         for (c = r; c < size; c += b) {
190 
191             from = matrix + r*size + c;
192             to = buf1;
193             for (i = 0; i < b; i++) {
194                 memcpy(to, from, b*(sizeof *to));
195                 from += size;
196                 to += b;
197             }
198             squaretrans(buf1, b);
199 
200             if (r == c) {
201                 to = matrix + r*size + c;
202                 from = buf1;
203                 for (i = 0; i < b; i++) {
204                     memcpy(to, from, b*(sizeof *to));
205                     from += b;
206                     to += size;
207                 }
208                 continue;
209             }
210             else {
211                 from = matrix + c*size + r;
212                 to = buf2;
213                 for (i = 0; i < b; i++) {
214                     memcpy(to, from, b*(sizeof *to));
215                     from += size;
216                     to += b;
217                 }
218                 squaretrans(buf2, b);
219 
220                 to = matrix + c*size + r;
221                 from = buf1;
222                 for (i = 0; i < b; i++) {
223                     memcpy(to, from, b*(sizeof *to));
224                     from += b;
225                     to += size;
226                 }
227 
228                 to = matrix + r*size + c;
229                 from = buf2;
230                 for (i = 0; i < b; i++) {
231                     memcpy(to, from, b*(sizeof *to));
232                     from += b;
233                     to += size;
234                 }
235             }
236         }
237     }
238 
239 }
240 
241 /*
242  * In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
243  * or a (2*2^n) x 2^n matrix.
244  */
245 int
transpose_pow2(mpd_uint_t * matrix,mpd_size_t rows,mpd_size_t cols)246 transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
247 {
248     mpd_size_t size = mul_size_t(rows, cols);
249 
250     assert(ispower2(rows));
251     assert(ispower2(cols));
252 
253     if (cols == rows) {
254         squaretrans_pow2(matrix, rows);
255     }
256     else if (cols == mul_size_t(2, rows)) {
257         if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
258             return 0;
259         }
260         squaretrans_pow2(matrix, rows);
261         squaretrans_pow2(matrix+(size/2), rows);
262     }
263     else if (rows == mul_size_t(2, cols)) {
264         squaretrans_pow2(matrix, cols);
265         squaretrans_pow2(matrix+(size/2), cols);
266         if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
267             return 0;
268         }
269     }
270     else {
271         abort(); /* GCOV_NOT_REACHED */
272     }
273 
274     return 1;
275 }
276