1 /*----------------------------------------------------------------------------
2 Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
3 This is free software; you can redistribute it and/or modify it under the
4 terms of the MIT license. A copy of the license can be found in the file
5 "LICENSE" at the root of this distribution.
6 -----------------------------------------------------------------------------*/
7
8 /* -----------------------------------------------------------
9 The core of the allocator. Every segment contains
10 pages of a certain block size. The main function
11 exported is `mi_malloc_generic`.
12 ----------------------------------------------------------- */
13
14 #include "mimalloc.h"
15 #include "mimalloc/internal.h"
16 #include "mimalloc/atomic.h"
17
18 /* -----------------------------------------------------------
19 Definition of page queues for each block size
20 ----------------------------------------------------------- */
21
22 #define MI_IN_PAGE_C
23 #include "page-queue.c"
24 #undef MI_IN_PAGE_C
25
26
27 /* -----------------------------------------------------------
28 Page helpers
29 ----------------------------------------------------------- */
30
31 // Index a block in a page
mi_page_block_at(const mi_page_t * page,void * page_start,size_t block_size,size_t i)32 static inline mi_block_t* mi_page_block_at(const mi_page_t* page, void* page_start, size_t block_size, size_t i) {
33 MI_UNUSED(page);
34 mi_assert_internal(page != NULL);
35 mi_assert_internal(i <= page->reserved);
36 return (mi_block_t*)((uint8_t*)page_start + (i * block_size));
37 }
38
39 static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t size, mi_tld_t* tld);
40 static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld);
41
42 #if (MI_DEBUG>=3)
mi_page_list_count(mi_page_t * page,mi_block_t * head)43 static size_t mi_page_list_count(mi_page_t* page, mi_block_t* head) {
44 size_t count = 0;
45 while (head != NULL) {
46 mi_assert_internal(page == _mi_ptr_page(head));
47 count++;
48 head = mi_block_next(page, head);
49 }
50 return count;
51 }
52
53 /*
54 // Start of the page available memory
55 static inline uint8_t* mi_page_area(const mi_page_t* page) {
56 return _mi_page_start(_mi_page_segment(page), page, NULL);
57 }
58 */
59
mi_page_list_is_valid(mi_page_t * page,mi_block_t * p)60 static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) {
61 size_t psize;
62 uint8_t* page_area = _mi_page_start(_mi_page_segment(page), page, &psize);
63 mi_block_t* start = (mi_block_t*)page_area;
64 mi_block_t* end = (mi_block_t*)(page_area + psize);
65 while(p != NULL) {
66 if (p < start || p >= end) return false;
67 p = mi_block_next(page, p);
68 }
69 #if MI_DEBUG>3 // generally too expensive to check this
70 if (page->free_is_zero) {
71 const size_t ubsize = mi_page_usable_block_size(page);
72 for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page, block)) {
73 mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t)));
74 }
75 }
76 #endif
77 return true;
78 }
79
mi_page_is_valid_init(mi_page_t * page)80 static bool mi_page_is_valid_init(mi_page_t* page) {
81 mi_assert_internal(page->xblock_size > 0);
82 mi_assert_internal(page->used <= page->capacity);
83 mi_assert_internal(page->capacity <= page->reserved);
84
85 mi_segment_t* segment = _mi_page_segment(page);
86 uint8_t* start = _mi_page_start(segment,page,NULL);
87 mi_assert_internal(start == _mi_segment_page_start(segment,page,NULL));
88 //const size_t bsize = mi_page_block_size(page);
89 //mi_assert_internal(start + page->capacity*page->block_size == page->top);
90
91 mi_assert_internal(mi_page_list_is_valid(page,page->free));
92 mi_assert_internal(mi_page_list_is_valid(page,page->local_free));
93
94 #if MI_DEBUG>3 // generally too expensive to check this
95 if (page->free_is_zero) {
96 const size_t ubsize = mi_page_usable_block_size(page);
97 for(mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) {
98 mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t)));
99 }
100 }
101 #endif
102
103 #if !MI_TRACK_ENABLED && !MI_TSAN
104 mi_block_t* tfree = mi_page_thread_free(page);
105 mi_assert_internal(mi_page_list_is_valid(page, tfree));
106 //size_t tfree_count = mi_page_list_count(page, tfree);
107 //mi_assert_internal(tfree_count <= page->thread_freed + 1);
108 #endif
109
110 size_t free_count = mi_page_list_count(page, page->free) + mi_page_list_count(page, page->local_free);
111 mi_assert_internal(page->used + free_count == page->capacity);
112
113 return true;
114 }
115
116 extern bool _mi_process_is_initialized; // has mi_process_init been called?
117
_mi_page_is_valid(mi_page_t * page)118 bool _mi_page_is_valid(mi_page_t* page) {
119 mi_assert_internal(mi_page_is_valid_init(page));
120 #if MI_SECURE
121 mi_assert_internal(page->keys[0] != 0);
122 #endif
123 if (mi_page_heap(page)!=NULL) {
124 mi_segment_t* segment = _mi_page_segment(page);
125
126 mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id);
127 #if MI_HUGE_PAGE_ABANDON
128 if (segment->kind != MI_SEGMENT_HUGE)
129 #endif
130 {
131 mi_page_queue_t* pq = mi_page_queue_of(page);
132 mi_assert_internal(mi_page_queue_contains(pq, page));
133 mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page));
134 mi_assert_internal(mi_heap_contains_queue(mi_page_heap(page),pq));
135 }
136 }
137 return true;
138 }
139 #endif
140
_mi_page_use_delayed_free(mi_page_t * page,mi_delayed_t delay,bool override_never)141 void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) {
142 while (!_mi_page_try_use_delayed_free(page, delay, override_never)) {
143 mi_atomic_yield();
144 }
145 }
146
_mi_page_try_use_delayed_free(mi_page_t * page,mi_delayed_t delay,bool override_never)147 bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) {
148 mi_thread_free_t tfreex;
149 mi_delayed_t old_delay;
150 mi_thread_free_t tfree;
151 size_t yield_count = 0;
152 do {
153 tfree = mi_atomic_load_acquire(&page->xthread_free); // note: must acquire as we can break/repeat this loop and not do a CAS;
154 tfreex = mi_tf_set_delayed(tfree, delay);
155 old_delay = mi_tf_delayed(tfree);
156 if mi_unlikely(old_delay == MI_DELAYED_FREEING) {
157 if (yield_count >= 4) return false; // give up after 4 tries
158 yield_count++;
159 mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done.
160 // tfree = mi_tf_set_delayed(tfree, MI_NO_DELAYED_FREE); // will cause CAS to busy fail
161 }
162 else if (delay == old_delay) {
163 break; // avoid atomic operation if already equal
164 }
165 else if (!override_never && old_delay == MI_NEVER_DELAYED_FREE) {
166 break; // leave never-delayed flag set
167 }
168 } while ((old_delay == MI_DELAYED_FREEING) ||
169 !mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
170
171 return true; // success
172 }
173
174 /* -----------------------------------------------------------
175 Page collect the `local_free` and `thread_free` lists
176 ----------------------------------------------------------- */
177
178 // Collect the local `thread_free` list using an atomic exchange.
179 // Note: The exchange must be done atomically as this is used right after
180 // moving to the full list in `mi_page_collect_ex` and we need to
181 // ensure that there was no race where the page became unfull just before the move.
_mi_page_thread_free_collect(mi_page_t * page)182 static void _mi_page_thread_free_collect(mi_page_t* page)
183 {
184 mi_block_t* head;
185 mi_thread_free_t tfreex;
186 mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
187 do {
188 head = mi_tf_block(tfree);
189 tfreex = mi_tf_set_block(tfree,NULL);
190 } while (!mi_atomic_cas_weak_acq_rel(&page->xthread_free, &tfree, tfreex));
191
192 // return if the list is empty
193 if (head == NULL) return;
194
195 // find the tail -- also to get a proper count (without data races)
196 uint32_t max_count = page->capacity; // cannot collect more than capacity
197 uint32_t count = 1;
198 mi_block_t* tail = head;
199 mi_block_t* next;
200 while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) {
201 count++;
202 tail = next;
203 }
204 // if `count > max_count` there was a memory corruption (possibly infinite list due to double multi-threaded free)
205 if (count > max_count) {
206 _mi_error_message(EFAULT, "corrupted thread-free list\n");
207 return; // the thread-free items cannot be freed
208 }
209
210 // and append the current local free list
211 mi_block_set_next(page,tail, page->local_free);
212 page->local_free = head;
213
214 // update counts now
215 page->used -= count;
216 }
217
_mi_page_free_collect(mi_page_t * page,bool force)218 void _mi_page_free_collect(mi_page_t* page, bool force) {
219 mi_assert_internal(page!=NULL);
220
221 // collect the thread free list
222 if (force || mi_page_thread_free(page) != NULL) { // quick test to avoid an atomic operation
223 _mi_page_thread_free_collect(page);
224 }
225
226 // and the local free list
227 if (page->local_free != NULL) {
228 // any previous QSBR goals are no longer valid because we reused the page
229 _PyMem_mi_page_clear_qsbr(page);
230
231 if mi_likely(page->free == NULL) {
232 // usual case
233 page->free = page->local_free;
234 page->local_free = NULL;
235 page->free_is_zero = false;
236 }
237 else if (force) {
238 // append -- only on shutdown (force) as this is a linear operation
239 mi_block_t* tail = page->local_free;
240 mi_block_t* next;
241 while ((next = mi_block_next(page, tail)) != NULL) {
242 tail = next;
243 }
244 mi_block_set_next(page, tail, page->free);
245 page->free = page->local_free;
246 page->local_free = NULL;
247 page->free_is_zero = false;
248 }
249 }
250
251 mi_assert_internal(!force || page->local_free == NULL);
252 }
253
254
255
256 /* -----------------------------------------------------------
257 Page fresh and retire
258 ----------------------------------------------------------- */
259
260 // called from segments when reclaiming abandoned pages
_mi_page_reclaim(mi_heap_t * heap,mi_page_t * page)261 void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) {
262 mi_assert_expensive(mi_page_is_valid_init(page));
263
264 mi_assert_internal(mi_page_heap(page) == heap);
265 mi_assert_internal(mi_page_thread_free_flag(page) != MI_NEVER_DELAYED_FREE);
266 #if MI_HUGE_PAGE_ABANDON
267 mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
268 #endif
269
270 // TODO: push on full queue immediately if it is full?
271 mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page));
272 mi_page_queue_push(heap, pq, page);
273 _PyMem_mi_page_reclaimed(page);
274 mi_assert_expensive(_mi_page_is_valid(page));
275 }
276
277 // allocate a fresh page from a segment
mi_page_fresh_alloc(mi_heap_t * heap,mi_page_queue_t * pq,size_t block_size,size_t page_alignment)278 static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size_t block_size, size_t page_alignment) {
279 #if !MI_HUGE_PAGE_ABANDON
280 mi_assert_internal(pq != NULL);
281 mi_assert_internal(mi_heap_contains_queue(heap, pq));
282 mi_assert_internal(page_alignment > 0 || block_size > MI_MEDIUM_OBJ_SIZE_MAX || block_size == pq->block_size);
283 #endif
284 mi_page_t* page = _mi_segment_page_alloc(heap, block_size, page_alignment, &heap->tld->segments, &heap->tld->os);
285 if (page == NULL) {
286 // this may be out-of-memory, or an abandoned page was reclaimed (and in our queue)
287 return NULL;
288 }
289 mi_assert_internal(page_alignment >0 || block_size > MI_MEDIUM_OBJ_SIZE_MAX || _mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
290 mi_assert_internal(pq!=NULL || page->xblock_size != 0);
291 mi_assert_internal(pq!=NULL || mi_page_block_size(page) >= block_size);
292 // a fresh page was found, initialize it
293 const size_t full_block_size = ((pq == NULL || mi_page_queue_is_huge(pq)) ? mi_page_block_size(page) : block_size); // see also: mi_segment_huge_page_alloc
294 mi_assert_internal(full_block_size >= block_size);
295 mi_page_init(heap, page, full_block_size, heap->tld);
296 mi_heap_stat_increase(heap, pages, 1);
297 if (pq != NULL) { mi_page_queue_push(heap, pq, page); }
298 mi_assert_expensive(_mi_page_is_valid(page));
299 return page;
300 }
301
302 // Get a fresh page to use
mi_page_fresh(mi_heap_t * heap,mi_page_queue_t * pq)303 static mi_page_t* mi_page_fresh(mi_heap_t* heap, mi_page_queue_t* pq) {
304 mi_assert_internal(mi_heap_contains_queue(heap, pq));
305 mi_page_t* page = mi_page_fresh_alloc(heap, pq, pq->block_size, 0);
306 if (page==NULL) return NULL;
307 mi_assert_internal(pq->block_size==mi_page_block_size(page));
308 mi_assert_internal(pq==mi_page_queue(heap, mi_page_block_size(page)));
309 return page;
310 }
311
312 /* -----------------------------------------------------------
313 Do any delayed frees
314 (put there by other threads if they deallocated in a full page)
315 ----------------------------------------------------------- */
_mi_heap_delayed_free_all(mi_heap_t * heap)316 void _mi_heap_delayed_free_all(mi_heap_t* heap) {
317 while (!_mi_heap_delayed_free_partial(heap)) {
318 mi_atomic_yield();
319 }
320 }
321
322 // returns true if all delayed frees were processed
_mi_heap_delayed_free_partial(mi_heap_t * heap)323 bool _mi_heap_delayed_free_partial(mi_heap_t* heap) {
324 // take over the list (note: no atomic exchange since it is often NULL)
325 mi_block_t* block = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
326 while (block != NULL && !mi_atomic_cas_ptr_weak_acq_rel(mi_block_t, &heap->thread_delayed_free, &block, NULL)) { /* nothing */ };
327 bool all_freed = true;
328
329 // and free them all
330 while(block != NULL) {
331 mi_block_t* next = mi_block_nextx(heap,block, heap->keys);
332 // use internal free instead of regular one to keep stats etc correct
333 if (!_mi_free_delayed_block(block)) {
334 // we might already start delayed freeing while another thread has not yet
335 // reset the delayed_freeing flag; in that case delay it further by reinserting the current block
336 // into the delayed free list
337 all_freed = false;
338 mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
339 do {
340 mi_block_set_nextx(heap, block, dfree, heap->keys);
341 } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
342 }
343 block = next;
344 }
345 return all_freed;
346 }
347
348 /* -----------------------------------------------------------
349 Unfull, abandon, free and retire
350 ----------------------------------------------------------- */
351
352 // Move a page from the full list back to a regular list
_mi_page_unfull(mi_page_t * page)353 void _mi_page_unfull(mi_page_t* page) {
354 mi_assert_internal(page != NULL);
355 mi_assert_expensive(_mi_page_is_valid(page));
356 mi_assert_internal(mi_page_is_in_full(page));
357 if (!mi_page_is_in_full(page)) return;
358
359 mi_heap_t* heap = mi_page_heap(page);
360 mi_page_queue_t* pqfull = &heap->pages[MI_BIN_FULL];
361 mi_page_set_in_full(page, false); // to get the right queue
362 mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
363 mi_page_set_in_full(page, true);
364 mi_page_queue_enqueue_from(pq, pqfull, page);
365 }
366
mi_page_to_full(mi_page_t * page,mi_page_queue_t * pq)367 static void mi_page_to_full(mi_page_t* page, mi_page_queue_t* pq) {
368 mi_assert_internal(pq == mi_page_queue_of(page));
369 mi_assert_internal(!mi_page_immediate_available(page));
370 mi_assert_internal(!mi_page_is_in_full(page));
371
372 if (mi_page_is_in_full(page)) return;
373 mi_page_queue_enqueue_from(&mi_page_heap(page)->pages[MI_BIN_FULL], pq, page);
374 _mi_page_free_collect(page,false); // try to collect right away in case another thread freed just before MI_USE_DELAYED_FREE was set
375 }
376
377
378 // Abandon a page with used blocks at the end of a thread.
379 // Note: only call if it is ensured that no references exist from
380 // the `page->heap->thread_delayed_free` into this page.
381 // Currently only called through `mi_heap_collect_ex` which ensures this.
_mi_page_abandon(mi_page_t * page,mi_page_queue_t * pq)382 void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) {
383 mi_assert_internal(page != NULL);
384 mi_assert_expensive(_mi_page_is_valid(page));
385 mi_assert_internal(pq == mi_page_queue_of(page));
386 mi_assert_internal(mi_page_heap(page) != NULL);
387
388 mi_heap_t* pheap = mi_page_heap(page);
389
390 #ifdef Py_GIL_DISABLED
391 if (page->qsbr_node.next != NULL) {
392 // remove from QSBR queue, but keep the goal
393 llist_remove(&page->qsbr_node);
394 }
395 #endif
396
397 // remove from our page list
398 mi_segments_tld_t* segments_tld = &pheap->tld->segments;
399 mi_page_queue_remove(pq, page);
400
401 // page is no longer associated with our heap
402 mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
403 mi_page_set_heap(page, NULL);
404
405 #if (MI_DEBUG>1) && !MI_TRACK_ENABLED
406 // check there are no references left..
407 for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->keys)) {
408 mi_assert_internal(_mi_ptr_page(block) != page);
409 }
410 #endif
411
412 // and abandon it
413 mi_assert_internal(mi_page_heap(page) == NULL);
414 _mi_segment_page_abandon(page,segments_tld);
415 }
416
417
418 // Free a page with no more free blocks
_mi_page_free(mi_page_t * page,mi_page_queue_t * pq,bool force)419 void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) {
420 mi_assert_internal(page != NULL);
421 mi_assert_expensive(_mi_page_is_valid(page));
422 mi_assert_internal(pq == mi_page_queue_of(page));
423 mi_assert_internal(mi_page_all_free(page));
424 mi_assert_internal(mi_page_thread_free_flag(page)!=MI_DELAYED_FREEING);
425
426 // no more aligned blocks in here
427 mi_page_set_has_aligned(page, false);
428
429 mi_heap_t* heap = mi_page_heap(page);
430
431 #ifdef Py_GIL_DISABLED
432 mi_assert_internal(page->qsbr_goal == 0);
433 mi_assert_internal(page->qsbr_node.next == NULL);
434 #endif
435
436 // remove from the page list
437 // (no need to do _mi_heap_delayed_free first as all blocks are already free)
438 mi_segments_tld_t* segments_tld = &heap->tld->segments;
439 mi_page_queue_remove(pq, page);
440
441 // and free it
442 mi_page_set_heap(page,NULL);
443 _mi_segment_page_free(page, force, segments_tld);
444 }
445
446 // Retire parameters
447 #define MI_MAX_RETIRE_SIZE (MI_MEDIUM_OBJ_SIZE_MAX)
448 #define MI_RETIRE_CYCLES (16)
449
450 // Retire a page with no more used blocks
451 // Important to not retire too quickly though as new
452 // allocations might coming.
453 // Note: called from `mi_free` and benchmarks often
454 // trigger this due to freeing everything and then
455 // allocating again so careful when changing this.
_mi_page_retire(mi_page_t * page)456 void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
457 mi_assert_internal(page != NULL);
458 mi_assert_expensive(_mi_page_is_valid(page));
459 mi_assert_internal(mi_page_all_free(page));
460
461 mi_page_set_has_aligned(page, false);
462
463 // any previous QSBR goals are no longer valid because we reused the page
464 _PyMem_mi_page_clear_qsbr(page);
465
466 // don't retire too often..
467 // (or we end up retiring and re-allocating most of the time)
468 // NOTE: refine this more: we should not retire if this
469 // is the only page left with free blocks. It is not clear
470 // how to check this efficiently though...
471 // for now, we don't retire if it is the only page left of this size class.
472 mi_page_queue_t* pq = mi_page_queue_of(page);
473 if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_queue_is_special(pq)) { // not too large && not full or huge queue?
474 if (pq->last==page && pq->first==page) { // the only page in the queue?
475 mi_stat_counter_increase(_mi_stats_main.page_no_retire,1);
476 page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
477 mi_heap_t* heap = mi_page_heap(page);
478 mi_assert_internal(pq >= heap->pages);
479 const size_t index = pq - heap->pages;
480 mi_assert_internal(index < MI_BIN_FULL && index < MI_BIN_HUGE);
481 if (index < heap->page_retired_min) heap->page_retired_min = index;
482 if (index > heap->page_retired_max) heap->page_retired_max = index;
483 mi_assert_internal(mi_page_all_free(page));
484 return; // dont't free after all
485 }
486 }
487 _PyMem_mi_page_maybe_free(page, pq, false);
488 }
489
490 // free retired pages: we don't need to look at the entire queues
491 // since we only retire pages that are at the head position in a queue.
_mi_heap_collect_retired(mi_heap_t * heap,bool force)492 void _mi_heap_collect_retired(mi_heap_t* heap, bool force) {
493 size_t min = MI_BIN_FULL;
494 size_t max = 0;
495 for(size_t bin = heap->page_retired_min; bin <= heap->page_retired_max; bin++) {
496 mi_page_queue_t* pq = &heap->pages[bin];
497 mi_page_t* page = pq->first;
498 if (page != NULL && page->retire_expire != 0) {
499 if (mi_page_all_free(page)) {
500 page->retire_expire--;
501 if (force || page->retire_expire == 0) {
502 #ifdef Py_GIL_DISABLED
503 mi_assert_internal(page->qsbr_goal == 0);
504 #endif
505 _PyMem_mi_page_maybe_free(page, pq, force);
506 }
507 else {
508 // keep retired, update min/max
509 if (bin < min) min = bin;
510 if (bin > max) max = bin;
511 }
512 }
513 else {
514 page->retire_expire = 0;
515 }
516 }
517 }
518 heap->page_retired_min = min;
519 heap->page_retired_max = max;
520 }
521
522
523 /* -----------------------------------------------------------
524 Initialize the initial free list in a page.
525 In secure mode we initialize a randomized list by
526 alternating between slices.
527 ----------------------------------------------------------- */
528
529 #define MI_MAX_SLICE_SHIFT (6) // at most 64 slices
530 #define MI_MAX_SLICES (1UL << MI_MAX_SLICE_SHIFT)
531 #define MI_MIN_SLICES (2)
532
mi_page_free_list_extend_secure(mi_heap_t * const heap,mi_page_t * const page,const size_t bsize,const size_t extend,mi_stats_t * const stats)533 static void mi_page_free_list_extend_secure(mi_heap_t* const heap, mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats) {
534 MI_UNUSED(stats);
535 #if (MI_SECURE<=2)
536 mi_assert_internal(page->free == NULL);
537 mi_assert_internal(page->local_free == NULL);
538 #endif
539 mi_assert_internal(page->capacity + extend <= page->reserved);
540 mi_assert_internal(bsize == mi_page_block_size(page));
541 void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL);
542
543 // initialize a randomized free list
544 // set up `slice_count` slices to alternate between
545 size_t shift = MI_MAX_SLICE_SHIFT;
546 while ((extend >> shift) == 0) {
547 shift--;
548 }
549 const size_t slice_count = (size_t)1U << shift;
550 const size_t slice_extend = extend / slice_count;
551 mi_assert_internal(slice_extend >= 1);
552 mi_block_t* blocks[MI_MAX_SLICES]; // current start of the slice
553 size_t counts[MI_MAX_SLICES]; // available objects in the slice
554 for (size_t i = 0; i < slice_count; i++) {
555 blocks[i] = mi_page_block_at(page, page_area, bsize, page->capacity + i*slice_extend);
556 counts[i] = slice_extend;
557 }
558 counts[slice_count-1] += (extend % slice_count); // final slice holds the modulus too (todo: distribute evenly?)
559
560 // and initialize the free list by randomly threading through them
561 // set up first element
562 const uintptr_t r = _mi_heap_random_next(heap);
563 size_t current = r % slice_count;
564 counts[current]--;
565 mi_block_t* const free_start = blocks[current];
566 // and iterate through the rest; use `random_shuffle` for performance
567 uintptr_t rnd = _mi_random_shuffle(r|1); // ensure not 0
568 for (size_t i = 1; i < extend; i++) {
569 // call random_shuffle only every INTPTR_SIZE rounds
570 const size_t round = i%MI_INTPTR_SIZE;
571 if (round == 0) rnd = _mi_random_shuffle(rnd);
572 // select a random next slice index
573 size_t next = ((rnd >> 8*round) & (slice_count-1));
574 while (counts[next]==0) { // ensure it still has space
575 next++;
576 if (next==slice_count) next = 0;
577 }
578 // and link the current block to it
579 counts[next]--;
580 mi_block_t* const block = blocks[current];
581 blocks[current] = (mi_block_t*)((uint8_t*)block + bsize); // bump to the following block
582 mi_block_set_next(page, block, blocks[next]); // and set next; note: we may have `current == next`
583 current = next;
584 }
585 // prepend to the free list (usually NULL)
586 mi_block_set_next(page, blocks[current], page->free); // end of the list
587 page->free = free_start;
588 }
589
mi_page_free_list_extend(mi_page_t * const page,const size_t bsize,const size_t extend,mi_stats_t * const stats)590 static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats)
591 {
592 MI_UNUSED(stats);
593 #if (MI_SECURE <= 2)
594 mi_assert_internal(page->free == NULL);
595 mi_assert_internal(page->local_free == NULL);
596 #endif
597 mi_assert_internal(page->capacity + extend <= page->reserved);
598 mi_assert_internal(bsize == mi_page_block_size(page));
599 void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL );
600
601 mi_block_t* const start = mi_page_block_at(page, page_area, bsize, page->capacity);
602
603 // initialize a sequential free list
604 mi_block_t* const last = mi_page_block_at(page, page_area, bsize, page->capacity + extend - 1);
605 mi_block_t* block = start;
606 while(block <= last) {
607 mi_block_t* next = (mi_block_t*)((uint8_t*)block + bsize);
608 mi_block_set_next(page,block,next);
609 block = next;
610 }
611 // prepend to free list (usually `NULL`)
612 mi_block_set_next(page, last, page->free);
613 page->free = start;
614 }
615
616 /* -----------------------------------------------------------
617 Page initialize and extend the capacity
618 ----------------------------------------------------------- */
619
620 #define MI_MAX_EXTEND_SIZE (4*1024) // heuristic, one OS page seems to work well.
621 #if (MI_SECURE>0)
622 #define MI_MIN_EXTEND (8*MI_SECURE) // extend at least by this many
623 #else
624 #define MI_MIN_EXTEND (4)
625 #endif
626
627 // Extend the capacity (up to reserved) by initializing a free list
628 // We do at most `MI_MAX_EXTEND` to avoid touching too much memory
629 // Note: we also experimented with "bump" allocation on the first
630 // allocations but this did not speed up any benchmark (due to an
631 // extra test in malloc? or cache effects?)
mi_page_extend_free(mi_heap_t * heap,mi_page_t * page,mi_tld_t * tld)632 static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) {
633 MI_UNUSED(tld);
634 mi_assert_expensive(mi_page_is_valid_init(page));
635 #if (MI_SECURE<=2)
636 mi_assert(page->free == NULL);
637 mi_assert(page->local_free == NULL);
638 if (page->free != NULL) return;
639 #endif
640 if (page->capacity >= page->reserved) return;
641
642 size_t page_size;
643 _mi_page_start(_mi_page_segment(page), page, &page_size);
644 mi_stat_counter_increase(tld->stats.pages_extended, 1);
645
646 // calculate the extend count
647 const size_t bsize = (page->xblock_size < MI_HUGE_BLOCK_SIZE ? page->xblock_size : page_size);
648 size_t extend = page->reserved - page->capacity;
649 mi_assert_internal(extend > 0);
650
651 size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/(uint32_t)bsize);
652 if (max_extend < MI_MIN_EXTEND) { max_extend = MI_MIN_EXTEND; }
653 mi_assert_internal(max_extend > 0);
654
655 if (extend > max_extend) {
656 // ensure we don't touch memory beyond the page to reduce page commit.
657 // the `lean` benchmark tests this. Going from 1 to 8 increases rss by 50%.
658 extend = max_extend;
659 }
660
661 mi_assert_internal(extend > 0 && extend + page->capacity <= page->reserved);
662 mi_assert_internal(extend < (1UL<<16));
663
664 // and append the extend the free list
665 if (extend < MI_MIN_SLICES || MI_SECURE==0) { //!mi_option_is_enabled(mi_option_secure)) {
666 mi_page_free_list_extend(page, bsize, extend, &tld->stats );
667 }
668 else {
669 mi_page_free_list_extend_secure(heap, page, bsize, extend, &tld->stats);
670 }
671 // enable the new free list
672 page->capacity += (uint16_t)extend;
673 mi_stat_increase(tld->stats.page_committed, extend * bsize);
674 mi_assert_expensive(mi_page_is_valid_init(page));
675 }
676
677 // Initialize a fresh page
mi_page_init(mi_heap_t * heap,mi_page_t * page,size_t block_size,mi_tld_t * tld)678 static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi_tld_t* tld) {
679 mi_assert(page != NULL);
680 mi_segment_t* segment = _mi_page_segment(page);
681 mi_assert(segment != NULL);
682 mi_assert_internal(block_size > 0);
683 // set fields
684 mi_page_set_heap(page, heap);
685 page->tag = heap->tag;
686 page->use_qsbr = heap->page_use_qsbr;
687 page->debug_offset = heap->debug_offset;
688 page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start
689 size_t page_size;
690 const void* page_start = _mi_segment_page_start(segment, page, &page_size);
691 MI_UNUSED(page_start);
692 mi_track_mem_noaccess(page_start,page_size);
693 mi_assert_internal(mi_page_block_size(page) <= page_size);
694 mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE);
695 mi_assert_internal(page_size / block_size < (1L<<16));
696 page->reserved = (uint16_t)(page_size / block_size);
697 mi_assert_internal(page->reserved > 0);
698 #if (MI_PADDING || MI_ENCODE_FREELIST)
699 page->keys[0] = _mi_heap_random_next(heap);
700 page->keys[1] = _mi_heap_random_next(heap);
701 #endif
702 page->free_is_zero = page->is_zero_init;
703 #if MI_DEBUG>2
704 if (page->is_zero_init) {
705 mi_track_mem_defined(page_start, page_size);
706 mi_assert_expensive(mi_mem_is_zero(page_start, page_size));
707 }
708 #endif
709
710 mi_assert_internal(page->is_committed);
711 mi_assert_internal(page->capacity == 0);
712 mi_assert_internal(page->free == NULL);
713 mi_assert_internal(page->used == 0);
714 mi_assert_internal(page->xthread_free == 0);
715 mi_assert_internal(page->next == NULL);
716 mi_assert_internal(page->prev == NULL);
717 #ifdef Py_GIL_DISABLED
718 mi_assert_internal(page->qsbr_goal == 0);
719 mi_assert_internal(page->qsbr_node.next == NULL);
720 #endif
721 mi_assert_internal(page->retire_expire == 0);
722 mi_assert_internal(!mi_page_has_aligned(page));
723 #if (MI_PADDING || MI_ENCODE_FREELIST)
724 mi_assert_internal(page->keys[0] != 0);
725 mi_assert_internal(page->keys[1] != 0);
726 #endif
727 mi_assert_expensive(mi_page_is_valid_init(page));
728
729 // initialize an initial free list
730 mi_page_extend_free(heap,page,tld);
731 mi_assert(mi_page_immediate_available(page));
732 }
733
734
735 /* -----------------------------------------------------------
736 Find pages with free blocks
737 -------------------------------------------------------------*/
738
739 // Find a page with free blocks of `page->block_size`.
mi_page_queue_find_free_ex(mi_heap_t * heap,mi_page_queue_t * pq,bool first_try)740 static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* pq, bool first_try)
741 {
742 // search through the pages in "next fit" order
743 #if MI_STAT
744 size_t count = 0;
745 #endif
746 mi_page_t* page = pq->first;
747 while (page != NULL)
748 {
749 mi_page_t* next = page->next; // remember next
750 #if MI_STAT
751 count++;
752 #endif
753
754 // 0. collect freed blocks by us and other threads
755 _mi_page_free_collect(page, false);
756
757 // 1. if the page contains free blocks, we are done
758 if (mi_page_immediate_available(page)) {
759 break; // pick this one
760 }
761
762 // 2. Try to extend
763 if (page->capacity < page->reserved) {
764 mi_page_extend_free(heap, page, heap->tld);
765 mi_assert_internal(mi_page_immediate_available(page));
766 break;
767 }
768
769 // 3. If the page is completely full, move it to the `mi_pages_full`
770 // queue so we don't visit long-lived pages too often.
771 mi_assert_internal(!mi_page_is_in_full(page) && !mi_page_immediate_available(page));
772 mi_page_to_full(page, pq);
773
774 page = next;
775 } // for each page
776
777 mi_heap_stat_counter_increase(heap, searches, count);
778
779 if (page == NULL) {
780 _PyMem_mi_heap_collect_qsbr(heap); // some pages might be safe to free now
781 _mi_heap_collect_retired(heap, false); // perhaps make a page available?
782 page = mi_page_fresh(heap, pq);
783 if (page == NULL && first_try) {
784 // out-of-memory _or_ an abandoned page with free blocks was reclaimed, try once again
785 page = mi_page_queue_find_free_ex(heap, pq, false);
786 }
787 }
788 else {
789 mi_assert(pq->first == page);
790 page->retire_expire = 0;
791 _PyMem_mi_page_clear_qsbr(page);
792 }
793 mi_assert_internal(page == NULL || mi_page_immediate_available(page));
794 return page;
795 }
796
797
798
799 // Find a page with free blocks of `size`.
mi_find_free_page(mi_heap_t * heap,size_t size)800 static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) {
801 mi_page_queue_t* pq = mi_page_queue(heap,size);
802 mi_page_t* page = pq->first;
803 if (page != NULL) {
804 #if (MI_SECURE>=3) // in secure mode, we extend half the time to increase randomness
805 if (page->capacity < page->reserved && ((_mi_heap_random_next(heap) & 1) == 1)) {
806 mi_page_extend_free(heap, page, heap->tld);
807 mi_assert_internal(mi_page_immediate_available(page));
808 }
809 else
810 #endif
811 {
812 _mi_page_free_collect(page,false);
813 }
814
815 if (mi_page_immediate_available(page)) {
816 page->retire_expire = 0;
817 _PyMem_mi_page_clear_qsbr(page);
818 return page; // fast path
819 }
820 }
821 return mi_page_queue_find_free_ex(heap, pq, true);
822 }
823
824
825 /* -----------------------------------------------------------
826 Users can register a deferred free function called
827 when the `free` list is empty. Since the `local_free`
828 is separate this is deterministically called after
829 a certain number of allocations.
830 ----------------------------------------------------------- */
831
832 static mi_deferred_free_fun* volatile deferred_free = NULL;
833 static _Atomic(void*) deferred_arg; // = NULL
834
_mi_deferred_free(mi_heap_t * heap,bool force)835 void _mi_deferred_free(mi_heap_t* heap, bool force) {
836 heap->tld->heartbeat++;
837 if (deferred_free != NULL && !heap->tld->recurse) {
838 heap->tld->recurse = true;
839 deferred_free(force, heap->tld->heartbeat, mi_atomic_load_ptr_relaxed(void,&deferred_arg));
840 heap->tld->recurse = false;
841 }
842 }
843
mi_register_deferred_free(mi_deferred_free_fun * fn,void * arg)844 void mi_register_deferred_free(mi_deferred_free_fun* fn, void* arg) mi_attr_noexcept {
845 deferred_free = fn;
846 mi_atomic_store_ptr_release(void,&deferred_arg, arg);
847 }
848
849
850 /* -----------------------------------------------------------
851 General allocation
852 ----------------------------------------------------------- */
853
854 // Large and huge page allocation.
855 // Huge pages are allocated directly without being in a queue.
856 // Because huge pages contain just one block, and the segment contains
857 // just that page, we always treat them as abandoned and any thread
858 // that frees the block can free the whole page and segment directly.
859 // Huge pages are also use if the requested alignment is very large (> MI_ALIGNMENT_MAX).
mi_large_huge_page_alloc(mi_heap_t * heap,size_t size,size_t page_alignment)860 static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t page_alignment) {
861 size_t block_size = _mi_os_good_alloc_size(size);
862 mi_assert_internal(mi_bin(block_size) == MI_BIN_HUGE || page_alignment > 0);
863 bool is_huge = (block_size > MI_LARGE_OBJ_SIZE_MAX || page_alignment > 0);
864 #if MI_HUGE_PAGE_ABANDON
865 mi_page_queue_t* pq = (is_huge ? NULL : mi_page_queue(heap, block_size));
866 #else
867 mi_page_queue_t* pq = mi_page_queue(heap, is_huge ? MI_HUGE_BLOCK_SIZE : block_size); // not block_size as that can be low if the page_alignment > 0
868 mi_assert_internal(!is_huge || mi_page_queue_is_huge(pq));
869 #endif
870 mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment);
871 if (page != NULL) {
872 mi_assert_internal(mi_page_immediate_available(page));
873
874 if (is_huge) {
875 mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
876 mi_assert_internal(_mi_page_segment(page)->used==1);
877 #if MI_HUGE_PAGE_ABANDON
878 mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue
879 mi_page_set_heap(page, NULL);
880 #endif
881 }
882 else {
883 mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
884 }
885
886 const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding
887 if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
888 mi_heap_stat_increase(heap, large, bsize);
889 mi_heap_stat_counter_increase(heap, large_count, 1);
890 }
891 else {
892 mi_heap_stat_increase(heap, huge, bsize);
893 mi_heap_stat_counter_increase(heap, huge_count, 1);
894 }
895 }
896 return page;
897 }
898
899
900 // Allocate a page
901 // Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
mi_find_page(mi_heap_t * heap,size_t size,size_t huge_alignment)902 static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept {
903 // huge allocation?
904 const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
905 if mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) {
906 if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
907 _mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size);
908 return NULL;
909 }
910 else {
911 _PyMem_mi_heap_collect_qsbr(heap);
912 return mi_large_huge_page_alloc(heap,size,huge_alignment);
913 }
914 }
915 else {
916 // otherwise find a page with free blocks in our size segregated queues
917 #if MI_PADDING
918 mi_assert_internal(size >= MI_PADDING_SIZE);
919 #endif
920 return mi_find_free_page(heap, size);
921 }
922 }
923
924 // Generic allocation routine if the fast path (`alloc.c:mi_page_malloc`) does not succeed.
925 // Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
926 // The `huge_alignment` is normally 0 but is set to a multiple of MI_SEGMENT_SIZE for
927 // very large requested alignments in which case we use a huge segment.
_mi_malloc_generic(mi_heap_t * heap,size_t size,bool zero,size_t huge_alignment)928 void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept
929 {
930 mi_assert_internal(heap != NULL);
931
932 // initialize if necessary
933 if mi_unlikely(!mi_heap_is_initialized(heap)) {
934 heap = mi_heap_get_default(); // calls mi_thread_init
935 if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; }
936 }
937 mi_assert_internal(mi_heap_is_initialized(heap));
938
939 // call potential deferred free routines
940 _mi_deferred_free(heap, false);
941
942 // free delayed frees from other threads (but skip contended ones)
943 _mi_heap_delayed_free_partial(heap);
944
945 // find (or allocate) a page of the right size
946 mi_page_t* page = mi_find_page(heap, size, huge_alignment);
947 if mi_unlikely(page == NULL) { // first time out of memory, try to collect and retry the allocation once more
948 mi_heap_collect(heap, true /* force */);
949 page = mi_find_page(heap, size, huge_alignment);
950 }
951
952 if mi_unlikely(page == NULL) { // out of memory
953 const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
954 _mi_error_message(ENOMEM, "unable to allocate memory (%zu bytes)\n", req_size);
955 return NULL;
956 }
957
958 mi_assert_internal(mi_page_immediate_available(page));
959 mi_assert_internal(mi_page_block_size(page) >= size);
960
961 // and try again, this time succeeding! (i.e. this should never recurse through _mi_page_malloc)
962 if mi_unlikely(zero && page->xblock_size == 0) {
963 // note: we cannot call _mi_page_malloc with zeroing for huge blocks; we zero it afterwards in that case.
964 void* p = _mi_page_malloc(heap, page, size, false);
965 mi_assert_internal(p != NULL);
966 _mi_memzero_aligned(p, mi_page_usable_block_size(page));
967 return p;
968 }
969 else {
970 return _mi_page_malloc(heap, page, size, zero);
971 }
972 }
973