• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1import numpy
2
3import operator_benchmark as op_bench
4
5import torch
6
7
8"""Microbenchmarks for index_select operator."""
9
10# An example input from this configuration is M=4, N=4, dim=0.
11index_select_configs_short = op_bench.config_list(
12    attr_names=["M", "N", "K", "dim"],
13    attrs=[
14        [8, 8, 1, 1],
15        [256, 512, 1, 1],
16        [512, 512, 1, 1],
17        [8, 8, 2, 1],
18        [256, 512, 2, 1],
19        [512, 512, 2, 1],
20    ],
21    cross_product_configs={
22        "device": ["cpu", "cuda"],
23    },
24    tags=["short"],
25)
26
27
28index_select_configs_long = op_bench.cross_product_configs(
29    M=[128, 1024],
30    N=[128, 1024],
31    K=[1, 2],
32    dim=[1],
33    device=["cpu", "cuda"],
34    tags=["long"],
35)
36
37
38class IndexSelectBenchmark(op_bench.TorchBenchmarkBase):
39    def init(self, M, N, K, dim, device):
40        max_val = N
41        numpy.random.seed((1 << 32) - 1)
42        index_dim = numpy.random.randint(0, N)
43        self.inputs = {
44            "input_one": torch.rand(M, N, K, device=device),
45            "dim": dim,
46            "index": torch.tensor(
47                numpy.random.randint(0, max_val, index_dim), device=device
48            ),
49        }
50        self.set_module_name("index_select")
51
52    def forward(self, input_one, dim, index):
53        return torch.index_select(input_one, dim, index)
54
55
56op_bench.generate_pt_test(
57    index_select_configs_short + index_select_configs_long, IndexSelectBenchmark
58)
59
60
61if __name__ == "__main__":
62    op_bench.benchmark_runner.main()
63