• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1import operator_benchmark as op_bench
2
3import torch
4import torch.nn.functional as F
5
6
7"""Microbenchmarks for instancenorm operator."""
8
9instancenorm_configs_short = op_bench.cross_product_configs(
10    dims=(
11        (32, 8, 16),
12        (32, 8, 56, 56),
13    ),
14    tags=["short"],
15)
16
17
18class InstanceNormBenchmark(op_bench.TorchBenchmarkBase):
19    def init(self, dims):
20        num_channels = dims[1]
21        self.inputs = {
22            "input": (torch.rand(*dims) - 0.5) * 256,
23            "weight": torch.rand(num_channels, dtype=torch.float),
24            "bias": torch.rand(num_channels, dtype=torch.float),
25            "eps": 1e-5,
26        }
27
28    def forward(self, input, weight, bias, eps: float):
29        return F.instance_norm(input, weight=weight, bias=bias, eps=eps)
30
31
32op_bench.generate_pt_test(instancenorm_configs_short, InstanceNormBenchmark)
33
34
35if __name__ == "__main__":
36    op_bench.benchmark_runner.main()
37