• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1import operator_benchmark as op_bench
2
3import torch
4
5
6"""Microbenchmarks for the quantized interpolate op.
7
8Note: We are not benchmarking `upsample` as it is being deprecated, and calls
9the `interpolate` anyway.
10"""
11
12qinterpolate_long_configs = op_bench.config_list(
13    attr_names=["M", "N", "K"],
14    attrs=[
15        [512, 512, 512],
16    ],
17    cross_product_configs={
18        "dtype": [torch.quint8, torch.qint8, torch.qint32],
19        "mode": ["nearest", "bilinear"],
20        "scale": [0.5, 1.0, 2.0],
21        "contig": [True],  # TODO: Add `False` after #29435
22    },
23    tags=["long"],
24)
25
26
27qinterpolate_short_configs = op_bench.config_list(
28    attr_names=["M", "N", "K", "dtype", "mode", "scale", "contig"],
29    attrs=[
30        [32, 32, 32, torch.quint8, "nearest", 0.5, True],  # Downsample
31        [32, 32, 32, torch.quint8, "bilinear", 0.5, True],  # Downsample
32        [32, 32, 32, torch.quint8, "nearest", 2.0, True],  # Upsample
33        [32, 32, 32, torch.quint8, "bilinear", 2.0, True],  # Upsample
34        [3, 720, 1280, torch.quint8, "bilinear", 0.83333, True],  # Downsample
35    ],
36    tags=["short"],
37)
38
39
40class QInterpolateBenchmark(op_bench.TorchBenchmarkBase):
41    def init(self, M, N, K, dtype, mode, scale, contig):
42        f_input = (torch.rand(1, M, N, K) - 0.5) * 256
43        scale = 0.1
44        zero_point = 42
45        self.q_input = torch.quantize_per_tensor(
46            f_input, scale=scale, zero_point=zero_point, dtype=dtype
47        )
48        if not contig:
49            permute_dims = list(range(self.q_input.ndim))[::-1]
50            self.q_input = self.q_input.permute(permute_dims)
51
52        self.inputs = {"q_input": self.q_input, "scale_factor": scale, "mode": mode}
53        self.set_module_name("q_interpolate")
54
55    def forward(self, q_input, scale_factor: float, mode: str):
56        return torch.nn.functional.interpolate(
57            q_input, scale_factor=scale_factor, mode=mode
58        )
59
60
61op_bench.generate_pt_test(
62    qinterpolate_short_configs + qinterpolate_long_configs, QInterpolateBenchmark
63)
64
65
66if __name__ == "__main__":
67    op_bench.benchmark_runner.main()
68