• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Owner(s): ["oncall: distributed"]
2
3import sys
4
5import torch
6from torch import distributed as dist
7from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
8from torch.nn import Linear, Module, Sequential
9from torch.optim import SGD
10from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
11from torch.testing._internal.common_fsdp import FSDPTest
12from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
13
14
15if not dist.is_available():
16    print("Distributed not available, skipping tests", file=sys.stderr)
17    sys.exit(0)
18
19if TEST_WITH_DEV_DBG_ASAN:
20    print(
21        "Skip dev-asan as torch + multiprocessing spawn have known issues",
22        file=sys.stderr,
23    )
24    sys.exit(0)
25
26
27class InnerModel(Module):
28    def __init__(self) -> None:
29        super().__init__()
30        self.layers = Sequential(FSDP(Linear(5, 5)))
31
32    def forward(self, x):
33        return self.layers(x)
34
35
36class TestMultipleWrapping(FSDPTest):
37    @skip_if_lt_x_gpu(2)
38    def test_multiple_wrapping(self):
39        """
40        This test simulates wrapping the module after training to run inference.
41        This is required in cases where later in a session, the model is wrapped again in FSDP but
42        contains nested FSDP wrappers within the module.
43        """
44        inner_model = InnerModel()
45        model = FSDP(inner_model).cuda()
46        optim = SGD(model.parameters(), lr=0.1)
47
48        for i in range(3):
49            input = torch.rand((1, 5), dtype=torch.float).cuda()
50            input.requires_grad = True
51            output = model(input)
52            output.sum().backward()
53            optim.step()
54            optim.zero_grad()
55        input = torch.rand((1, 5), dtype=torch.float).cuda()
56        output = model(input)
57
58        # second time to rewrap the inner model
59        rewrapped_model = FSDP(inner_model).cuda()
60        rewrapped_output = rewrapped_model(input)
61
62        self.assertEqual(output, rewrapped_output)
63
64
65if __name__ == "__main__":
66    run_tests()
67