• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# shape: torch.Size([])
2# nnz: 2
3# sparse_dim: 0
4# indices shape: torch.Size([0, 2])
5# values shape: torch.Size([2])
6########## torch.int32 ##########
7# sparse tensor
8tensor(indices=tensor([], size=(0, 2)),
9       values=tensor([0, 1]),
10       device='cuda:0', size=(), nnz=2, dtype=torch.int32,
11       layout=torch.sparse_coo)
12# _indices
13tensor([], device='cuda:0', size=(0, 2), dtype=torch.int64)
14# _values
15tensor([0, 1], device='cuda:0', dtype=torch.int32)
16########## torch.float32 ##########
17# sparse tensor
18tensor(indices=tensor([], size=(0, 2)),
19       values=tensor([0., 1.]),
20       device='cuda:0', size=(), nnz=2, layout=torch.sparse_coo)
21# after requires_grad_
22tensor(indices=tensor([], size=(0, 2)),
23       values=tensor([0., 1.]),
24       device='cuda:0', size=(), nnz=2, layout=torch.sparse_coo,
25       requires_grad=True)
26# after addition
27tensor(indices=tensor([], size=(0, 1)),
28       values=tensor([2.]),
29       device='cuda:0', size=(), nnz=1, layout=torch.sparse_coo,
30       grad_fn=<AddBackward0>)
31# _indices
32tensor([], device='cuda:0', size=(0, 2), dtype=torch.int64)
33# _values
34tensor([0., 1.], device='cuda:0')
35
36# shape: torch.Size([0])
37# nnz: 10
38# sparse_dim: 0
39# indices shape: torch.Size([0, 10])
40# values shape: torch.Size([10, 0])
41########## torch.int32 ##########
42# sparse tensor
43tensor(indices=tensor([], size=(0, 10)),
44       values=tensor([], size=(10, 0)),
45       device='cuda:0', size=(0,), nnz=10, dtype=torch.int32,
46       layout=torch.sparse_coo)
47# _indices
48tensor([], device='cuda:0', size=(0, 10), dtype=torch.int64)
49# _values
50tensor([], device='cuda:0', size=(10, 0), dtype=torch.int32)
51########## torch.float64 ##########
52# sparse tensor
53tensor(indices=tensor([], size=(0, 10)),
54       values=tensor([], size=(10, 0)),
55       device='cuda:0', size=(0,), nnz=10, dtype=torch.float64,
56       layout=torch.sparse_coo)
57# after requires_grad_
58tensor(indices=tensor([], size=(0, 10)),
59       values=tensor([], size=(10, 0)),
60       device='cuda:0', size=(0,), nnz=10, dtype=torch.float64,
61       layout=torch.sparse_coo, requires_grad=True)
62# after addition
63tensor(indices=tensor([], size=(0, 1)),
64       values=tensor([], size=(1, 0)),
65       device='cuda:0', size=(0,), nnz=1, dtype=torch.float64,
66       layout=torch.sparse_coo, grad_fn=<AddBackward0>)
67# _indices
68tensor([], device='cuda:0', size=(0, 10), dtype=torch.int64)
69# _values
70tensor([], device='cuda:0', size=(10, 0), dtype=torch.float64)
71
72# shape: torch.Size([2])
73# nnz: 3
74# sparse_dim: 0
75# indices shape: torch.Size([0, 3])
76# values shape: torch.Size([3, 2])
77########## torch.int32 ##########
78# sparse tensor
79tensor(indices=tensor([], size=(0, 3)),
80       values=tensor([[0, 0],
81                      [0, 1],
82                      [1, 1]]),
83       device='cuda:0', size=(2,), nnz=3, dtype=torch.int32,
84       layout=torch.sparse_coo)
85# _indices
86tensor([], device='cuda:0', size=(0, 3), dtype=torch.int64)
87# _values
88tensor([[0, 0],
89        [0, 1],
90        [1, 1]], device='cuda:0', dtype=torch.int32)
91########## torch.float32 ##########
92# sparse tensor
93tensor(indices=tensor([], size=(0, 3)),
94       values=tensor([[0.0000, 0.3333],
95                      [0.6667, 1.0000],
96                      [1.3333, 1.6667]]),
97       device='cuda:0', size=(2,), nnz=3, layout=torch.sparse_coo)
98# after requires_grad_
99tensor(indices=tensor([], size=(0, 3)),
100       values=tensor([[0.0000, 0.3333],
101                      [0.6667, 1.0000],
102                      [1.3333, 1.6667]]),
103       device='cuda:0', size=(2,), nnz=3, layout=torch.sparse_coo,
104       requires_grad=True)
105# after addition
106tensor(indices=tensor([], size=(0, 1)),
107       values=tensor([[4.0000, 6.0000]]),
108       device='cuda:0', size=(2,), nnz=1, layout=torch.sparse_coo,
109       grad_fn=<AddBackward0>)
110# _indices
111tensor([], device='cuda:0', size=(0, 3), dtype=torch.int64)
112# _values
113tensor([[0.0000, 0.3333],
114        [0.6667, 1.0000],
115        [1.3333, 1.6667]], device='cuda:0')
116
117# shape: torch.Size([100, 3])
118# nnz: 3
119# sparse_dim: 1
120# indices shape: torch.Size([1, 3])
121# values shape: torch.Size([3, 3])
122########## torch.int32 ##########
123# sparse tensor
124tensor(indices=tensor([[0, 1, 2]]),
125       values=tensor([[0, 0, 0],
126                      [0, 0, 1],
127                      [1, 1, 1]]),
128       device='cuda:0', size=(100, 3), nnz=3, dtype=torch.int32,
129       layout=torch.sparse_coo)
130# _indices
131tensor([[0, 1, 2]], device='cuda:0')
132# _values
133tensor([[0, 0, 0],
134        [0, 0, 1],
135        [1, 1, 1]], device='cuda:0', dtype=torch.int32)
136########## torch.float64 ##########
137# sparse tensor
138tensor(indices=tensor([[0, 1, 2]]),
139       values=tensor([[0.0000, 0.2222, 0.4444],
140                      [0.6667, 0.8889, 1.1111],
141                      [1.3333, 1.5556, 1.7778]]),
142       device='cuda:0', size=(100, 3), nnz=3, dtype=torch.float64,
143       layout=torch.sparse_coo)
144# after requires_grad_
145tensor(indices=tensor([[0, 1, 2]]),
146       values=tensor([[0.0000, 0.2222, 0.4444],
147                      [0.6667, 0.8889, 1.1111],
148                      [1.3333, 1.5556, 1.7778]]),
149       device='cuda:0', size=(100, 3), nnz=3, dtype=torch.float64,
150       layout=torch.sparse_coo, requires_grad=True)
151# after addition
152tensor(indices=tensor([[0, 1, 2, 0, 1, 2]]),
153       values=tensor([[0.0000, 0.2222, 0.4444],
154                      [0.6667, 0.8889, 1.1111],
155                      [1.3333, 1.5556, 1.7778],
156                      [0.0000, 0.2222, 0.4444],
157                      [0.6667, 0.8889, 1.1111],
158                      [1.3333, 1.5556, 1.7778]]),
159       device='cuda:0', size=(100, 3), nnz=6, dtype=torch.float64,
160       layout=torch.sparse_coo, grad_fn=<AddBackward0>)
161# _indices
162tensor([[0, 1, 2]], device='cuda:0')
163# _values
164tensor([[0.0000, 0.2222, 0.4444],
165        [0.6667, 0.8889, 1.1111],
166        [1.3333, 1.5556, 1.7778]], device='cuda:0', dtype=torch.float64)
167
168# shape: torch.Size([100, 20, 3])
169# nnz: 0
170# sparse_dim: 2
171# indices shape: torch.Size([2, 0])
172# values shape: torch.Size([0, 3])
173########## torch.int32 ##########
174# sparse tensor
175tensor(indices=tensor([], size=(2, 0)),
176       values=tensor([], size=(0, 3)),
177       device='cuda:0', size=(100, 20, 3), nnz=0, dtype=torch.int32,
178       layout=torch.sparse_coo)
179# _indices
180tensor([], device='cuda:0', size=(2, 0), dtype=torch.int64)
181# _values
182tensor([], device='cuda:0', size=(0, 3), dtype=torch.int32)
183########## torch.float32 ##########
184# sparse tensor
185tensor(indices=tensor([], size=(2, 0)),
186       values=tensor([], size=(0, 3)),
187       device='cuda:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo)
188# after requires_grad_
189tensor(indices=tensor([], size=(2, 0)),
190       values=tensor([], size=(0, 3)),
191       device='cuda:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo,
192       requires_grad=True)
193# after addition
194tensor(indices=tensor([], size=(2, 0)),
195       values=tensor([], size=(0, 3)),
196       device='cuda:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo,
197       grad_fn=<AddBackward0>)
198# _indices
199tensor([], device='cuda:0', size=(2, 0), dtype=torch.int64)
200# _values
201tensor([], device='cuda:0', size=(0, 3))
202
203# shape: torch.Size([10, 0, 3])
204# nnz: 3
205# sparse_dim: 0
206# indices shape: torch.Size([0, 3])
207# values shape: torch.Size([3, 10, 0, 3])
208########## torch.int32 ##########
209# sparse tensor
210tensor(indices=tensor([], size=(0, 3)),
211       values=tensor([], size=(3, 10, 0, 3)),
212       device='cuda:0', size=(10, 0, 3), nnz=3, dtype=torch.int32,
213       layout=torch.sparse_coo)
214# _indices
215tensor([], device='cuda:0', size=(0, 3), dtype=torch.int64)
216# _values
217tensor([], device='cuda:0', size=(3, 10, 0, 3), dtype=torch.int32)
218########## torch.float64 ##########
219# sparse tensor
220tensor(indices=tensor([], size=(0, 3)),
221       values=tensor([], size=(3, 10, 0, 3)),
222       device='cuda:0', size=(10, 0, 3), nnz=3, dtype=torch.float64,
223       layout=torch.sparse_coo)
224# after requires_grad_
225tensor(indices=tensor([], size=(0, 3)),
226       values=tensor([], size=(3, 10, 0, 3)),
227       device='cuda:0', size=(10, 0, 3), nnz=3, dtype=torch.float64,
228       layout=torch.sparse_coo, requires_grad=True)
229# after addition
230tensor(indices=tensor([], size=(0, 1)),
231       values=tensor([], size=(1, 10, 0, 3)),
232       device='cuda:0', size=(10, 0, 3), nnz=1, dtype=torch.float64,
233       layout=torch.sparse_coo, grad_fn=<AddBackward0>)
234# _indices
235tensor([], device='cuda:0', size=(0, 3), dtype=torch.int64)
236# _values
237tensor([], device='cuda:0', size=(3, 10, 0, 3), dtype=torch.float64)
238
239# shape: torch.Size([10, 0, 3])
240# nnz: 0
241# sparse_dim: 0
242# indices shape: torch.Size([0, 0])
243# values shape: torch.Size([0, 10, 0, 3])
244########## torch.int32 ##########
245# sparse tensor
246tensor(indices=tensor([], size=(0, 0)),
247       values=tensor([], size=(0, 10, 0, 3)),
248       device='cuda:0', size=(10, 0, 3), nnz=0, dtype=torch.int32,
249       layout=torch.sparse_coo)
250# _indices
251tensor([], device='cuda:0', size=(0, 0), dtype=torch.int64)
252# _values
253tensor([], device='cuda:0', size=(0, 10, 0, 3), dtype=torch.int32)
254########## torch.float32 ##########
255# sparse tensor
256tensor(indices=tensor([], size=(0, 0)),
257       values=tensor([], size=(0, 10, 0, 3)),
258       device='cuda:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo)
259# after requires_grad_
260tensor(indices=tensor([], size=(0, 0)),
261       values=tensor([], size=(0, 10, 0, 3)),
262       device='cuda:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo,
263       requires_grad=True)
264# after addition
265tensor(indices=tensor([], size=(0, 0)),
266       values=tensor([], size=(0, 10, 0, 3)),
267       device='cuda:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo,
268       grad_fn=<AddBackward0>)
269# _indices
270tensor([], device='cuda:0', size=(0, 0), dtype=torch.int64)
271# _values
272tensor([], device='cuda:0', size=(0, 10, 0, 3))
273