1 // This is a part of Chrono.
2 // See README.md and LICENSE.txt for details.
3
4 //! ISO 8601 date and time with time zone.
5
6 #[cfg(all(feature = "alloc", not(feature = "std"), not(test)))]
7 use alloc::string::String;
8 use core::borrow::Borrow;
9 use core::cmp::Ordering;
10 use core::fmt::Write;
11 use core::ops::{Add, AddAssign, Sub, SubAssign};
12 use core::time::Duration;
13 use core::{fmt, hash, str};
14 #[cfg(feature = "std")]
15 use std::time::{SystemTime, UNIX_EPOCH};
16
17 #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
18 use crate::format::Locale;
19 use crate::format::{
20 parse, parse_and_remainder, parse_rfc3339, Fixed, Item, ParseError, ParseResult, Parsed,
21 StrftimeItems, TOO_LONG,
22 };
23 #[cfg(feature = "alloc")]
24 use crate::format::{write_rfc2822, write_rfc3339, DelayedFormat, SecondsFormat};
25 use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime};
26 #[cfg(feature = "clock")]
27 use crate::offset::Local;
28 use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc};
29 #[allow(deprecated)]
30 use crate::Date;
31 use crate::{expect, try_opt};
32 use crate::{Datelike, Months, TimeDelta, Timelike, Weekday};
33
34 #[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
35 use rkyv::{Archive, Deserialize, Serialize};
36
37 /// documented at re-export site
38 #[cfg(feature = "serde")]
39 pub(super) mod serde;
40
41 #[cfg(test)]
42 mod tests;
43
44 /// ISO 8601 combined date and time with time zone.
45 ///
46 /// There are some constructors implemented here (the `from_*` methods), but
47 /// the general-purpose constructors are all via the methods on the
48 /// [`TimeZone`](./offset/trait.TimeZone.html) implementations.
49 #[derive(Clone)]
50 #[cfg_attr(
51 any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
52 derive(Archive, Deserialize, Serialize),
53 archive(compare(PartialEq, PartialOrd))
54 )]
55 #[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
56 pub struct DateTime<Tz: TimeZone> {
57 datetime: NaiveDateTime,
58 offset: Tz::Offset,
59 }
60
61 /// The minimum possible `DateTime<Utc>`.
62 #[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")]
63 pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC;
64 /// The maximum possible `DateTime<Utc>`.
65 #[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")]
66 pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC;
67
68 impl<Tz: TimeZone> DateTime<Tz> {
69 /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
70 ///
71 /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or
72 /// passing it through FFI.
73 ///
74 /// For regular use you will probably want to use a method such as
75 /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead.
76 ///
77 /// # Example
78 ///
79 /// ```
80 /// # #[cfg(feature = "clock")] {
81 /// use chrono::{DateTime, Local};
82 ///
83 /// let dt = Local::now();
84 /// // Get components
85 /// let naive_utc = dt.naive_utc();
86 /// let offset = dt.offset().clone();
87 /// // Serialize, pass through FFI... and recreate the `DateTime`:
88 /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset);
89 /// assert_eq!(dt, dt_new);
90 /// # }
91 /// ```
92 #[inline]
93 #[must_use]
from_naive_utc_and_offset( datetime: NaiveDateTime, offset: Tz::Offset, ) -> DateTime<Tz>94 pub const fn from_naive_utc_and_offset(
95 datetime: NaiveDateTime,
96 offset: Tz::Offset,
97 ) -> DateTime<Tz> {
98 DateTime { datetime, offset }
99 }
100
101 /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
102 #[inline]
103 #[must_use]
104 #[deprecated(
105 since = "0.4.27",
106 note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead"
107 )]
from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz>108 pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
109 DateTime { datetime, offset }
110 }
111
112 /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`.
113 ///
114 /// # Panics
115 ///
116 /// Panics if the local datetime can't be converted to UTC because it would be out of range.
117 ///
118 /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`,
119 /// and the offset from UTC pushes it beyond that.
120 #[inline]
121 #[must_use]
122 #[deprecated(
123 since = "0.4.27",
124 note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead"
125 )]
from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz>126 pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
127 let datetime_utc = datetime - offset.fix();
128
129 DateTime { datetime: datetime_utc, offset }
130 }
131
132 /// Retrieves the date component with an associated timezone.
133 ///
134 /// Unless you are immediately planning on turning this into a `DateTime`
135 /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method.
136 ///
137 /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it,
138 /// so should be preferred to [`Date`] any time you truly want to operate on dates.
139 ///
140 /// # Panics
141 ///
142 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
143 /// method will panic if the offset from UTC would push the local date outside of the
144 /// representable range of a [`Date`].
145 #[inline]
146 #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")]
147 #[allow(deprecated)]
148 #[must_use]
date(&self) -> Date<Tz>149 pub fn date(&self) -> Date<Tz> {
150 Date::from_utc(self.naive_local().date(), self.offset.clone())
151 }
152
153 /// Retrieves the date component.
154 ///
155 /// # Panics
156 ///
157 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
158 /// method will panic if the offset from UTC would push the local date outside of the
159 /// representable range of a [`NaiveDate`].
160 ///
161 /// # Example
162 ///
163 /// ```
164 /// use chrono::prelude::*;
165 ///
166 /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
167 /// let other: DateTime<FixedOffset> =
168 /// FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
169 /// assert_eq!(date.date_naive(), other.date_naive());
170 /// ```
171 #[inline]
172 #[must_use]
date_naive(&self) -> NaiveDate173 pub fn date_naive(&self) -> NaiveDate {
174 self.naive_local().date()
175 }
176
177 /// Retrieves the time component.
178 #[inline]
179 #[must_use]
time(&self) -> NaiveTime180 pub fn time(&self) -> NaiveTime {
181 self.datetime.time() + self.offset.fix()
182 }
183
184 /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC
185 /// (aka "UNIX timestamp").
186 ///
187 /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed
188 /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`].
189 ///
190 /// ```
191 /// use chrono::{DateTime, TimeZone, Utc};
192 ///
193 /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap();
194 /// assert_eq!(dt.timestamp(), 1431648000);
195 ///
196 /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
197 /// ```
198 #[inline]
199 #[must_use]
timestamp(&self) -> i64200 pub const fn timestamp(&self) -> i64 {
201 let gregorian_day = self.datetime.date().num_days_from_ce() as i64;
202 let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64;
203 (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight
204 }
205
206 /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC.
207 ///
208 /// # Example
209 ///
210 /// ```
211 /// use chrono::{NaiveDate, Utc};
212 ///
213 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
214 /// .unwrap()
215 /// .and_hms_milli_opt(0, 0, 1, 444)
216 /// .unwrap()
217 /// .and_local_timezone(Utc)
218 /// .unwrap();
219 /// assert_eq!(dt.timestamp_millis(), 1_444);
220 ///
221 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
222 /// .unwrap()
223 /// .and_hms_milli_opt(1, 46, 40, 555)
224 /// .unwrap()
225 /// .and_local_timezone(Utc)
226 /// .unwrap();
227 /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
228 /// ```
229 #[inline]
230 #[must_use]
timestamp_millis(&self) -> i64231 pub const fn timestamp_millis(&self) -> i64 {
232 let as_ms = self.timestamp() * 1000;
233 as_ms + self.timestamp_subsec_millis() as i64
234 }
235
236 /// Returns the number of non-leap-microseconds since January 1, 1970 UTC.
237 ///
238 /// # Example
239 ///
240 /// ```
241 /// use chrono::{NaiveDate, Utc};
242 ///
243 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
244 /// .unwrap()
245 /// .and_hms_micro_opt(0, 0, 1, 444)
246 /// .unwrap()
247 /// .and_local_timezone(Utc)
248 /// .unwrap();
249 /// assert_eq!(dt.timestamp_micros(), 1_000_444);
250 ///
251 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
252 /// .unwrap()
253 /// .and_hms_micro_opt(1, 46, 40, 555)
254 /// .unwrap()
255 /// .and_local_timezone(Utc)
256 /// .unwrap();
257 /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
258 /// ```
259 #[inline]
260 #[must_use]
timestamp_micros(&self) -> i64261 pub const fn timestamp_micros(&self) -> i64 {
262 let as_us = self.timestamp() * 1_000_000;
263 as_us + self.timestamp_subsec_micros() as i64
264 }
265
266 /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
267 ///
268 /// # Panics
269 ///
270 /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on
271 /// an out of range `DateTime`.
272 ///
273 /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
274 /// and 2262-04-11T23:47:16.854775807.
275 #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")]
276 #[inline]
277 #[must_use]
timestamp_nanos(&self) -> i64278 pub const fn timestamp_nanos(&self) -> i64 {
279 expect(
280 self.timestamp_nanos_opt(),
281 "value can not be represented in a timestamp with nanosecond precision.",
282 )
283 }
284
285 /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
286 ///
287 /// # Errors
288 ///
289 /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns
290 /// `None` on an out of range `DateTime`.
291 ///
292 /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
293 /// and 2262-04-11T23:47:16.854775807.
294 ///
295 /// # Example
296 ///
297 /// ```
298 /// use chrono::{NaiveDate, Utc};
299 ///
300 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
301 /// .unwrap()
302 /// .and_hms_nano_opt(0, 0, 1, 444)
303 /// .unwrap()
304 /// .and_local_timezone(Utc)
305 /// .unwrap();
306 /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444));
307 ///
308 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
309 /// .unwrap()
310 /// .and_hms_nano_opt(1, 46, 40, 555)
311 /// .unwrap()
312 /// .and_local_timezone(Utc)
313 /// .unwrap();
314 /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555));
315 ///
316 /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
317 /// .unwrap()
318 /// .and_hms_nano_opt(0, 12, 43, 145_224_192)
319 /// .unwrap()
320 /// .and_local_timezone(Utc)
321 /// .unwrap();
322 /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808));
323 ///
324 /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
325 /// .unwrap()
326 /// .and_hms_nano_opt(23, 47, 16, 854_775_807)
327 /// .unwrap()
328 /// .and_local_timezone(Utc)
329 /// .unwrap();
330 /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807));
331 ///
332 /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
333 /// .unwrap()
334 /// .and_hms_nano_opt(0, 12, 43, 145_224_191)
335 /// .unwrap()
336 /// .and_local_timezone(Utc)
337 /// .unwrap();
338 /// assert_eq!(dt.timestamp_nanos_opt(), None);
339 ///
340 /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
341 /// .unwrap()
342 /// .and_hms_nano_opt(23, 47, 16, 854_775_808)
343 /// .unwrap()
344 /// .and_local_timezone(Utc)
345 /// .unwrap();
346 /// assert_eq!(dt.timestamp_nanos_opt(), None);
347 /// ```
348 #[inline]
349 #[must_use]
timestamp_nanos_opt(&self) -> Option<i64>350 pub const fn timestamp_nanos_opt(&self) -> Option<i64> {
351 let mut timestamp = self.timestamp();
352 let mut subsec_nanos = self.timestamp_subsec_nanos() as i64;
353 // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while
354 // the final value can be represented as an `i64`.
355 // As workaround we converting the negative case to:
356 // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)``
357 //
358 // Also see <https://github.com/chronotope/chrono/issues/1289>.
359 if timestamp < 0 {
360 subsec_nanos -= 1_000_000_000;
361 timestamp += 1;
362 }
363 try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos)
364 }
365
366 /// Returns the number of milliseconds since the last second boundary.
367 ///
368 /// In event of a leap second this may exceed 999.
369 #[inline]
370 #[must_use]
timestamp_subsec_millis(&self) -> u32371 pub const fn timestamp_subsec_millis(&self) -> u32 {
372 self.timestamp_subsec_nanos() / 1_000_000
373 }
374
375 /// Returns the number of microseconds since the last second boundary.
376 ///
377 /// In event of a leap second this may exceed 999,999.
378 #[inline]
379 #[must_use]
timestamp_subsec_micros(&self) -> u32380 pub const fn timestamp_subsec_micros(&self) -> u32 {
381 self.timestamp_subsec_nanos() / 1_000
382 }
383
384 /// Returns the number of nanoseconds since the last second boundary
385 ///
386 /// In event of a leap second this may exceed 999,999,999.
387 #[inline]
388 #[must_use]
timestamp_subsec_nanos(&self) -> u32389 pub const fn timestamp_subsec_nanos(&self) -> u32 {
390 self.datetime.time().nanosecond()
391 }
392
393 /// Retrieves an associated offset from UTC.
394 #[inline]
395 #[must_use]
offset(&self) -> &Tz::Offset396 pub const fn offset(&self) -> &Tz::Offset {
397 &self.offset
398 }
399
400 /// Retrieves an associated time zone.
401 #[inline]
402 #[must_use]
timezone(&self) -> Tz403 pub fn timezone(&self) -> Tz {
404 TimeZone::from_offset(&self.offset)
405 }
406
407 /// Changes the associated time zone.
408 /// The returned `DateTime` references the same instant of time from the perspective of the
409 /// provided time zone.
410 #[inline]
411 #[must_use]
with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2>412 pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> {
413 tz.from_utc_datetime(&self.datetime)
414 }
415
416 /// Fix the offset from UTC to its current value, dropping the associated timezone information.
417 /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`.
418 #[inline]
419 #[must_use]
fixed_offset(&self) -> DateTime<FixedOffset>420 pub fn fixed_offset(&self) -> DateTime<FixedOffset> {
421 self.with_timezone(&self.offset().fix())
422 }
423
424 /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone
425 /// information.
426 #[inline]
427 #[must_use]
to_utc(&self) -> DateTime<Utc>428 pub const fn to_utc(&self) -> DateTime<Utc> {
429 DateTime { datetime: self.datetime, offset: Utc }
430 }
431
432 /// Adds given `TimeDelta` to the current date and time.
433 ///
434 /// # Errors
435 ///
436 /// Returns `None` if the resulting date would be out of range.
437 #[inline]
438 #[must_use]
checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>>439 pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
440 let datetime = self.datetime.checked_add_signed(rhs)?;
441 let tz = self.timezone();
442 Some(tz.from_utc_datetime(&datetime))
443 }
444
445 /// Adds given `Months` to the current date and time.
446 ///
447 /// Uses the last day of the month if the day does not exist in the resulting month.
448 ///
449 /// See [`NaiveDate::checked_add_months`] for more details on behavior.
450 ///
451 /// # Errors
452 ///
453 /// Returns `None` if:
454 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
455 /// daylight saving time transition.
456 /// - The resulting UTC datetime would be out of range.
457 /// - The resulting local datetime would be out of range (unless `months` is zero).
458 #[must_use]
checked_add_months(self, months: Months) -> Option<DateTime<Tz>>459 pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> {
460 // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate
461 // the resulting date, with which we can return `Some` even for an out of range local
462 // datetime.
463 self.overflowing_naive_local()
464 .checked_add_months(months)?
465 .and_local_timezone(Tz::from_offset(&self.offset))
466 .single()
467 }
468
469 /// Subtracts given `TimeDelta` from the current date and time.
470 ///
471 /// # Errors
472 ///
473 /// Returns `None` if the resulting date would be out of range.
474 #[inline]
475 #[must_use]
checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>>476 pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
477 let datetime = self.datetime.checked_sub_signed(rhs)?;
478 let tz = self.timezone();
479 Some(tz.from_utc_datetime(&datetime))
480 }
481
482 /// Subtracts given `Months` from the current date and time.
483 ///
484 /// Uses the last day of the month if the day does not exist in the resulting month.
485 ///
486 /// See [`NaiveDate::checked_sub_months`] for more details on behavior.
487 ///
488 /// # Errors
489 ///
490 /// Returns `None` if:
491 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
492 /// daylight saving time transition.
493 /// - The resulting UTC datetime would be out of range.
494 /// - The resulting local datetime would be out of range (unless `months` is zero).
495 #[must_use]
checked_sub_months(self, months: Months) -> Option<DateTime<Tz>>496 pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> {
497 // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate
498 // the resulting date, with which we can return `Some` even for an out of range local
499 // datetime.
500 self.overflowing_naive_local()
501 .checked_sub_months(months)?
502 .and_local_timezone(Tz::from_offset(&self.offset))
503 .single()
504 }
505
506 /// Add a duration in [`Days`] to the date part of the `DateTime`.
507 ///
508 /// # Errors
509 ///
510 /// Returns `None` if:
511 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
512 /// daylight saving time transition.
513 /// - The resulting UTC datetime would be out of range.
514 /// - The resulting local datetime would be out of range (unless `days` is zero).
515 #[must_use]
checked_add_days(self, days: Days) -> Option<Self>516 pub fn checked_add_days(self, days: Days) -> Option<Self> {
517 if days == Days::new(0) {
518 return Some(self);
519 }
520 // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
521 // does not validate the resulting date. This allows us to return `Some` even for an out of
522 // range local datetime when adding `Days(0)`.
523 self.overflowing_naive_local()
524 .checked_add_days(days)
525 .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
526 .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC)
527 }
528
529 /// Subtract a duration in [`Days`] from the date part of the `DateTime`.
530 ///
531 /// # Errors
532 ///
533 /// Returns `None` if:
534 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
535 /// daylight saving time transition.
536 /// - The resulting UTC datetime would be out of range.
537 /// - The resulting local datetime would be out of range (unless `days` is zero).
538 #[must_use]
checked_sub_days(self, days: Days) -> Option<Self>539 pub fn checked_sub_days(self, days: Days) -> Option<Self> {
540 // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
541 // does not validate the resulting date. This allows us to return `Some` even for an out of
542 // range local datetime when adding `Days(0)`.
543 self.overflowing_naive_local()
544 .checked_sub_days(days)
545 .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
546 .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC)
547 }
548
549 /// Subtracts another `DateTime` from the current date and time.
550 /// This does not overflow or underflow at all.
551 #[inline]
552 #[must_use]
signed_duration_since<Tz2: TimeZone>( self, rhs: impl Borrow<DateTime<Tz2>>, ) -> TimeDelta553 pub fn signed_duration_since<Tz2: TimeZone>(
554 self,
555 rhs: impl Borrow<DateTime<Tz2>>,
556 ) -> TimeDelta {
557 self.datetime.signed_duration_since(rhs.borrow().datetime)
558 }
559
560 /// Returns a view to the naive UTC datetime.
561 #[inline]
562 #[must_use]
naive_utc(&self) -> NaiveDateTime563 pub const fn naive_utc(&self) -> NaiveDateTime {
564 self.datetime
565 }
566
567 /// Returns a view to the naive local datetime.
568 ///
569 /// # Panics
570 ///
571 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
572 /// method will panic if the offset from UTC would push the local datetime outside of the
573 /// representable range of a [`NaiveDateTime`].
574 #[inline]
575 #[must_use]
naive_local(&self) -> NaiveDateTime576 pub fn naive_local(&self) -> NaiveDateTime {
577 self.datetime
578 .checked_add_offset(self.offset.fix())
579 .expect("Local time out of range for `NaiveDateTime`")
580 }
581
582 /// Returns the naive local datetime.
583 ///
584 /// This makes use of the buffer space outside of the representable range of values of
585 /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed
586 /// outside chrono.
587 #[inline]
588 #[must_use]
overflowing_naive_local(&self) -> NaiveDateTime589 pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime {
590 self.datetime.overflowing_add_offset(self.offset.fix())
591 }
592
593 /// Retrieve the elapsed years from now to the given [`DateTime`].
594 ///
595 /// # Errors
596 ///
597 /// Returns `None` if `base > self`.
598 #[must_use]
years_since(&self, base: Self) -> Option<u32>599 pub fn years_since(&self, base: Self) -> Option<u32> {
600 let mut years = self.year() - base.year();
601 let earlier_time =
602 (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time());
603
604 years -= match earlier_time {
605 true => 1,
606 false => 0,
607 };
608
609 match years >= 0 {
610 true => Some(years as u32),
611 false => None,
612 }
613 }
614
615 /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`.
616 ///
617 /// # Panics
618 ///
619 /// Panics if the date can not be represented in this format: the year may not be negative and
620 /// can not have more than 4 digits.
621 #[cfg(feature = "alloc")]
622 #[must_use]
to_rfc2822(&self) -> String623 pub fn to_rfc2822(&self) -> String {
624 let mut result = String::with_capacity(32);
625 write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix())
626 .expect("writing rfc2822 datetime to string should never fail");
627 result
628 }
629
630 /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`.
631 #[cfg(feature = "alloc")]
632 #[must_use]
to_rfc3339(&self) -> String633 pub fn to_rfc3339(&self) -> String {
634 // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking.
635 let mut result = String::with_capacity(32);
636 let naive = self.overflowing_naive_local();
637 let offset = self.offset.fix();
638 write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false)
639 .expect("writing rfc3339 datetime to string should never fail");
640 result
641 }
642
643 /// Return an RFC 3339 and ISO 8601 date and time string with subseconds
644 /// formatted as per `SecondsFormat`.
645 ///
646 /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as
647 /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses
648 /// [`Fixed::TimezoneOffsetColon`]
649 ///
650 /// # Examples
651 ///
652 /// ```rust
653 /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate};
654 /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26)
655 /// .unwrap()
656 /// .and_hms_micro_opt(18, 30, 9, 453_829)
657 /// .unwrap()
658 /// .and_utc();
659 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00");
660 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z");
661 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z");
662 ///
663 /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap();
664 /// let dt = pst
665 /// .from_local_datetime(
666 /// &NaiveDate::from_ymd_opt(2018, 1, 26)
667 /// .unwrap()
668 /// .and_hms_micro_opt(10, 30, 9, 453_829)
669 /// .unwrap(),
670 /// )
671 /// .unwrap();
672 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00");
673 /// ```
674 #[cfg(feature = "alloc")]
675 #[must_use]
to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String676 pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String {
677 let mut result = String::with_capacity(38);
678 write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z)
679 .expect("writing rfc3339 datetime to string should never fail");
680 result
681 }
682
683 /// Set the time to a new fixed time on the existing date.
684 ///
685 /// # Errors
686 ///
687 /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a
688 /// `DateTime`, and `with_time` would push the value in UTC out of range.
689 ///
690 /// # Example
691 ///
692 /// ```
693 /// # #[cfg(feature = "clock")] {
694 /// use chrono::{Local, NaiveTime};
695 ///
696 /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap();
697 /// let today_noon = Local::now().with_time(noon);
698 /// let today_midnight = Local::now().with_time(NaiveTime::MIN);
699 ///
700 /// assert_eq!(today_noon.single().unwrap().time(), noon);
701 /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN);
702 /// # }
703 /// ```
704 #[must_use]
with_time(&self, time: NaiveTime) -> LocalResult<Self>705 pub fn with_time(&self, time: NaiveTime) -> LocalResult<Self> {
706 self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time))
707 }
708
709 /// The minimum possible `DateTime<Utc>`.
710 pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc };
711 /// The maximum possible `DateTime<Utc>`.
712 pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc };
713 }
714
715 impl DateTime<Utc> {
716 /// Makes a new `DateTime<Utc>` from the number of non-leap seconds
717 /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
718 /// and the number of nanoseconds since the last whole non-leap second.
719 ///
720 /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and
721 /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos).
722 ///
723 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
724 /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`].
725 ///
726 /// The nanosecond part can exceed 1,000,000,000 in order to represent a
727 /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`.
728 /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
729 ///
730 /// # Errors
731 ///
732 /// Returns `None` on out-of-range number of seconds and/or
733 /// invalid nanosecond, otherwise returns `Some(DateTime {...})`.
734 ///
735 /// # Example
736 ///
737 /// ```
738 /// use chrono::DateTime;
739 ///
740 /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp");
741 ///
742 /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC");
743 /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
744 /// ```
745 #[inline]
746 #[must_use]
from_timestamp(secs: i64, nsecs: u32) -> Option<Self>747 pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
748 let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY;
749 let secs = secs.rem_euclid(86_400);
750 if days < i32::MIN as i64 || days > i32::MAX as i64 {
751 return None;
752 }
753 let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32));
754 let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs));
755 Some(date.and_time(time).and_utc())
756 }
757
758 /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds
759 /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
760 ///
761 /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis).
762 ///
763 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
764 /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`].
765 ///
766 /// # Errors
767 ///
768 /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`.
769 ///
770 /// # Example
771 ///
772 /// ```
773 /// use chrono::DateTime;
774 ///
775 /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp");
776 ///
777 /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC");
778 /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt);
779 /// ```
780 #[inline]
781 #[must_use]
from_timestamp_millis(millis: i64) -> Option<Self>782 pub const fn from_timestamp_millis(millis: i64) -> Option<Self> {
783 let secs = millis.div_euclid(1000);
784 let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000;
785 Self::from_timestamp(secs, nsecs)
786 }
787
788 /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds
789 /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
790 ///
791 /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros).
792 ///
793 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
794 /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`].
795 ///
796 /// # Errors
797 ///
798 /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime`
799 /// (more than ca. 262,000 years away from common era)
800 ///
801 /// # Example
802 ///
803 /// ```
804 /// use chrono::DateTime;
805 ///
806 /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC
807 /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
808 /// assert!(dt.is_some());
809 /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
810 ///
811 /// // Negative timestamps (before the UNIX epoch) are supported as well.
812 /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC
813 /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
814 /// assert!(dt.is_some());
815 /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
816 /// ```
817 #[inline]
818 #[must_use]
from_timestamp_micros(micros: i64) -> Option<Self>819 pub const fn from_timestamp_micros(micros: i64) -> Option<Self> {
820 let secs = micros.div_euclid(1_000_000);
821 let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000;
822 Self::from_timestamp(secs, nsecs)
823 }
824
825 /// Creates a new [`DateTime<Utc>`] from the number of non-leap nanoseconds
826 /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
827 ///
828 /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos).
829 ///
830 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
831 /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`].
832 ///
833 /// The UNIX epoch starts on midnight, January 1, 1970, UTC.
834 ///
835 /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can
836 /// be represented as a `DateTime` this method never fails.
837 ///
838 /// # Example
839 ///
840 /// ```
841 /// use chrono::DateTime;
842 ///
843 /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC
844 /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
845 /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
846 ///
847 /// // Negative timestamps (before the UNIX epoch) are supported as well.
848 /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC
849 /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
850 /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
851 /// ```
852 #[inline]
853 #[must_use]
from_timestamp_nanos(nanos: i64) -> Self854 pub const fn from_timestamp_nanos(nanos: i64) -> Self {
855 let secs = nanos.div_euclid(1_000_000_000);
856 let nsecs = nanos.rem_euclid(1_000_000_000) as u32;
857 expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range")
858 }
859
860 /// The Unix Epoch, 1970-01-01 00:00:00 UTC.
861 pub const UNIX_EPOCH: Self = Self { datetime: NaiveDateTime::UNIX_EPOCH, offset: Utc };
862 }
863
864 impl Default for DateTime<Utc> {
default() -> Self865 fn default() -> Self {
866 Utc.from_utc_datetime(&NaiveDateTime::default())
867 }
868 }
869
870 #[cfg(feature = "clock")]
871 impl Default for DateTime<Local> {
default() -> Self872 fn default() -> Self {
873 Local.from_utc_datetime(&NaiveDateTime::default())
874 }
875 }
876
877 impl Default for DateTime<FixedOffset> {
default() -> Self878 fn default() -> Self {
879 FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default())
880 }
881 }
882
883 /// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
884 impl From<DateTime<Utc>> for DateTime<FixedOffset> {
885 /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
886 ///
887 /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by
888 /// this will be created with a fixed timezone offset of 0.
from(src: DateTime<Utc>) -> Self889 fn from(src: DateTime<Utc>) -> Self {
890 src.with_timezone(&FixedOffset::east_opt(0).unwrap())
891 }
892 }
893
894 /// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance.
895 #[cfg(feature = "clock")]
896 impl From<DateTime<Utc>> for DateTime<Local> {
897 /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance.
898 ///
899 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones.
from(src: DateTime<Utc>) -> Self900 fn from(src: DateTime<Utc>) -> Self {
901 src.with_timezone(&Local)
902 }
903 }
904
905 /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
906 impl From<DateTime<FixedOffset>> for DateTime<Utc> {
907 /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
908 ///
909 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone
910 /// difference.
from(src: DateTime<FixedOffset>) -> Self911 fn from(src: DateTime<FixedOffset>) -> Self {
912 src.with_timezone(&Utc)
913 }
914 }
915
916 /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
917 #[cfg(feature = "clock")]
918 impl From<DateTime<FixedOffset>> for DateTime<Local> {
919 /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
920 ///
921 /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local
922 /// time.
from(src: DateTime<FixedOffset>) -> Self923 fn from(src: DateTime<FixedOffset>) -> Self {
924 src.with_timezone(&Local)
925 }
926 }
927
928 /// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance.
929 #[cfg(feature = "clock")]
930 impl From<DateTime<Local>> for DateTime<Utc> {
931 /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance.
932 ///
933 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in
934 /// timezones.
from(src: DateTime<Local>) -> Self935 fn from(src: DateTime<Local>) -> Self {
936 src.with_timezone(&Utc)
937 }
938 }
939
940 /// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
941 #[cfg(feature = "clock")]
942 impl From<DateTime<Local>> for DateTime<FixedOffset> {
943 /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
944 ///
945 /// Conversion is performed via [`DateTime::with_timezone`].
from(src: DateTime<Local>) -> Self946 fn from(src: DateTime<Local>) -> Self {
947 src.with_timezone(&src.offset().fix())
948 }
949 }
950
951 /// Maps the local datetime to other datetime with given conversion function.
map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>> where F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>,952 fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>>
953 where
954 F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>,
955 {
956 f(dt.overflowing_naive_local())
957 .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single())
958 .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC)
959 }
960
961 impl DateTime<FixedOffset> {
962 /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value.
963 ///
964 /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`)
965 /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`].
966 ///
967 /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP
968 /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in
969 /// 2008.
970 ///
971 /// # Support for the obsolete date format
972 ///
973 /// - A 2-digit year is interpreted to be a year in 1950-2049.
974 /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and
975 /// [Appendix A.5]
976 /// - Single letter 'military' time zone names are parsed as a `-0000` offset.
977 /// They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because
978 /// the meaning is now ambiguous, the standard says they should be be considered as `-0000`
979 /// unless there is out-of-band information confirming their meaning.
980 /// The exception is `Z`, which remains identical to `+0000`.
981 ///
982 /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3
983 /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5
984 ///
985 /// # Example
986 ///
987 /// ```
988 /// # use chrono::{DateTime, FixedOffset, TimeZone};
989 /// assert_eq!(
990 /// DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(),
991 /// FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
992 /// );
993 /// ```
parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>>994 pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> {
995 const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)];
996 let mut parsed = Parsed::new();
997 parse(&mut parsed, s, ITEMS.iter())?;
998 parsed.to_datetime()
999 }
1000
1001 /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value.
1002 ///
1003 /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are
1004 /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a
1005 /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide
1006 /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly
1007 /// encountered variety of RFC 3339 formats.
1008 ///
1009 /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing
1010 /// values in a wide range of formats, only some of which represent actual date-and-time
1011 /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are
1012 /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601
1013 /// values (or the other way around).
parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>>1014 pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> {
1015 let mut parsed = Parsed::new();
1016 let (s, _) = parse_rfc3339(&mut parsed, s)?;
1017 if !s.is_empty() {
1018 return Err(TOO_LONG);
1019 }
1020 parsed.to_datetime()
1021 }
1022
1023 /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value.
1024 ///
1025 /// Note that this method *requires a timezone* in the input string. See
1026 /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str)
1027 /// for a version that does not require a timezone in the to-be-parsed str. The returned
1028 /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone.
1029 ///
1030 /// See the [`format::strftime` module](crate::format::strftime) for supported format
1031 /// sequences.
1032 ///
1033 /// # Example
1034 ///
1035 /// ```rust
1036 /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone};
1037 ///
1038 /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z");
1039 /// assert_eq!(
1040 /// dt,
1041 /// Ok(FixedOffset::east_opt(0)
1042 /// .unwrap()
1043 /// .from_local_datetime(
1044 /// &NaiveDate::from_ymd_opt(1983, 4, 13)
1045 /// .unwrap()
1046 /// .and_hms_milli_opt(12, 9, 14, 274)
1047 /// .unwrap()
1048 /// )
1049 /// .unwrap())
1050 /// );
1051 /// ```
parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>>1052 pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> {
1053 let mut parsed = Parsed::new();
1054 parse(&mut parsed, s, StrftimeItems::new(fmt))?;
1055 parsed.to_datetime()
1056 }
1057
1058 /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a
1059 /// slice with the remaining portion of the string.
1060 ///
1061 /// Note that this method *requires a timezone* in the input string. See
1062 /// [`NaiveDateTime::parse_and_remainder`] for a version that does not
1063 /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`]
1064 /// reflecting the parsed timezone.
1065 ///
1066 /// See the [`format::strftime` module](./format/strftime/index.html) for supported format
1067 /// sequences.
1068 ///
1069 /// Similar to [`parse_from_str`](#method.parse_from_str).
1070 ///
1071 /// # Example
1072 ///
1073 /// ```rust
1074 /// # use chrono::{DateTime, FixedOffset, TimeZone};
1075 /// let (datetime, remainder) = DateTime::parse_and_remainder(
1076 /// "2015-02-18 23:16:09 +0200 trailing text",
1077 /// "%Y-%m-%d %H:%M:%S %z",
1078 /// )
1079 /// .unwrap();
1080 /// assert_eq!(
1081 /// datetime,
1082 /// FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
1083 /// );
1084 /// assert_eq!(remainder, " trailing text");
1085 /// ```
parse_and_remainder<'a>( s: &'a str, fmt: &str, ) -> ParseResult<(DateTime<FixedOffset>, &'a str)>1086 pub fn parse_and_remainder<'a>(
1087 s: &'a str,
1088 fmt: &str,
1089 ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> {
1090 let mut parsed = Parsed::new();
1091 let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
1092 parsed.to_datetime().map(|d| (d, remainder))
1093 }
1094 }
1095
1096 impl<Tz: TimeZone> DateTime<Tz>
1097 where
1098 Tz::Offset: fmt::Display,
1099 {
1100 /// Formats the combined date and time with the specified formatting items.
1101 #[cfg(feature = "alloc")]
1102 #[inline]
1103 #[must_use]
format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> where I: Iterator<Item = B> + Clone, B: Borrow<Item<'a>>,1104 pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
1105 where
1106 I: Iterator<Item = B> + Clone,
1107 B: Borrow<Item<'a>>,
1108 {
1109 let local = self.overflowing_naive_local();
1110 DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items)
1111 }
1112
1113 /// Formats the combined date and time per the specified format string.
1114 ///
1115 /// See the [`crate::format::strftime`] module for the supported escape sequences.
1116 ///
1117 /// # Example
1118 /// ```rust
1119 /// use chrono::prelude::*;
1120 ///
1121 /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap();
1122 /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M"));
1123 /// assert_eq!(formatted, "02/04/2017 12:50");
1124 /// ```
1125 #[cfg(feature = "alloc")]
1126 #[inline]
1127 #[must_use]
format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>1128 pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
1129 self.format_with_items(StrftimeItems::new(fmt))
1130 }
1131
1132 /// Formats the combined date and time with the specified formatting items and locale.
1133 #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1134 #[inline]
1135 #[must_use]
format_localized_with_items<'a, I, B>( &self, items: I, locale: Locale, ) -> DelayedFormat<I> where I: Iterator<Item = B> + Clone, B: Borrow<Item<'a>>,1136 pub fn format_localized_with_items<'a, I, B>(
1137 &self,
1138 items: I,
1139 locale: Locale,
1140 ) -> DelayedFormat<I>
1141 where
1142 I: Iterator<Item = B> + Clone,
1143 B: Borrow<Item<'a>>,
1144 {
1145 let local = self.overflowing_naive_local();
1146 DelayedFormat::new_with_offset_and_locale(
1147 Some(local.date()),
1148 Some(local.time()),
1149 &self.offset,
1150 items,
1151 locale,
1152 )
1153 }
1154
1155 /// Formats the combined date and time per the specified format string and
1156 /// locale.
1157 ///
1158 /// See the [`crate::format::strftime`] module on the supported escape
1159 /// sequences.
1160 #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1161 #[inline]
1162 #[must_use]
format_localized<'a>( &self, fmt: &'a str, locale: Locale, ) -> DelayedFormat<StrftimeItems<'a>>1163 pub fn format_localized<'a>(
1164 &self,
1165 fmt: &'a str,
1166 locale: Locale,
1167 ) -> DelayedFormat<StrftimeItems<'a>> {
1168 self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale)
1169 }
1170 }
1171
1172 impl<Tz: TimeZone> Datelike for DateTime<Tz> {
1173 #[inline]
year(&self) -> i321174 fn year(&self) -> i32 {
1175 self.overflowing_naive_local().year()
1176 }
1177 #[inline]
month(&self) -> u321178 fn month(&self) -> u32 {
1179 self.overflowing_naive_local().month()
1180 }
1181 #[inline]
month0(&self) -> u321182 fn month0(&self) -> u32 {
1183 self.overflowing_naive_local().month0()
1184 }
1185 #[inline]
day(&self) -> u321186 fn day(&self) -> u32 {
1187 self.overflowing_naive_local().day()
1188 }
1189 #[inline]
day0(&self) -> u321190 fn day0(&self) -> u32 {
1191 self.overflowing_naive_local().day0()
1192 }
1193 #[inline]
ordinal(&self) -> u321194 fn ordinal(&self) -> u32 {
1195 self.overflowing_naive_local().ordinal()
1196 }
1197 #[inline]
ordinal0(&self) -> u321198 fn ordinal0(&self) -> u32 {
1199 self.overflowing_naive_local().ordinal0()
1200 }
1201 #[inline]
weekday(&self) -> Weekday1202 fn weekday(&self) -> Weekday {
1203 self.overflowing_naive_local().weekday()
1204 }
1205 #[inline]
iso_week(&self) -> IsoWeek1206 fn iso_week(&self) -> IsoWeek {
1207 self.overflowing_naive_local().iso_week()
1208 }
1209
1210 #[inline]
1211 /// Makes a new `DateTime` with the year number changed, while keeping the same month and day.
1212 ///
1213 /// See also the [`NaiveDate::with_year`] method.
1214 ///
1215 /// # Errors
1216 ///
1217 /// Returns `None` if:
1218 /// - The resulting date does not exist (February 29 in a non-leap year).
1219 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1220 /// daylight saving time transition.
1221 /// - The resulting UTC datetime would be out of range.
1222 /// - The resulting local datetime would be out of range (unless the year remains the same).
with_year(&self, year: i32) -> Option<DateTime<Tz>>1223 fn with_year(&self, year: i32) -> Option<DateTime<Tz>> {
1224 map_local(self, |dt| match dt.year() == year {
1225 true => Some(dt),
1226 false => dt.with_year(year),
1227 })
1228 }
1229
1230 /// Makes a new `DateTime` with the month number (starting from 1) changed.
1231 ///
1232 /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist.
1233 ///
1234 /// See also the [`NaiveDate::with_month`] method.
1235 ///
1236 /// # Errors
1237 ///
1238 /// Returns `None` if:
1239 /// - The resulting date does not exist (for example `month(4)` when day of the month is 31).
1240 /// - The value for `month` is invalid.
1241 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1242 /// daylight saving time transition.
1243 #[inline]
with_month(&self, month: u32) -> Option<DateTime<Tz>>1244 fn with_month(&self, month: u32) -> Option<DateTime<Tz>> {
1245 map_local(self, |datetime| datetime.with_month(month))
1246 }
1247
1248 /// Makes a new `DateTime` with the month number (starting from 0) changed.
1249 ///
1250 /// See also the [`NaiveDate::with_month0`] method.
1251 ///
1252 /// # Errors
1253 ///
1254 /// Returns `None` if:
1255 /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31).
1256 /// - The value for `month0` is invalid.
1257 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1258 /// daylight saving time transition.
1259 #[inline]
with_month0(&self, month0: u32) -> Option<DateTime<Tz>>1260 fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> {
1261 map_local(self, |datetime| datetime.with_month0(month0))
1262 }
1263
1264 /// Makes a new `DateTime` with the day of month (starting from 1) changed.
1265 ///
1266 /// See also the [`NaiveDate::with_day`] method.
1267 ///
1268 /// # Errors
1269 ///
1270 /// Returns `None` if:
1271 /// - The resulting date does not exist (for example `day(31)` in April).
1272 /// - The value for `day` is invalid.
1273 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1274 /// daylight saving time transition.
1275 #[inline]
with_day(&self, day: u32) -> Option<DateTime<Tz>>1276 fn with_day(&self, day: u32) -> Option<DateTime<Tz>> {
1277 map_local(self, |datetime| datetime.with_day(day))
1278 }
1279
1280 /// Makes a new `DateTime` with the day of month (starting from 0) changed.
1281 ///
1282 /// See also the [`NaiveDate::with_day0`] method.
1283 ///
1284 /// # Errors
1285 ///
1286 /// Returns `None` if:
1287 /// - The resulting date does not exist (for example `day(30)` in April).
1288 /// - The value for `day0` is invalid.
1289 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1290 /// daylight saving time transition.
1291 #[inline]
with_day0(&self, day0: u32) -> Option<DateTime<Tz>>1292 fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> {
1293 map_local(self, |datetime| datetime.with_day0(day0))
1294 }
1295
1296 /// Makes a new `DateTime` with the day of year (starting from 1) changed.
1297 ///
1298 /// See also the [`NaiveDate::with_ordinal`] method.
1299 ///
1300 /// # Errors
1301 ///
1302 /// Returns `None` if:
1303 /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year).
1304 /// - The value for `ordinal` is invalid.
1305 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1306 /// daylight saving time transition.
1307 #[inline]
with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>>1308 fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> {
1309 map_local(self, |datetime| datetime.with_ordinal(ordinal))
1310 }
1311
1312 /// Makes a new `DateTime` with the day of year (starting from 0) changed.
1313 ///
1314 /// See also the [`NaiveDate::with_ordinal0`] method.
1315 ///
1316 /// # Errors
1317 ///
1318 /// Returns `None` if:
1319 /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year).
1320 /// - The value for `ordinal0` is invalid.
1321 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1322 /// daylight saving time transition.
1323 #[inline]
with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>>1324 fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> {
1325 map_local(self, |datetime| datetime.with_ordinal0(ordinal0))
1326 }
1327 }
1328
1329 impl<Tz: TimeZone> Timelike for DateTime<Tz> {
1330 #[inline]
hour(&self) -> u321331 fn hour(&self) -> u32 {
1332 self.overflowing_naive_local().hour()
1333 }
1334 #[inline]
minute(&self) -> u321335 fn minute(&self) -> u32 {
1336 self.overflowing_naive_local().minute()
1337 }
1338 #[inline]
second(&self) -> u321339 fn second(&self) -> u32 {
1340 self.overflowing_naive_local().second()
1341 }
1342 #[inline]
nanosecond(&self) -> u321343 fn nanosecond(&self) -> u32 {
1344 self.overflowing_naive_local().nanosecond()
1345 }
1346
1347 /// Makes a new `DateTime` with the hour number changed.
1348 ///
1349 /// See also the [`NaiveTime::with_hour`] method.
1350 ///
1351 /// # Errors
1352 ///
1353 /// Returns `None` if:
1354 /// - The value for `hour` is invalid.
1355 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1356 /// daylight saving time transition.
1357 #[inline]
with_hour(&self, hour: u32) -> Option<DateTime<Tz>>1358 fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> {
1359 map_local(self, |datetime| datetime.with_hour(hour))
1360 }
1361
1362 /// Makes a new `DateTime` with the minute number changed.
1363 ///
1364 /// See also the [`NaiveTime::with_minute`] method.
1365 ///
1366 /// # Errors
1367 ///
1368 /// - The value for `minute` is invalid.
1369 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1370 /// daylight saving time transition.
1371 #[inline]
with_minute(&self, min: u32) -> Option<DateTime<Tz>>1372 fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> {
1373 map_local(self, |datetime| datetime.with_minute(min))
1374 }
1375
1376 /// Makes a new `DateTime` with the second number changed.
1377 ///
1378 /// As with the [`second`](#method.second) method,
1379 /// the input range is restricted to 0 through 59.
1380 ///
1381 /// See also the [`NaiveTime::with_second`] method.
1382 ///
1383 /// # Errors
1384 ///
1385 /// Returns `None` if:
1386 /// - The value for `second` is invalid.
1387 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1388 /// daylight saving time transition.
1389 #[inline]
with_second(&self, sec: u32) -> Option<DateTime<Tz>>1390 fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> {
1391 map_local(self, |datetime| datetime.with_second(sec))
1392 }
1393
1394 /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed.
1395 ///
1396 /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
1397 /// As with the [`NaiveDateTime::nanosecond`] method,
1398 /// the input range can exceed 1,000,000,000 for leap seconds.
1399 ///
1400 /// See also the [`NaiveTime::with_nanosecond`] method.
1401 ///
1402 /// # Errors
1403 ///
1404 /// Returns `None` if `nanosecond >= 2,000,000,000`.
1405 #[inline]
with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>>1406 fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> {
1407 map_local(self, |datetime| datetime.with_nanosecond(nano))
1408 }
1409 }
1410
1411 // We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can
1412 // be `Copy`. Implement it manually if the two types we do have are `Copy`.
1413 impl<Tz: TimeZone> Copy for DateTime<Tz>
1414 where
1415 <Tz as TimeZone>::Offset: Copy,
1416 NaiveDateTime: Copy,
1417 {
1418 }
1419
1420 impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> {
eq(&self, other: &DateTime<Tz2>) -> bool1421 fn eq(&self, other: &DateTime<Tz2>) -> bool {
1422 self.datetime == other.datetime
1423 }
1424 }
1425
1426 impl<Tz: TimeZone> Eq for DateTime<Tz> {}
1427
1428 impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> {
1429 /// Compare two DateTimes based on their true time, ignoring time zones
1430 ///
1431 /// # Example
1432 ///
1433 /// ```
1434 /// use chrono::prelude::*;
1435 ///
1436 /// let earlier = Utc
1437 /// .with_ymd_and_hms(2015, 5, 15, 2, 0, 0)
1438 /// .unwrap()
1439 /// .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap());
1440 /// let later = Utc
1441 /// .with_ymd_and_hms(2015, 5, 15, 3, 0, 0)
1442 /// .unwrap()
1443 /// .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap());
1444 ///
1445 /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00");
1446 /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00");
1447 ///
1448 /// assert!(later > earlier);
1449 /// ```
partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering>1450 fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> {
1451 self.datetime.partial_cmp(&other.datetime)
1452 }
1453 }
1454
1455 impl<Tz: TimeZone> Ord for DateTime<Tz> {
cmp(&self, other: &DateTime<Tz>) -> Ordering1456 fn cmp(&self, other: &DateTime<Tz>) -> Ordering {
1457 self.datetime.cmp(&other.datetime)
1458 }
1459 }
1460
1461 impl<Tz: TimeZone> hash::Hash for DateTime<Tz> {
hash<H: hash::Hasher>(&self, state: &mut H)1462 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1463 self.datetime.hash(state)
1464 }
1465 }
1466
1467 /// Add `TimeDelta` to `DateTime`.
1468 ///
1469 /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1470 /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1471 /// the assumption becomes that **there is exactly a single leap second ever**.
1472 ///
1473 /// # Panics
1474 ///
1475 /// Panics if the resulting date would be out of range.
1476 /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1477 impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> {
1478 type Output = DateTime<Tz>;
1479
1480 #[inline]
add(self, rhs: TimeDelta) -> DateTime<Tz>1481 fn add(self, rhs: TimeDelta) -> DateTime<Tz> {
1482 self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1483 }
1484 }
1485
1486 /// Add `std::time::Duration` to `DateTime`.
1487 ///
1488 /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1489 /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1490 /// the assumption becomes that **there is exactly a single leap second ever**.
1491 ///
1492 /// # Panics
1493 ///
1494 /// Panics if the resulting date would be out of range.
1495 /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1496 impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> {
1497 type Output = DateTime<Tz>;
1498
1499 #[inline]
add(self, rhs: Duration) -> DateTime<Tz>1500 fn add(self, rhs: Duration) -> DateTime<Tz> {
1501 let rhs = TimeDelta::from_std(rhs)
1502 .expect("overflow converting from core::time::Duration to TimeDelta");
1503 self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1504 }
1505 }
1506
1507 /// Add-assign `chrono::Duration` to `DateTime`.
1508 ///
1509 /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1510 /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1511 /// the assumption becomes that **there is exactly a single leap second ever**.
1512 ///
1513 /// # Panics
1514 ///
1515 /// Panics if the resulting date would be out of range.
1516 /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1517 impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> {
1518 #[inline]
add_assign(&mut self, rhs: TimeDelta)1519 fn add_assign(&mut self, rhs: TimeDelta) {
1520 let datetime =
1521 self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed");
1522 let tz = self.timezone();
1523 *self = tz.from_utc_datetime(&datetime);
1524 }
1525 }
1526
1527 /// Add-assign `std::time::Duration` to `DateTime`.
1528 ///
1529 /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1530 /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1531 /// the assumption becomes that **there is exactly a single leap second ever**.
1532 ///
1533 /// # Panics
1534 ///
1535 /// Panics if the resulting date would be out of range.
1536 /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1537 impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> {
1538 #[inline]
add_assign(&mut self, rhs: Duration)1539 fn add_assign(&mut self, rhs: Duration) {
1540 let rhs = TimeDelta::from_std(rhs)
1541 .expect("overflow converting from core::time::Duration to TimeDelta");
1542 *self += rhs;
1543 }
1544 }
1545
1546 /// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged).
1547 ///
1548 /// # Panics
1549 ///
1550 /// Panics if the resulting date would be out of range.
1551 impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> {
1552 type Output = DateTime<Tz>;
1553
1554 #[inline]
add(mut self, rhs: FixedOffset) -> DateTime<Tz>1555 fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1556 self.datetime =
1557 self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed");
1558 self
1559 }
1560 }
1561
1562 /// Add `Months` to `DateTime`.
1563 ///
1564 /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for
1565 /// details.
1566 ///
1567 /// # Panics
1568 ///
1569 /// Panics if:
1570 /// - The resulting date would be out of range.
1571 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1572 /// daylight saving time transition.
1573 ///
1574 /// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead.
1575 impl<Tz: TimeZone> Add<Months> for DateTime<Tz> {
1576 type Output = DateTime<Tz>;
1577
add(self, rhs: Months) -> Self::Output1578 fn add(self, rhs: Months) -> Self::Output {
1579 self.checked_add_months(rhs).expect("`DateTime + Months` out of range")
1580 }
1581 }
1582
1583 /// Subtract `TimeDelta` from `DateTime`.
1584 ///
1585 /// This is the same as the addition with a negated `TimeDelta`.
1586 ///
1587 /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1588 /// second ever**, except when the `DateTime` itself represents a leap second in which case
1589 /// the assumption becomes that **there is exactly a single leap second ever**.
1590 ///
1591 /// # Panics
1592 ///
1593 /// Panics if the resulting date would be out of range.
1594 /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1595 impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> {
1596 type Output = DateTime<Tz>;
1597
1598 #[inline]
sub(self, rhs: TimeDelta) -> DateTime<Tz>1599 fn sub(self, rhs: TimeDelta) -> DateTime<Tz> {
1600 self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1601 }
1602 }
1603
1604 /// Subtract `std::time::Duration` from `DateTime`.
1605 ///
1606 /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1607 /// second ever**, except when the `DateTime` itself represents a leap second in which case
1608 /// the assumption becomes that **there is exactly a single leap second ever**.
1609 ///
1610 /// # Panics
1611 ///
1612 /// Panics if the resulting date would be out of range.
1613 /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1614 impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> {
1615 type Output = DateTime<Tz>;
1616
1617 #[inline]
sub(self, rhs: Duration) -> DateTime<Tz>1618 fn sub(self, rhs: Duration) -> DateTime<Tz> {
1619 let rhs = TimeDelta::from_std(rhs)
1620 .expect("overflow converting from core::time::Duration to TimeDelta");
1621 self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1622 }
1623 }
1624
1625 /// Subtract-assign `TimeDelta` from `DateTime`.
1626 ///
1627 /// This is the same as the addition with a negated `TimeDelta`.
1628 ///
1629 /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1630 /// second ever**, except when the `DateTime` itself represents a leap second in which case
1631 /// the assumption becomes that **there is exactly a single leap second ever**.
1632 ///
1633 /// # Panics
1634 ///
1635 /// Panics if the resulting date would be out of range.
1636 /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1637 impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> {
1638 #[inline]
sub_assign(&mut self, rhs: TimeDelta)1639 fn sub_assign(&mut self, rhs: TimeDelta) {
1640 let datetime =
1641 self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed");
1642 let tz = self.timezone();
1643 *self = tz.from_utc_datetime(&datetime)
1644 }
1645 }
1646
1647 /// Subtract-assign `std::time::Duration` from `DateTime`.
1648 ///
1649 /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1650 /// second ever**, except when the `DateTime` itself represents a leap second in which case
1651 /// the assumption becomes that **there is exactly a single leap second ever**.
1652 ///
1653 /// # Panics
1654 ///
1655 /// Panics if the resulting date would be out of range.
1656 /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1657 impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> {
1658 #[inline]
sub_assign(&mut self, rhs: Duration)1659 fn sub_assign(&mut self, rhs: Duration) {
1660 let rhs = TimeDelta::from_std(rhs)
1661 .expect("overflow converting from core::time::Duration to TimeDelta");
1662 *self -= rhs;
1663 }
1664 }
1665
1666 /// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged).
1667 ///
1668 /// # Panics
1669 ///
1670 /// Panics if the resulting date would be out of range.
1671 impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> {
1672 type Output = DateTime<Tz>;
1673
1674 #[inline]
sub(mut self, rhs: FixedOffset) -> DateTime<Tz>1675 fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1676 self.datetime =
1677 self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed");
1678 self
1679 }
1680 }
1681
1682 /// Subtract `Months` from `DateTime`.
1683 ///
1684 /// The result will be clamped to valid days in the resulting month, see
1685 /// [`DateTime<Tz>::checked_sub_months`] for details.
1686 ///
1687 /// # Panics
1688 ///
1689 /// Panics if:
1690 /// - The resulting date would be out of range.
1691 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1692 /// daylight saving time transition.
1693 ///
1694 /// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead.
1695 impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> {
1696 type Output = DateTime<Tz>;
1697
sub(self, rhs: Months) -> Self::Output1698 fn sub(self, rhs: Months) -> Self::Output {
1699 self.checked_sub_months(rhs).expect("`DateTime - Months` out of range")
1700 }
1701 }
1702
1703 impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> {
1704 type Output = TimeDelta;
1705
1706 #[inline]
sub(self, rhs: DateTime<Tz>) -> TimeDelta1707 fn sub(self, rhs: DateTime<Tz>) -> TimeDelta {
1708 self.signed_duration_since(rhs)
1709 }
1710 }
1711
1712 impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> {
1713 type Output = TimeDelta;
1714
1715 #[inline]
sub(self, rhs: &DateTime<Tz>) -> TimeDelta1716 fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta {
1717 self.signed_duration_since(rhs)
1718 }
1719 }
1720
1721 /// Add `Days` to `NaiveDateTime`.
1722 ///
1723 /// # Panics
1724 ///
1725 /// Panics if:
1726 /// - The resulting date would be out of range.
1727 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1728 /// daylight saving time transition.
1729 ///
1730 /// Strongly consider using `DateTime<Tz>::checked_add_days` to get an `Option` instead.
1731 impl<Tz: TimeZone> Add<Days> for DateTime<Tz> {
1732 type Output = DateTime<Tz>;
1733
add(self, days: Days) -> Self::Output1734 fn add(self, days: Days) -> Self::Output {
1735 self.checked_add_days(days).expect("`DateTime + Days` out of range")
1736 }
1737 }
1738
1739 /// Subtract `Days` from `DateTime`.
1740 ///
1741 /// # Panics
1742 ///
1743 /// Panics if:
1744 /// - The resulting date would be out of range.
1745 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1746 /// daylight saving time transition.
1747 ///
1748 /// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead.
1749 impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> {
1750 type Output = DateTime<Tz>;
1751
sub(self, days: Days) -> Self::Output1752 fn sub(self, days: Days) -> Self::Output {
1753 self.checked_sub_days(days).expect("`DateTime - Days` out of range")
1754 }
1755 }
1756
1757 impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1758 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1759 self.overflowing_naive_local().fmt(f)?;
1760 self.offset.fmt(f)
1761 }
1762 }
1763
1764 // `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because
1765 // deriving a trait recursively does not propagate trait defined associated types with their own
1766 // constraints:
1767 // In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived`
1768 // cannot be formatted using `{:?}` because it doesn't implement `Debug`.
1769 // See below for further discussion:
1770 // * https://github.com/rust-lang/rust/issues/26925
1771 // * https://github.com/rkyv/rkyv/issues/333
1772 // * https://github.com/dtolnay/syn/issues/370
1773 #[cfg(feature = "rkyv-validation")]
1774 impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz>
1775 where
1776 Tz: Archive,
1777 <Tz as Archive>::Archived: fmt::Debug,
1778 <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug,
1779 <Tz as TimeZone>::Offset: fmt::Debug + Archive,
1780 {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1781 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1782 f.debug_struct("ArchivedDateTime")
1783 .field("datetime", &self.datetime)
1784 .field("offset", &self.offset)
1785 .finish()
1786 }
1787 }
1788
1789 impl<Tz: TimeZone> fmt::Display for DateTime<Tz>
1790 where
1791 Tz::Offset: fmt::Display,
1792 {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1793 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1794 self.overflowing_naive_local().fmt(f)?;
1795 f.write_char(' ')?;
1796 self.offset.fmt(f)
1797 }
1798 }
1799
1800 /// Accepts a relaxed form of RFC3339.
1801 /// A space or a 'T' are accepted as the separator between the date and time
1802 /// parts.
1803 ///
1804 /// All of these examples are equivalent:
1805 /// ```
1806 /// # use chrono::{DateTime, Utc};
1807 /// "2012-12-12T12:12:12Z".parse::<DateTime<Utc>>()?;
1808 /// "2012-12-12 12:12:12Z".parse::<DateTime<Utc>>()?;
1809 /// "2012-12-12 12:12:12+0000".parse::<DateTime<Utc>>()?;
1810 /// "2012-12-12 12:12:12+00:00".parse::<DateTime<Utc>>()?;
1811 /// # Ok::<(), chrono::ParseError>(())
1812 /// ```
1813 impl str::FromStr for DateTime<Utc> {
1814 type Err = ParseError;
1815
from_str(s: &str) -> ParseResult<DateTime<Utc>>1816 fn from_str(s: &str) -> ParseResult<DateTime<Utc>> {
1817 s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Utc))
1818 }
1819 }
1820
1821 /// Accepts a relaxed form of RFC3339.
1822 /// A space or a 'T' are accepted as the separator between the date and time
1823 /// parts.
1824 ///
1825 /// All of these examples are equivalent:
1826 /// ```
1827 /// # use chrono::{DateTime, Local};
1828 /// "2012-12-12T12:12:12Z".parse::<DateTime<Local>>()?;
1829 /// "2012-12-12 12:12:12Z".parse::<DateTime<Local>>()?;
1830 /// "2012-12-12 12:12:12+0000".parse::<DateTime<Local>>()?;
1831 /// "2012-12-12 12:12:12+00:00".parse::<DateTime<Local>>()?;
1832 /// # Ok::<(), chrono::ParseError>(())
1833 /// ```
1834 #[cfg(feature = "clock")]
1835 impl str::FromStr for DateTime<Local> {
1836 type Err = ParseError;
1837
from_str(s: &str) -> ParseResult<DateTime<Local>>1838 fn from_str(s: &str) -> ParseResult<DateTime<Local>> {
1839 s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Local))
1840 }
1841 }
1842
1843 #[cfg(feature = "std")]
1844 impl From<SystemTime> for DateTime<Utc> {
from(t: SystemTime) -> DateTime<Utc>1845 fn from(t: SystemTime) -> DateTime<Utc> {
1846 let (sec, nsec) = match t.duration_since(UNIX_EPOCH) {
1847 Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()),
1848 Err(e) => {
1849 // unlikely but should be handled
1850 let dur = e.duration();
1851 let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos());
1852 if nsec == 0 {
1853 (-sec, 0)
1854 } else {
1855 (-sec - 1, 1_000_000_000 - nsec)
1856 }
1857 }
1858 };
1859 Utc.timestamp_opt(sec, nsec).unwrap()
1860 }
1861 }
1862
1863 #[cfg(feature = "clock")]
1864 impl From<SystemTime> for DateTime<Local> {
from(t: SystemTime) -> DateTime<Local>1865 fn from(t: SystemTime) -> DateTime<Local> {
1866 DateTime::<Utc>::from(t).with_timezone(&Local)
1867 }
1868 }
1869
1870 #[cfg(feature = "std")]
1871 impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime {
from(dt: DateTime<Tz>) -> SystemTime1872 fn from(dt: DateTime<Tz>) -> SystemTime {
1873 let sec = dt.timestamp();
1874 let nsec = dt.timestamp_subsec_nanos();
1875 if sec < 0 {
1876 // unlikely but should be handled
1877 UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec)
1878 } else {
1879 UNIX_EPOCH + Duration::new(sec as u64, nsec)
1880 }
1881 }
1882 }
1883
1884 #[cfg(all(
1885 target_arch = "wasm32",
1886 feature = "wasmbind",
1887 not(any(target_os = "emscripten", target_os = "wasi"))
1888 ))]
1889 impl From<js_sys::Date> for DateTime<Utc> {
from(date: js_sys::Date) -> DateTime<Utc>1890 fn from(date: js_sys::Date) -> DateTime<Utc> {
1891 DateTime::<Utc>::from(&date)
1892 }
1893 }
1894
1895 #[cfg(all(
1896 target_arch = "wasm32",
1897 feature = "wasmbind",
1898 not(any(target_os = "emscripten", target_os = "wasi"))
1899 ))]
1900 impl From<&js_sys::Date> for DateTime<Utc> {
from(date: &js_sys::Date) -> DateTime<Utc>1901 fn from(date: &js_sys::Date) -> DateTime<Utc> {
1902 Utc.timestamp_millis_opt(date.get_time() as i64).unwrap()
1903 }
1904 }
1905
1906 #[cfg(all(
1907 target_arch = "wasm32",
1908 feature = "wasmbind",
1909 not(any(target_os = "emscripten", target_os = "wasi"))
1910 ))]
1911 impl From<DateTime<Utc>> for js_sys::Date {
1912 /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy,
1913 /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000
1914 /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS.
from(date: DateTime<Utc>) -> js_sys::Date1915 fn from(date: DateTime<Utc>) -> js_sys::Date {
1916 let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64);
1917 js_sys::Date::new(&js_millis)
1918 }
1919 }
1920
1921 // Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to
1922 // the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary.
1923 #[cfg(all(feature = "arbitrary", feature = "std"))]
1924 impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz>
1925 where
1926 Tz: TimeZone,
1927 <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>,
1928 {
arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>>1929 fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> {
1930 let datetime = NaiveDateTime::arbitrary(u)?;
1931 let offset = <Tz as TimeZone>::Offset::arbitrary(u)?;
1932 Ok(DateTime::from_naive_utc_and_offset(datetime, offset))
1933 }
1934 }
1935
1936 /// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0.
1937 /// 4 full leap year cycles until December 31, 1600 4 * 146097 = 584388
1938 /// 1 day until January 1, 1601 1
1939 /// 369 years until Januari 1, 1970 369 * 365 = 134685
1940 /// of which floor(369 / 4) are leap years floor(369 / 4) = 92
1941 /// except for 1700, 1800 and 1900 -3 +
1942 /// --------
1943 /// 719163
1944 const UNIX_EPOCH_DAY: i64 = 719_163;
1945