• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! The global epoch
2 //!
3 //! The last bit in this number is unused and is always zero. Every so often the global epoch is
4 //! incremented, i.e. we say it "advances". A pinned participant may advance the global epoch only
5 //! if all currently pinned participants have been pinned in the current epoch.
6 //!
7 //! If an object became garbage in some epoch, then we can be sure that after two advancements no
8 //! participant will hold a reference to it. That is the crux of safe memory reclamation.
9 
10 use crate::primitive::sync::atomic::{AtomicUsize, Ordering};
11 
12 /// An epoch that can be marked as pinned or unpinned.
13 ///
14 /// Internally, the epoch is represented as an integer that wraps around at some unspecified point
15 /// and a flag that represents whether it is pinned or unpinned.
16 #[derive(Copy, Clone, Default, Debug, Eq, PartialEq)]
17 pub(crate) struct Epoch {
18     /// The least significant bit is set if pinned. The rest of the bits hold the epoch.
19     data: usize,
20 }
21 
22 impl Epoch {
23     /// Returns the starting epoch in unpinned state.
24     #[inline]
starting() -> Self25     pub(crate) fn starting() -> Self {
26         Self::default()
27     }
28 
29     /// Returns the number of epochs `self` is ahead of `rhs`.
30     ///
31     /// Internally, epochs are represented as numbers in the range `(isize::MIN / 2) .. (isize::MAX
32     /// / 2)`, so the returned distance will be in the same interval.
wrapping_sub(self, rhs: Self) -> isize33     pub(crate) fn wrapping_sub(self, rhs: Self) -> isize {
34         // The result is the same with `(self.data & !1).wrapping_sub(rhs.data & !1) as isize >> 1`,
35         // because the possible difference of LSB in `(self.data & !1).wrapping_sub(rhs.data & !1)`
36         // will be ignored in the shift operation.
37         self.data.wrapping_sub(rhs.data & !1) as isize >> 1
38     }
39 
40     /// Returns `true` if the epoch is marked as pinned.
41     #[inline]
is_pinned(self) -> bool42     pub(crate) fn is_pinned(self) -> bool {
43         (self.data & 1) == 1
44     }
45 
46     /// Returns the same epoch, but marked as pinned.
47     #[inline]
pinned(self) -> Epoch48     pub(crate) fn pinned(self) -> Epoch {
49         Epoch {
50             data: self.data | 1,
51         }
52     }
53 
54     /// Returns the same epoch, but marked as unpinned.
55     #[inline]
unpinned(self) -> Epoch56     pub(crate) fn unpinned(self) -> Epoch {
57         Epoch {
58             data: self.data & !1,
59         }
60     }
61 
62     /// Returns the successor epoch.
63     ///
64     /// The returned epoch will be marked as pinned only if the previous one was as well.
65     #[inline]
successor(self) -> Epoch66     pub(crate) fn successor(self) -> Epoch {
67         Epoch {
68             data: self.data.wrapping_add(2),
69         }
70     }
71 }
72 
73 /// An atomic value that holds an `Epoch`.
74 #[derive(Default, Debug)]
75 pub(crate) struct AtomicEpoch {
76     /// Since `Epoch` is just a wrapper around `usize`, an `AtomicEpoch` is similarly represented
77     /// using an `AtomicUsize`.
78     data: AtomicUsize,
79 }
80 
81 impl AtomicEpoch {
82     /// Creates a new atomic epoch.
83     #[inline]
new(epoch: Epoch) -> Self84     pub(crate) fn new(epoch: Epoch) -> Self {
85         let data = AtomicUsize::new(epoch.data);
86         AtomicEpoch { data }
87     }
88 
89     /// Loads a value from the atomic epoch.
90     #[inline]
load(&self, ord: Ordering) -> Epoch91     pub(crate) fn load(&self, ord: Ordering) -> Epoch {
92         Epoch {
93             data: self.data.load(ord),
94         }
95     }
96 
97     /// Stores a value into the atomic epoch.
98     #[inline]
store(&self, epoch: Epoch, ord: Ordering)99     pub(crate) fn store(&self, epoch: Epoch, ord: Ordering) {
100         self.data.store(epoch.data, ord);
101     }
102 
103     /// Stores a value into the atomic epoch if the current value is the same as `current`.
104     ///
105     /// The return value is a result indicating whether the new value was written and containing
106     /// the previous value. On success this value is guaranteed to be equal to `current`.
107     ///
108     /// This method takes two `Ordering` arguments to describe the memory
109     /// ordering of this operation. `success` describes the required ordering for the
110     /// read-modify-write operation that takes place if the comparison with `current` succeeds.
111     /// `failure` describes the required ordering for the load operation that takes place when
112     /// the comparison fails. Using `Acquire` as success ordering makes the store part
113     /// of this operation `Relaxed`, and using `Release` makes the successful load
114     /// `Relaxed`. The failure ordering can only be `SeqCst`, `Acquire` or `Relaxed`
115     /// and must be equivalent to or weaker than the success ordering.
116     #[inline]
compare_exchange( &self, current: Epoch, new: Epoch, success: Ordering, failure: Ordering, ) -> Result<Epoch, Epoch>117     pub(crate) fn compare_exchange(
118         &self,
119         current: Epoch,
120         new: Epoch,
121         success: Ordering,
122         failure: Ordering,
123     ) -> Result<Epoch, Epoch> {
124         match self
125             .data
126             .compare_exchange(current.data, new.data, success, failure)
127         {
128             Ok(data) => Ok(Epoch { data }),
129             Err(data) => Err(Epoch { data }),
130         }
131     }
132 }
133