1 //! This crate provides foldhash, a fast, non-cryptographic, minimally
2 //! DoS-resistant hashing algorithm designed for computational uses such as
3 //! hashmaps, bloom filters, count sketching, etc.
4 //!
5 //! When should you **not** use foldhash:
6 //!
7 //! - You are afraid of people studying your long-running program's behavior
8 //! to reverse engineer its internal random state and using this knowledge to
9 //! create many colliding inputs for computational complexity attacks.
10 //!
11 //! - You expect foldhash to have a consistent output across versions or
12 //! platforms, such as for persistent file formats or communication protocols.
13 //!
14 //! - You are relying on foldhash's properties for any kind of security.
15 //! Foldhash is **not appropriate for any cryptographic purpose**.
16 //!
17 //! Foldhash has two variants, one optimized for speed which is ideal for data
18 //! structures such as hash maps and bloom filters, and one optimized for
19 //! statistical quality which is ideal for algorithms such as
20 //! [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog) and
21 //! [MinHash](https://en.wikipedia.org/wiki/MinHash).
22 //!
23 //! Foldhash can be used in a `#![no_std]` environment by disabling its default
24 //! `"std"` feature.
25 //!
26 //! # Usage
27 //!
28 //! The easiest way to use this crate with the standard library [`HashMap`] or
29 //! [`HashSet`] is to import them from `foldhash` instead, along with the
30 //! extension traits to make [`HashMap::new`] and [`HashMap::with_capacity`]
31 //! work out-of-the-box:
32 //!
33 //! ```rust
34 //! use foldhash::{HashMap, HashMapExt};
35 //!
36 //! let mut hm = HashMap::new();
37 //! hm.insert(42, "hello");
38 //! ```
39 //!
40 //! You can also avoid the convenience types and do it manually by initializing
41 //! a [`RandomState`](fast::RandomState), for example if you are using a different hash map
42 //! implementation like [`hashbrown`](https://docs.rs/hashbrown/):
43 //!
44 //! ```rust
45 //! use hashbrown::HashMap;
46 //! use foldhash::fast::RandomState;
47 //!
48 //! let mut hm = HashMap::with_hasher(RandomState::default());
49 //! hm.insert("foo", "bar");
50 //! ```
51 //!
52 //! The above methods are the recommended way to use foldhash, which will
53 //! automatically generate a randomly generated hasher instance for you. If you
54 //! absolutely must have determinism you can use [`FixedState`](fast::FixedState)
55 //! instead, but note that this makes you trivially vulnerable to HashDoS
56 //! attacks and might lead to quadratic runtime when moving data from one
57 //! hashmap/set into another:
58 //!
59 //! ```rust
60 //! use std::collections::HashSet;
61 //! use foldhash::fast::FixedState;
62 //!
63 //! let mut hm = HashSet::with_hasher(FixedState::with_seed(42));
64 //! hm.insert([1, 10, 100]);
65 //! ```
66 //!
67 //! If you rely on statistical properties of the hash for the correctness of
68 //! your algorithm, such as in [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog),
69 //! it is suggested to use the [`RandomState`](quality::RandomState)
70 //! or [`FixedState`](quality::FixedState) from the [`quality`] module instead
71 //! of the [`fast`] module. The latter is optimized purely for speed in hash
72 //! tables and has known statistical imperfections.
73 //!
74 //! Finally, you can also directly use the [`RandomState`](quality::RandomState)
75 //! or [`FixedState`](quality::FixedState) to manually hash items using the
76 //! [`BuildHasher`](std::hash::BuildHasher) trait:
77 //! ```rust
78 //! use std::hash::BuildHasher;
79 //! use foldhash::quality::RandomState;
80 //!
81 //! let random_state = RandomState::default();
82 //! let hash = random_state.hash_one("hello world");
83 //! ```
84 //!
85 //! ## Seeding
86 //!
87 //! Foldhash relies on a single 8-byte per-hasher seed which should be ideally
88 //! be different from each instance to instance, and also a larger
89 //! [`SharedSeed`] which may be shared by many different instances.
90 //!
91 //! To reduce overhead, this [`SharedSeed`] is typically initialized once and
92 //! stored. To prevent each hashmap unnecessarily containing a reference to this
93 //! value there are three kinds of [`BuildHasher`](core::hash::BuildHasher)s
94 //! foldhash provides (both for [`fast`] and [`quality`]):
95 //!
96 //! 1. [`RandomState`](fast::RandomState), which always generates a
97 //! random per-hasher seed and implicitly stores a reference to [`SharedSeed::global_random`].
98 //! 2. [`FixedState`](fast::FixedState), which by default uses a fixed
99 //! per-hasher seed and implicitly stores a reference to [`SharedSeed::global_fixed`].
100 //! 3. [`SeedableRandomState`](fast::SeedableRandomState), which works like
101 //! [`RandomState`](fast::RandomState) by default but can be seeded in any manner.
102 //! This state must include an explicit reference to a [`SharedSeed`], and thus
103 //! this struct is 16 bytes as opposed to just 8 bytes for the previous two.
104
105 #![cfg_attr(all(not(test), not(feature = "std")), no_std)]
106 #![warn(missing_docs)]
107
108 pub mod fast;
109 pub mod quality;
110 mod seed;
111 pub use seed::SharedSeed;
112
113 #[cfg(feature = "std")]
114 mod convenience;
115 #[cfg(feature = "std")]
116 pub use convenience::*;
117
118 // Arbitrary constants with high entropy. Hexadecimal digits of pi were used.
119 const ARBITRARY0: u64 = 0x243f6a8885a308d3;
120 const ARBITRARY1: u64 = 0x13198a2e03707344;
121 const ARBITRARY2: u64 = 0xa4093822299f31d0;
122 const ARBITRARY3: u64 = 0x082efa98ec4e6c89;
123 const ARBITRARY4: u64 = 0x452821e638d01377;
124 const ARBITRARY5: u64 = 0xbe5466cf34e90c6c;
125 const ARBITRARY6: u64 = 0xc0ac29b7c97c50dd;
126 const ARBITRARY7: u64 = 0x3f84d5b5b5470917;
127 const ARBITRARY8: u64 = 0x9216d5d98979fb1b;
128 const ARBITRARY9: u64 = 0xd1310ba698dfb5ac;
129
130 #[inline(always)]
folded_multiply(x: u64, y: u64) -> u64131 const fn folded_multiply(x: u64, y: u64) -> u64 {
132 // The following code path is only fast if 64-bit to 128-bit widening
133 // multiplication is supported by the architecture. Most 64-bit
134 // architectures except SPARC64 and Wasm64 support it. However, the target
135 // pointer width doesn't always indicate that we are dealing with a 64-bit
136 // architecture, as there are ABIs that reduce the pointer width, especially
137 // on AArch64 and x86-64. WebAssembly (regardless of pointer width) supports
138 // 64-bit to 128-bit widening multiplication with the `wide-arithmetic`
139 // proposal.
140 #[cfg(any(
141 all(
142 target_pointer_width = "64",
143 not(any(target_arch = "sparc64", target_arch = "wasm64")),
144 ),
145 target_arch = "aarch64",
146 target_arch = "x86_64",
147 all(target_family = "wasm", target_feature = "wide-arithmetic"),
148 ))]
149 {
150 // We compute the full u64 x u64 -> u128 product, this is a single mul
151 // instruction on x86-64, one mul plus one mulhi on ARM64.
152 let full = (x as u128).wrapping_mul(y as u128);
153 let lo = full as u64;
154 let hi = (full >> 64) as u64;
155
156 // The middle bits of the full product fluctuate the most with small
157 // changes in the input. This is the top bits of lo and the bottom bits
158 // of hi. We can thus make the entire output fluctuate with small
159 // changes to the input by XOR'ing these two halves.
160 lo ^ hi
161 }
162
163 #[cfg(not(any(
164 all(
165 target_pointer_width = "64",
166 not(any(target_arch = "sparc64", target_arch = "wasm64")),
167 ),
168 target_arch = "aarch64",
169 target_arch = "x86_64",
170 all(target_family = "wasm", target_feature = "wide-arithmetic"),
171 )))]
172 {
173 // u64 x u64 -> u128 product is quite expensive on 32-bit.
174 // We approximate it by expanding the multiplication and eliminating
175 // carries by replacing additions with XORs:
176 // (2^32 hx + lx)*(2^32 hy + ly) =
177 // 2^64 hx*hy + 2^32 (hx*ly + lx*hy) + lx*ly ~=
178 // 2^64 hx*hy ^ 2^32 (hx*ly ^ lx*hy) ^ lx*ly
179 // Which when folded becomes:
180 // (hx*hy ^ lx*ly) ^ (hx*ly ^ lx*hy).rotate_right(32)
181
182 let lx = x as u32;
183 let ly = y as u32;
184 let hx = (x >> 32) as u32;
185 let hy = (y >> 32) as u32;
186
187 let ll = (lx as u64).wrapping_mul(ly as u64);
188 let lh = (lx as u64).wrapping_mul(hy as u64);
189 let hl = (hx as u64).wrapping_mul(ly as u64);
190 let hh = (hx as u64).wrapping_mul(hy as u64);
191
192 (hh ^ ll) ^ (hl ^ lh).rotate_right(32)
193 }
194 }
195
196 #[inline(always)]
rotate_right(x: u64, r: u32) -> u64197 const fn rotate_right(x: u64, r: u32) -> u64 {
198 #[cfg(any(
199 target_pointer_width = "64",
200 target_arch = "aarch64",
201 target_arch = "x86_64",
202 target_family = "wasm",
203 ))]
204 {
205 x.rotate_right(r)
206 }
207
208 #[cfg(not(any(
209 target_pointer_width = "64",
210 target_arch = "aarch64",
211 target_arch = "x86_64",
212 target_family = "wasm",
213 )))]
214 {
215 // On platforms without 64-bit arithmetic rotation can be slow, rotate
216 // each 32-bit half independently.
217 let lo = (x as u32).rotate_right(r);
218 let hi = ((x >> 32) as u32).rotate_right(r);
219 ((hi as u64) << 32) | lo as u64
220 }
221 }
222
223 /// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
hash_bytes_medium(bytes: &[u8], mut s0: u64, mut s1: u64, fold_seed: u64) -> u64224 fn hash_bytes_medium(bytes: &[u8], mut s0: u64, mut s1: u64, fold_seed: u64) -> u64 {
225 // Process 32 bytes per iteration, 16 bytes from the start, 16 bytes from
226 // the end. On the last iteration these two chunks can overlap, but that is
227 // perfectly fine.
228 let left_to_right = bytes.chunks_exact(16);
229 let mut right_to_left = bytes.rchunks_exact(16);
230 for lo in left_to_right {
231 let hi = right_to_left.next().unwrap();
232 let unconsumed_start = lo.as_ptr();
233 let unconsumed_end = hi.as_ptr_range().end;
234 if unconsumed_start >= unconsumed_end {
235 break;
236 }
237
238 let a = u64::from_ne_bytes(lo[0..8].try_into().unwrap());
239 let b = u64::from_ne_bytes(lo[8..16].try_into().unwrap());
240 let c = u64::from_ne_bytes(hi[0..8].try_into().unwrap());
241 let d = u64::from_ne_bytes(hi[8..16].try_into().unwrap());
242 s0 = folded_multiply(a ^ s0, c ^ fold_seed);
243 s1 = folded_multiply(b ^ s1, d ^ fold_seed);
244 }
245
246 s0 ^ s1
247 }
248
249 /// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
250 #[cold]
251 #[inline(never)]
hash_bytes_long( bytes: &[u8], mut s0: u64, mut s1: u64, mut s2: u64, mut s3: u64, fold_seed: u64, ) -> u64252 fn hash_bytes_long(
253 bytes: &[u8],
254 mut s0: u64,
255 mut s1: u64,
256 mut s2: u64,
257 mut s3: u64,
258 fold_seed: u64,
259 ) -> u64 {
260 let chunks = bytes.chunks_exact(64);
261 let remainder = chunks.remainder().len();
262 for chunk in chunks {
263 let a = u64::from_ne_bytes(chunk[0..8].try_into().unwrap());
264 let b = u64::from_ne_bytes(chunk[8..16].try_into().unwrap());
265 let c = u64::from_ne_bytes(chunk[16..24].try_into().unwrap());
266 let d = u64::from_ne_bytes(chunk[24..32].try_into().unwrap());
267 let e = u64::from_ne_bytes(chunk[32..40].try_into().unwrap());
268 let f = u64::from_ne_bytes(chunk[40..48].try_into().unwrap());
269 let g = u64::from_ne_bytes(chunk[48..56].try_into().unwrap());
270 let h = u64::from_ne_bytes(chunk[56..64].try_into().unwrap());
271 s0 = folded_multiply(a ^ s0, e ^ fold_seed);
272 s1 = folded_multiply(b ^ s1, f ^ fold_seed);
273 s2 = folded_multiply(c ^ s2, g ^ fold_seed);
274 s3 = folded_multiply(d ^ s3, h ^ fold_seed);
275 }
276 s0 ^= s2;
277 s1 ^= s3;
278
279 if remainder > 0 {
280 hash_bytes_medium(&bytes[bytes.len() - remainder.max(16)..], s0, s1, fold_seed)
281 } else {
282 s0 ^ s1
283 }
284 }
285