• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use super::{exp, expm1, k_expo2};
2 
3 /// Hyperbolic cosine (f64)
4 ///
5 /// Computes the hyperbolic cosine of the argument x.
6 /// Is defined as `(exp(x) + exp(-x))/2`
7 /// Angles are specified in radians.
8 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
cosh(mut x: f64) -> f649 pub fn cosh(mut x: f64) -> f64 {
10     /* |x| */
11     let mut ix = x.to_bits();
12     ix &= 0x7fffffffffffffff;
13     x = f64::from_bits(ix);
14     let w = ix >> 32;
15 
16     /* |x| < log(2) */
17     if w < 0x3fe62e42 {
18         if w < 0x3ff00000 - (26 << 20) {
19             let x1p120 = f64::from_bits(0x4770000000000000);
20             force_eval!(x + x1p120);
21             return 1.;
22         }
23         let t = expm1(x); // exponential minus 1
24         return 1. + t * t / (2. * (1. + t));
25     }
26 
27     /* |x| < log(DBL_MAX) */
28     if w < 0x40862e42 {
29         let t = exp(x);
30         /* note: if x>log(0x1p26) then the 1/t is not needed */
31         return 0.5 * (t + 1. / t);
32     }
33 
34     /* |x| > log(DBL_MAX) or nan */
35     k_expo2(x)
36 }
37