• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /*
13  * jn(n, x), yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *      For n=0, j0(x) is called,
22  *      for n=1, j1(x) is called,
23  *      for n<=x, forward recursion is used starting
24  *      from values of j0(x) and j1(x).
25  *      for n>x, a continued fraction approximation to
26  *      j(n,x)/j(n-1,x) is evaluated and then backward
27  *      recursion is used starting from a supposed value
28  *      for j(n,x). The resulting value of j(0,x) is
29  *      compared with the actual value to correct the
30  *      supposed value of j(n,x).
31  *
32  *      yn(n,x) is similar in all respects, except
33  *      that forward recursion is used for all
34  *      values of n>1.
35  */
36 
37 use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
38 
39 const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
40 
41 /// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
jn(n: i32, mut x: f64) -> f6442 pub fn jn(n: i32, mut x: f64) -> f64 {
43     let mut ix: u32;
44     let lx: u32;
45     let nm1: i32;
46     let mut i: i32;
47     let mut sign: bool;
48     let mut a: f64;
49     let mut b: f64;
50     let mut temp: f64;
51 
52     ix = get_high_word(x);
53     lx = get_low_word(x);
54     sign = (ix >> 31) != 0;
55     ix &= 0x7fffffff;
56 
57     // -lx == !lx + 1
58     if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
59         /* nan */
60         return x;
61     }
62 
63     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
64      * Thus, J(-n,x) = J(n,-x)
65      */
66     /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
67     if n == 0 {
68         return j0(x);
69     }
70     if n < 0 {
71         nm1 = -(n + 1);
72         x = -x;
73         sign = !sign;
74     } else {
75         nm1 = n - 1;
76     }
77     if nm1 == 0 {
78         return j1(x);
79     }
80 
81     sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
82     x = fabs(x);
83     if (ix | lx) == 0 || ix == 0x7ff00000 {
84         /* if x is 0 or inf */
85         b = 0.0;
86     } else if (nm1 as f64) < x {
87         /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
88         if ix >= 0x52d00000 {
89             /* x > 2**302 */
90             /* (x >> n**2)
91              *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
92              *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
93              *      Let s=sin(x), c=cos(x),
94              *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
95              *
96              *             n    sin(xn)*sqt2    cos(xn)*sqt2
97              *          ----------------------------------
98              *             0     s-c             c+s
99              *             1    -s-c            -c+s
100              *             2    -s+c            -c-s
101              *             3     s+c             c-s
102              */
103             temp = match nm1 & 3 {
104                 0 => -cos(x) + sin(x),
105                 1 => -cos(x) - sin(x),
106                 2 => cos(x) - sin(x),
107                 3 | _ => cos(x) + sin(x),
108             };
109             b = INVSQRTPI * temp / sqrt(x);
110         } else {
111             a = j0(x);
112             b = j1(x);
113             i = 0;
114             while i < nm1 {
115                 i += 1;
116                 temp = b;
117                 b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
118                 a = temp;
119             }
120         }
121     } else {
122         if ix < 0x3e100000 {
123             /* x < 2**-29 */
124             /* x is tiny, return the first Taylor expansion of J(n,x)
125              * J(n,x) = 1/n!*(x/2)^n  - ...
126              */
127             if nm1 > 32 {
128                 /* underflow */
129                 b = 0.0;
130             } else {
131                 temp = x * 0.5;
132                 b = temp;
133                 a = 1.0;
134                 i = 2;
135                 while i <= nm1 + 1 {
136                     a *= i as f64; /* a = n! */
137                     b *= temp; /* b = (x/2)^n */
138                     i += 1;
139                 }
140                 b = b / a;
141             }
142         } else {
143             /* use backward recurrence */
144             /*                      x      x^2      x^2
145              *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
146              *                      2n  - 2(n+1) - 2(n+2)
147              *
148              *                      1      1        1
149              *  (for large x)   =  ----  ------   ------   .....
150              *                      2n   2(n+1)   2(n+2)
151              *                      -- - ------ - ------ -
152              *                       x     x         x
153              *
154              * Let w = 2n/x and h=2/x, then the above quotient
155              * is equal to the continued fraction:
156              *                  1
157              *      = -----------------------
158              *                     1
159              *         w - -----------------
160              *                        1
161              *              w+h - ---------
162              *                     w+2h - ...
163              *
164              * To determine how many terms needed, let
165              * Q(0) = w, Q(1) = w(w+h) - 1,
166              * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
167              * When Q(k) > 1e4      good for single
168              * When Q(k) > 1e9      good for double
169              * When Q(k) > 1e17     good for quadruple
170              */
171             /* determine k */
172             let mut t: f64;
173             let mut q0: f64;
174             let mut q1: f64;
175             let mut w: f64;
176             let h: f64;
177             let mut z: f64;
178             let mut tmp: f64;
179             let nf: f64;
180 
181             let mut k: i32;
182 
183             nf = (nm1 as f64) + 1.0;
184             w = 2.0 * nf / x;
185             h = 2.0 / x;
186             z = w + h;
187             q0 = w;
188             q1 = w * z - 1.0;
189             k = 1;
190             while q1 < 1.0e9 {
191                 k += 1;
192                 z += h;
193                 tmp = z * q1 - q0;
194                 q0 = q1;
195                 q1 = tmp;
196             }
197             t = 0.0;
198             i = k;
199             while i >= 0 {
200                 t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
201                 i -= 1;
202             }
203             a = t;
204             b = 1.0;
205             /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
206              *  Hence, if n*(log(2n/x)) > ...
207              *  single 8.8722839355e+01
208              *  double 7.09782712893383973096e+02
209              *  long double 1.1356523406294143949491931077970765006170e+04
210              *  then recurrent value may overflow and the result is
211              *  likely underflow to zero
212              */
213             tmp = nf * log(fabs(w));
214             if tmp < 7.09782712893383973096e+02 {
215                 i = nm1;
216                 while i > 0 {
217                     temp = b;
218                     b = b * (2.0 * (i as f64)) / x - a;
219                     a = temp;
220                     i -= 1;
221                 }
222             } else {
223                 i = nm1;
224                 while i > 0 {
225                     temp = b;
226                     b = b * (2.0 * (i as f64)) / x - a;
227                     a = temp;
228                     /* scale b to avoid spurious overflow */
229                     let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
230                     if b > x1p500 {
231                         a /= b;
232                         t /= b;
233                         b = 1.0;
234                     }
235                     i -= 1;
236                 }
237             }
238             z = j0(x);
239             w = j1(x);
240             if fabs(z) >= fabs(w) {
241                 b = t * z / b;
242             } else {
243                 b = t * w / a;
244             }
245         }
246     }
247 
248     if sign { -b } else { b }
249 }
250 
251 /// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
yn(n: i32, x: f64) -> f64252 pub fn yn(n: i32, x: f64) -> f64 {
253     let mut ix: u32;
254     let lx: u32;
255     let mut ib: u32;
256     let nm1: i32;
257     let mut sign: bool;
258     let mut i: i32;
259     let mut a: f64;
260     let mut b: f64;
261     let mut temp: f64;
262 
263     ix = get_high_word(x);
264     lx = get_low_word(x);
265     sign = (ix >> 31) != 0;
266     ix &= 0x7fffffff;
267 
268     // -lx == !lx + 1
269     if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
270         /* nan */
271         return x;
272     }
273     if sign && (ix | lx) != 0 {
274         /* x < 0 */
275         return 0.0 / 0.0;
276     }
277     if ix == 0x7ff00000 {
278         return 0.0;
279     }
280 
281     if n == 0 {
282         return y0(x);
283     }
284     if n < 0 {
285         nm1 = -(n + 1);
286         sign = (n & 1) != 0;
287     } else {
288         nm1 = n - 1;
289         sign = false;
290     }
291     if nm1 == 0 {
292         if sign {
293             return -y1(x);
294         } else {
295             return y1(x);
296         }
297     }
298 
299     if ix >= 0x52d00000 {
300         /* x > 2**302 */
301         /* (x >> n**2)
302          *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
303          *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
304          *      Let s=sin(x), c=cos(x),
305          *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
306          *
307          *             n    sin(xn)*sqt2    cos(xn)*sqt2
308          *          ----------------------------------
309          *             0     s-c             c+s
310          *             1    -s-c            -c+s
311          *             2    -s+c            -c-s
312          *             3     s+c             c-s
313          */
314         temp = match nm1 & 3 {
315             0 => -sin(x) - cos(x),
316             1 => -sin(x) + cos(x),
317             2 => sin(x) + cos(x),
318             3 | _ => sin(x) - cos(x),
319         };
320         b = INVSQRTPI * temp / sqrt(x);
321     } else {
322         a = y0(x);
323         b = y1(x);
324         /* quit if b is -inf */
325         ib = get_high_word(b);
326         i = 0;
327         while i < nm1 && ib != 0xfff00000 {
328             i += 1;
329             temp = b;
330             b = (2.0 * (i as f64) / x) * b - a;
331             ib = get_high_word(b);
332             a = temp;
333         }
334     }
335 
336     if sign { -b } else { b }
337 }
338