• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
2 /*
3  * ====================================================
4  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 // pow(x,y) return x**y
13 //
14 //                    n
15 // Method:  Let x =  2   * (1+f)
16 //      1. Compute and return log2(x) in two pieces:
17 //              log2(x) = w1 + w2,
18 //         where w1 has 53-24 = 29 bit trailing zeros.
19 //      2. Perform y*log2(x) = n+y' by simulating multi-precision
20 //         arithmetic, where |y'|<=0.5.
21 //      3. Return x**y = 2**n*exp(y'*log2)
22 //
23 // Special cases:
24 //      1.  (anything) ** 0  is 1
25 //      2.  1 ** (anything)  is 1
26 //      3.  (anything except 1) ** NAN is NAN
27 //      4.  NAN ** (anything except 0) is NAN
28 //      5.  +-(|x| > 1) **  +INF is +INF
29 //      6.  +-(|x| > 1) **  -INF is +0
30 //      7.  +-(|x| < 1) **  +INF is +0
31 //      8.  +-(|x| < 1) **  -INF is +INF
32 //      9.  -1          ** +-INF is 1
33 //      10. +0 ** (+anything except 0, NAN)               is +0
34 //      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
35 //      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
36 //      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
37 //      14. -0 ** (+odd integer) is -0
38 //      15. -0 ** (-odd integer) is -INF, raise divbyzero
39 //      16. +INF ** (+anything except 0,NAN) is +INF
40 //      17. +INF ** (-anything except 0,NAN) is +0
41 //      18. -INF ** (+odd integer) is -INF
42 //      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
43 //      20. (anything) ** 1 is (anything)
44 //      21. (anything) ** -1 is 1/(anything)
45 //      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
46 //      23. (-anything except 0 and inf) ** (non-integer) is NAN
47 //
48 // Accuracy:
49 //      pow(x,y) returns x**y nearly rounded. In particular
50 //                      pow(integer,integer)
51 //      always returns the correct integer provided it is
52 //      representable.
53 //
54 // Constants :
55 // The hexadecimal values are the intended ones for the following
56 // constants. The decimal values may be used, provided that the
57 // compiler will convert from decimal to binary accurately enough
58 // to produce the hexadecimal values shown.
59 //
60 use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
61 
62 const BP: [f64; 2] = [1.0, 1.5];
63 const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
64 const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
65 const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
66 const HUGE: f64 = 1.0e300;
67 const TINY: f64 = 1.0e-300;
68 
69 // poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
70 const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
71 const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
72 const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
73 const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
74 const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
75 const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
76 const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
77 const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
78 const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
79 const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
80 const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
81 const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
82 const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
83 const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
84 const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
85 const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
86 const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
87 const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
88 const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
89 const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
90 const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
91 
92 /// Returns `x` to the power of `y` (f64).
93 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pow(x: f64, y: f64) -> f6494 pub fn pow(x: f64, y: f64) -> f64 {
95     let t1: f64;
96     let t2: f64;
97 
98     let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
99     let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
100 
101     let mut ix: i32 = (hx & 0x7fffffff) as i32;
102     let iy: i32 = (hy & 0x7fffffff) as i32;
103 
104     /* x**0 = 1, even if x is NaN */
105     if ((iy as u32) | ly) == 0 {
106         return 1.0;
107     }
108 
109     /* 1**y = 1, even if y is NaN */
110     if hx == 0x3ff00000 && lx == 0 {
111         return 1.0;
112     }
113 
114     /* NaN if either arg is NaN */
115     if ix > 0x7ff00000
116         || (ix == 0x7ff00000 && lx != 0)
117         || iy > 0x7ff00000
118         || (iy == 0x7ff00000 && ly != 0)
119     {
120         return x + y;
121     }
122 
123     /* determine if y is an odd int when x < 0
124      * yisint = 0       ... y is not an integer
125      * yisint = 1       ... y is an odd int
126      * yisint = 2       ... y is an even int
127      */
128     let mut yisint: i32 = 0;
129     let mut k: i32;
130     let mut j: i32;
131     if hx < 0 {
132         if iy >= 0x43400000 {
133             yisint = 2; /* even integer y */
134         } else if iy >= 0x3ff00000 {
135             k = (iy >> 20) - 0x3ff; /* exponent */
136 
137             if k > 20 {
138                 j = (ly >> (52 - k)) as i32;
139 
140                 if (j << (52 - k)) == (ly as i32) {
141                     yisint = 2 - (j & 1);
142                 }
143             } else if ly == 0 {
144                 j = iy >> (20 - k);
145 
146                 if (j << (20 - k)) == iy {
147                     yisint = 2 - (j & 1);
148                 }
149             }
150         }
151     }
152 
153     if ly == 0 {
154         /* special value of y */
155         if iy == 0x7ff00000 {
156             /* y is +-inf */
157 
158             return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
159                 /* (-1)**+-inf is 1 */
160                 1.0
161             } else if ix >= 0x3ff00000 {
162                 /* (|x|>1)**+-inf = inf,0 */
163                 if hy >= 0 { y } else { 0.0 }
164             } else {
165                 /* (|x|<1)**+-inf = 0,inf */
166                 if hy >= 0 { 0.0 } else { -y }
167             };
168         }
169 
170         if iy == 0x3ff00000 {
171             /* y is +-1 */
172             return if hy >= 0 { x } else { 1.0 / x };
173         }
174 
175         if hy == 0x40000000 {
176             /* y is 2 */
177             return x * x;
178         }
179 
180         if hy == 0x3fe00000 {
181             /* y is 0.5 */
182             if hx >= 0 {
183                 /* x >= +0 */
184                 return sqrt(x);
185             }
186         }
187     }
188 
189     let mut ax: f64 = fabs(x);
190     if lx == 0 {
191         /* special value of x */
192         if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
193             /* x is +-0,+-inf,+-1 */
194             let mut z: f64 = ax;
195 
196             if hy < 0 {
197                 /* z = (1/|x|) */
198                 z = 1.0 / z;
199             }
200 
201             if hx < 0 {
202                 if ((ix - 0x3ff00000) | yisint) == 0 {
203                     z = (z - z) / (z - z); /* (-1)**non-int is NaN */
204                 } else if yisint == 1 {
205                     z = -z; /* (x<0)**odd = -(|x|**odd) */
206                 }
207             }
208 
209             return z;
210         }
211     }
212 
213     let mut s: f64 = 1.0; /* sign of result */
214     if hx < 0 {
215         if yisint == 0 {
216             /* (x<0)**(non-int) is NaN */
217             return (x - x) / (x - x);
218         }
219 
220         if yisint == 1 {
221             /* (x<0)**(odd int) */
222             s = -1.0;
223         }
224     }
225 
226     /* |y| is HUGE */
227     if iy > 0x41e00000 {
228         /* if |y| > 2**31 */
229         if iy > 0x43f00000 {
230             /* if |y| > 2**64, must o/uflow */
231             if ix <= 0x3fefffff {
232                 return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
233             }
234 
235             if ix >= 0x3ff00000 {
236                 return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
237             }
238         }
239 
240         /* over/underflow if x is not close to one */
241         if ix < 0x3fefffff {
242             return if hy < 0 { s * HUGE * HUGE } else { s * TINY * TINY };
243         }
244         if ix > 0x3ff00000 {
245             return if hy > 0 { s * HUGE * HUGE } else { s * TINY * TINY };
246         }
247 
248         /* now |1-x| is TINY <= 2**-20, suffice to compute
249         log(x) by x-x^2/2+x^3/3-x^4/4 */
250         let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
251         let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
252         let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
253         let v: f64 = t * IVLN2_L - w * IVLN2;
254         t1 = with_set_low_word(u + v, 0);
255         t2 = v - (t1 - u);
256     } else {
257         // double ss,s2,s_h,s_l,t_h,t_l;
258         let mut n: i32 = 0;
259 
260         if ix < 0x00100000 {
261             /* take care subnormal number */
262             ax *= TWO53;
263             n -= 53;
264             ix = get_high_word(ax) as i32;
265         }
266 
267         n += (ix >> 20) - 0x3ff;
268         j = ix & 0x000fffff;
269 
270         /* determine interval */
271         let k: i32;
272         ix = j | 0x3ff00000; /* normalize ix */
273         if j <= 0x3988E {
274             /* |x|<sqrt(3/2) */
275             k = 0;
276         } else if j < 0xBB67A {
277             /* |x|<sqrt(3)   */
278             k = 1;
279         } else {
280             k = 0;
281             n += 1;
282             ix -= 0x00100000;
283         }
284         ax = with_set_high_word(ax, ix as u32);
285 
286         /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
287         let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
288         let v: f64 = 1.0 / (ax + i!(BP, k as usize));
289         let ss: f64 = u * v;
290         let s_h = with_set_low_word(ss, 0);
291 
292         /* t_h=ax+bp[k] High */
293         let t_h: f64 = with_set_high_word(
294             0.0,
295             ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
296         );
297         let t_l: f64 = ax - (t_h - i!(BP, k as usize));
298         let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
299 
300         /* compute log(ax) */
301         let s2: f64 = ss * ss;
302         let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
303         r += s_l * (s_h + ss);
304         let s2: f64 = s_h * s_h;
305         let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
306         let t_l: f64 = r - ((t_h - 3.0) - s2);
307 
308         /* u+v = ss*(1+...) */
309         let u: f64 = s_h * t_h;
310         let v: f64 = s_l * t_h + t_l * ss;
311 
312         /* 2/(3log2)*(ss+...) */
313         let p_h: f64 = with_set_low_word(u + v, 0);
314         let p_l = v - (p_h - u);
315         let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
316         let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
317 
318         /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
319         let t: f64 = n as f64;
320         t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
321         t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
322     }
323 
324     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
325     let y1: f64 = with_set_low_word(y, 0);
326     let p_l: f64 = (y - y1) * t1 + y * t2;
327     let mut p_h: f64 = y1 * t1;
328     let z: f64 = p_l + p_h;
329     let mut j: i32 = (z.to_bits() >> 32) as i32;
330     let i: i32 = z.to_bits() as i32;
331     // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
332 
333     if j >= 0x40900000 {
334         /* z >= 1024 */
335         if (j - 0x40900000) | i != 0 {
336             /* if z > 1024 */
337             return s * HUGE * HUGE; /* overflow */
338         }
339 
340         if p_l + OVT > z - p_h {
341             return s * HUGE * HUGE; /* overflow */
342         }
343     } else if (j & 0x7fffffff) >= 0x4090cc00 {
344         /* z <= -1075 */
345         // FIXME: instead of abs(j) use unsigned j
346 
347         if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
348             /* z < -1075 */
349             return s * TINY * TINY; /* underflow */
350         }
351 
352         if p_l <= z - p_h {
353             return s * TINY * TINY; /* underflow */
354         }
355     }
356 
357     /* compute 2**(p_h+p_l) */
358     let i: i32 = j & (0x7fffffff as i32);
359     k = (i >> 20) - 0x3ff;
360     let mut n: i32 = 0;
361 
362     if i > 0x3fe00000 {
363         /* if |z| > 0.5, set n = [z+0.5] */
364         n = j + (0x00100000 >> (k + 1));
365         k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
366         let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
367         n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
368         if j < 0 {
369             n = -n;
370         }
371         p_h -= t;
372     }
373 
374     let t: f64 = with_set_low_word(p_l + p_h, 0);
375     let u: f64 = t * LG2_H;
376     let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
377     let mut z: f64 = u + v;
378     let w: f64 = v - (z - u);
379     let t: f64 = z * z;
380     let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
381     let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
382     z = 1.0 - (r - z);
383     j = get_high_word(z) as i32;
384     j += n << 20;
385 
386     if (j >> 20) <= 0 {
387         /* subnormal output */
388         z = scalbn(z, n);
389     } else {
390         z = with_set_high_word(z, j as u32);
391     }
392 
393     s * z
394 }
395 
396 #[cfg(test)]
397 mod tests {
398     extern crate core;
399 
400     use self::core::f64::consts::{E, PI};
401     use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY};
402     use super::pow;
403 
404     const POS_ZERO: &[f64] = &[0.0];
405     const NEG_ZERO: &[f64] = &[-0.0];
406     const POS_ONE: &[f64] = &[1.0];
407     const NEG_ONE: &[f64] = &[-1.0];
408     const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
409     const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
410     const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON];
411     const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON];
412     const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX];
413     const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
414     const POS_ODDS: &[f64] = &[3.0, 7.0];
415     const NEG_ODDS: &[f64] = &[-7.0, -3.0];
416     const NANS: &[f64] = &[NAN];
417     const POS_INF: &[f64] = &[INFINITY];
418     const NEG_INF: &[f64] = &[NEG_INFINITY];
419 
420     const ALL: &[&[f64]] = &[
421         POS_ZERO,
422         NEG_ZERO,
423         NANS,
424         NEG_SMALL_FLOATS,
425         POS_SMALL_FLOATS,
426         NEG_FLOATS,
427         POS_FLOATS,
428         NEG_EVENS,
429         POS_EVENS,
430         NEG_ODDS,
431         POS_ODDS,
432         NEG_INF,
433         POS_INF,
434         NEG_ONE,
435         POS_ONE,
436     ];
437     const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
438     const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
439 
pow_test(base: f64, exponent: f64, expected: f64)440     fn pow_test(base: f64, exponent: f64, expected: f64) {
441         let res = pow(base, exponent);
442         assert!(
443             if expected.is_nan() { res.is_nan() } else { pow(base, exponent) == expected },
444             "{} ** {} was {} instead of {}",
445             base,
446             exponent,
447             res,
448             expected
449         );
450     }
451 
test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64)452     fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
453         sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
454     }
455 
test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64)456     fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
457         sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
458     }
459 
test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64)460     fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
461         sets.iter().for_each(|s| {
462             s.iter().for_each(|val| {
463                 let exp = expected(*val);
464                 let res = computed(*val);
465 
466                 #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
467                 let exp = force_eval!(exp);
468                 #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
469                 let res = force_eval!(res);
470                 assert!(
471                     if exp.is_nan() { res.is_nan() } else { exp == res },
472                     "test for {} was {} instead of {}",
473                     val,
474                     res,
475                     exp
476                 );
477             })
478         });
479     }
480 
481     #[test]
zero_as_exponent()482     fn zero_as_exponent() {
483         test_sets_as_base(ALL, 0.0, 1.0);
484         test_sets_as_base(ALL, -0.0, 1.0);
485     }
486 
487     #[test]
one_as_base()488     fn one_as_base() {
489         test_sets_as_exponent(1.0, ALL, 1.0);
490     }
491 
492     #[test]
nan_inputs()493     fn nan_inputs() {
494         // NAN as the base:
495         // (NAN ^ anything *but 0* should be NAN)
496         test_sets_as_exponent(NAN, &ALL[2..], NAN);
497 
498         // NAN as the exponent:
499         // (anything *but 1* ^ NAN should be NAN)
500         test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN);
501     }
502 
503     #[test]
infinity_as_base()504     fn infinity_as_base() {
505         // Positive Infinity as the base:
506         // (+Infinity ^ positive anything but 0 and NAN should be +Infinity)
507         test_sets_as_exponent(INFINITY, &POS[1..], INFINITY);
508 
509         // (+Infinity ^ negative anything except 0 and NAN should be 0.0)
510         test_sets_as_exponent(INFINITY, &NEG[1..], 0.0);
511 
512         // Negative Infinity as the base:
513         // (-Infinity ^ positive odd ints should be -Infinity)
514         test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY);
515 
516         // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
517         // We can lump in pos/neg odd ints here because they don't seem to
518         // cause panics (div by zero) in release mode (I think).
519         test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
520     }
521 
522     #[test]
infinity_as_exponent()523     fn infinity_as_exponent() {
524         // Positive/Negative base greater than 1:
525         // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base)
526         test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY);
527 
528         // (pos/neg > 1 ^ -Infinity should be 0.0)
529         test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0);
530 
531         // Positive/Negative base less than 1:
532         let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
533 
534         // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base)
535         test_sets_as_base(base_below_one, INFINITY, 0.0);
536 
537         // (pos/neg < 1 ^ -Infinity should be Infinity)
538         test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY);
539 
540         // Positive/Negative 1 as the base:
541         // (pos/neg 1 ^ Infinity should be 1)
542         test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0);
543 
544         // (pos/neg 1 ^ -Infinity should be 1)
545         test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0);
546     }
547 
548     #[test]
zero_as_base()549     fn zero_as_base() {
550         // Positive Zero as the base:
551         // (+0 ^ anything positive but 0 and NAN should be +0)
552         test_sets_as_exponent(0.0, &POS[1..], 0.0);
553 
554         // (+0 ^ anything negative but 0 and NAN should be Infinity)
555         // (this should panic because we're dividing by zero)
556         test_sets_as_exponent(0.0, &NEG[1..], INFINITY);
557 
558         // Negative Zero as the base:
559         // (-0 ^ anything positive but 0, NAN, and odd ints should be +0)
560         test_sets_as_exponent(-0.0, &POS[3..], 0.0);
561 
562         // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity)
563         // (should panic because of divide by zero)
564         test_sets_as_exponent(-0.0, &NEG[3..], INFINITY);
565 
566         // (-0 ^ positive odd ints should be -0)
567         test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
568 
569         // (-0 ^ negative odd ints should be -Infinity)
570         // (should panic because of divide by zero)
571         test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY);
572     }
573 
574     #[test]
special_cases()575     fn special_cases() {
576         // One as the exponent:
577         // (anything ^ 1 should be anything - i.e. the base)
578         test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
579 
580         // Negative One as the exponent:
581         // (anything ^ -1 should be 1/anything)
582         test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
583 
584         // Factoring -1 out:
585         // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
586         (&[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS]).iter().for_each(
587             |int_set| {
588                 int_set.iter().for_each(|int| {
589                     test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
590                         pow(-1.0, *int) * pow(v, *int)
591                     });
592                 })
593             },
594         );
595 
596         // Negative base (imaginary results):
597         // (-anything except 0 and Infinity ^ non-integer should be NAN)
598         (&NEG[1..(NEG.len() - 1)]).iter().for_each(|set| {
599             set.iter().for_each(|val| {
600                 test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN);
601             })
602         });
603     }
604 
605     #[test]
normal_cases()606     fn normal_cases() {
607         assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
608         assert_eq!(pow(-1.0, 9.0), -1.0);
609         assert!(pow(-1.0, 2.2).is_nan());
610         assert!(pow(-1.0, -1.14).is_nan());
611     }
612 }
613