• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111 
112 #include <openssl/crypto.h>
113 #include <openssl/ex_data.h>
114 #include <openssl/stack.h>
115 #include <openssl/thread.h>
116 
117 #include <assert.h>
118 #include <string.h>
119 
120 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
121 #include <valgrind/memcheck.h>
122 #endif
123 
124 #if !defined(__cplusplus)
125 #if defined(_MSC_VER)
126 #define alignas(x) __declspec(align(x))
127 #define alignof __alignof
128 #else
129 #include <stdalign.h>
130 #endif
131 #endif
132 
133 #if defined(OPENSSL_THREADS) && \
134     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
135 #include <pthread.h>
136 #define OPENSSL_PTHREADS
137 #endif
138 
139 #if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
140     defined(OPENSSL_WINDOWS)
141 #define OPENSSL_WINDOWS_THREADS
142 OPENSSL_MSVC_PRAGMA(warning(push, 3))
143 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))144 OPENSSL_MSVC_PRAGMA(warning(pop))
145 #endif
146 
147 #if defined(__cplusplus)
148 extern "C" {
149 #endif
150 
151 
152 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
153     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
154 // OPENSSL_cpuid_setup initializes the platform-specific feature cache.
155 void OPENSSL_cpuid_setup(void);
156 #endif
157 
158 #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
159     !defined(OPENSSL_STATIC_ARMCAP)
160 // OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
161 // for unit tests. Any modifications to the value must be made after
162 // |CRYPTO_library_init| but before any other function call in BoringSSL.
163 OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
164 #endif
165 
166 
167 #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
168 #define BORINGSSL_HAS_UINT128
169 typedef __int128_t int128_t;
170 typedef __uint128_t uint128_t;
171 
172 // clang-cl supports __uint128_t but modulus and division don't work.
173 // https://crbug.com/787617.
174 #if !defined(_MSC_VER) || !defined(__clang__)
175 #define BORINGSSL_CAN_DIVIDE_UINT128
176 #endif
177 #endif
178 
179 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
180 
181 // Have a generic fall-through for different versions of C/C++.
182 #if defined(__cplusplus) && __cplusplus >= 201703L
183 #define OPENSSL_FALLTHROUGH [[fallthrough]]
184 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
185 #define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
186 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
187     __GNUC__ >= 7
188 #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
189 #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
190 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
191 #elif defined(__clang__)
192 #if __has_attribute(fallthrough) && __clang_major__ >= 5
193 // Clang 3.5, at least, complains about "error: declaration does not declare
194 // anything", possibily because we put a semicolon after this macro in
195 // practice. Thus limit it to >= Clang 5, which does work.
196 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
197 #else // clang versions that do not support fallthrough.
198 #define OPENSSL_FALLTHROUGH
199 #endif
200 #else // C++11 on gcc 6, and all other cases
201 #define OPENSSL_FALLTHROUGH
202 #endif
203 
204 // For convenience in testing 64-bit generic code, we allow disabling SSE2
205 // intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
206 // available, so we would otherwise need to test such code on a non-x86_64
207 // platform.
208 #if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
209 #define OPENSSL_SSE2
210 #endif
211 
212 
213 // Pointer utility functions.
214 
215 // buffers_alias returns one if |a| and |b| alias and zero otherwise.
216 static inline int buffers_alias(const uint8_t *a, size_t a_len,
217                                 const uint8_t *b, size_t b_len) {
218   // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
219   // objects are undefined whereas pointer to integer conversions are merely
220   // implementation-defined. We assume the implementation defined it in a sane
221   // way.
222   uintptr_t a_u = (uintptr_t)a;
223   uintptr_t b_u = (uintptr_t)b;
224   return a_u + a_len > b_u && b_u + b_len > a_u;
225 }
226 
227 // align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a
228 // power of two, and |ptr| must have at least |alignment - 1| bytes of scratch
229 // space.
230 static inline void *align_pointer(void *ptr, size_t alignment) {
231   // |alignment| must be a power of two.
232   assert(alignment != 0 && (alignment & (alignment - 1)) == 0);
233   // Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the
234   // offset and advance in pointer space. C guarantees that casting from pointer
235   // to |uintptr_t| and back gives the same pointer, but general
236   // integer-to-pointer conversions are implementation-defined. GCC does define
237   // it in the useful way, but this makes fewer assumptions.
238   uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1);
239   ptr = (char *)ptr + offset;
240   assert(((uintptr_t)ptr & (alignment - 1)) == 0);
241   return ptr;
242 }
243 
244 
245 // Constant-time utility functions.
246 //
247 // The following methods return a bitmask of all ones (0xff...f) for true and 0
248 // for false. This is useful for choosing a value based on the result of a
249 // conditional in constant time. For example,
250 //
251 // if (a < b) {
252 //   c = a;
253 // } else {
254 //   c = b;
255 // }
256 //
257 // can be written as
258 //
259 // crypto_word_t lt = constant_time_lt_w(a, b);
260 // c = constant_time_select_w(lt, a, b);
261 
262 // crypto_word_t is the type that most constant-time functions use. Ideally we
263 // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
264 // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
265 // bits. Since we want to be able to do constant-time operations on a
266 // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
267 // word length.
268 #if defined(OPENSSL_64_BIT)
269 typedef uint64_t crypto_word_t;
270 #elif defined(OPENSSL_32_BIT)
271 typedef uint32_t crypto_word_t;
272 #else
273 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
274 #endif
275 
276 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
277 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
278 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
279 #define CONSTTIME_FALSE_8 ((uint8_t)0)
280 
281 // value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
282 // the returned value. This is used to mitigate compilers undoing constant-time
283 // code, until we can express our requirements directly in the language.
284 //
285 // Note the compiler is aware that |value_barrier_w| has no side effects and
286 // always has the same output for a given input. This allows it to eliminate
287 // dead code, move computations across loops, and vectorize.
288 static inline crypto_word_t value_barrier_w(crypto_word_t a) {
289 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
290   __asm__("" : "+r"(a) : /* no inputs */);
291 #endif
292   return a;
293 }
294 
295 // value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
296 static inline uint32_t value_barrier_u32(uint32_t a) {
297 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
298   __asm__("" : "+r"(a) : /* no inputs */);
299 #endif
300   return a;
301 }
302 
303 // value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
304 static inline uint64_t value_barrier_u64(uint64_t a) {
305 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
306   __asm__("" : "+r"(a) : /* no inputs */);
307 #endif
308   return a;
309 }
310 
311 // constant_time_msb_w returns the given value with the MSB copied to all the
312 // other bits.
313 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
314   return 0u - (a >> (sizeof(a) * 8 - 1));
315 }
316 
317 // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
318 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
319                                                crypto_word_t b) {
320   // Consider the two cases of the problem:
321   //   msb(a) == msb(b): a < b iff the MSB of a - b is set.
322   //   msb(a) != msb(b): a < b iff the MSB of b is set.
323   //
324   // If msb(a) == msb(b) then the following evaluates as:
325   //   msb(a^((a^b)|((a-b)^a))) ==
326   //   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
327   //   msb(a^a^(a-b))           ==   (rearranging)
328   //   msb(a-b)                      (because ∀x. x^x == 0)
329   //
330   // Else, if msb(a) != msb(b) then the following evaluates as:
331   //   msb(a^((a^b)|((a-b)^a))) ==
332   //   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
333   //                                  represents a value s.t. msb(��) = 1)
334   //   msb(a^��)                 ==   (because ORing with 1 results in 1)
335   //   msb(b)
336   //
337   //
338   // Here is an SMT-LIB verification of this formula:
339   //
340   // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
341   //   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
342   // )
343   //
344   // (declare-fun a () (_ BitVec 32))
345   // (declare-fun b () (_ BitVec 32))
346   //
347   // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
348   // (check-sat)
349   // (get-model)
350   return constant_time_msb_w(a^((a^b)|((a-b)^a)));
351 }
352 
353 // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
354 // mask.
355 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
356   return (uint8_t)(constant_time_lt_w(a, b));
357 }
358 
359 // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
360 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
361                                                crypto_word_t b) {
362   return ~constant_time_lt_w(a, b);
363 }
364 
365 // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
366 // mask.
367 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
368   return (uint8_t)(constant_time_ge_w(a, b));
369 }
370 
371 // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
372 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
373   // Here is an SMT-LIB verification of this formula:
374   //
375   // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
376   //   (bvand (bvnot a) (bvsub a #x00000001))
377   // )
378   //
379   // (declare-fun a () (_ BitVec 32))
380   //
381   // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
382   // (check-sat)
383   // (get-model)
384   return constant_time_msb_w(~a & (a - 1));
385 }
386 
387 // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
388 // 8-bit mask.
389 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
390   return (uint8_t)(constant_time_is_zero_w(a));
391 }
392 
393 // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
394 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
395                                                crypto_word_t b) {
396   return constant_time_is_zero_w(a ^ b);
397 }
398 
399 // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
400 // mask.
401 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
402   return (uint8_t)(constant_time_eq_w(a, b));
403 }
404 
405 // constant_time_eq_int acts like |constant_time_eq_w| but works on int
406 // values.
407 static inline crypto_word_t constant_time_eq_int(int a, int b) {
408   return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
409 }
410 
411 // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
412 // mask.
413 static inline uint8_t constant_time_eq_int_8(int a, int b) {
414   return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
415 }
416 
417 // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
418 // 1s or all 0s (as returned by the methods above), the select methods return
419 // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
420 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
421                                                    crypto_word_t a,
422                                                    crypto_word_t b) {
423   // Clang recognizes this pattern as a select. While it usually transforms it
424   // to a cmov, it sometimes further transforms it into a branch, which we do
425   // not want.
426   //
427   // Adding barriers to both |mask| and |~mask| breaks the relationship between
428   // the two, which makes the compiler stick with bitmasks.
429   return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
430 }
431 
432 // constant_time_select_8 acts like |constant_time_select| but operates on
433 // 8-bit values.
434 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
435                                              uint8_t b) {
436   return (uint8_t)(constant_time_select_w(mask, a, b));
437 }
438 
439 // constant_time_select_int acts like |constant_time_select| but operates on
440 // ints.
441 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
442   return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
443                                       (crypto_word_t)(b)));
444 }
445 
446 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
447 
448 // CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
449 // of memory as secret. Secret data is tracked as it flows to registers and
450 // other parts of a memory. If secret data is used as a condition for a branch,
451 // or as a memory index, it will trigger warnings in valgrind.
452 #define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
453 
454 // CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
455 // region of memory as public. Public data is not subject to constant-time
456 // rules.
457 #define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
458 
459 #else
460 
461 #define CONSTTIME_SECRET(x, y)
462 #define CONSTTIME_DECLASSIFY(x, y)
463 
464 #endif  // BORINGSSL_CONSTANT_TIME_VALIDATION
465 
466 
467 // Thread-safe initialisation.
468 
469 #if !defined(OPENSSL_THREADS)
470 typedef uint32_t CRYPTO_once_t;
471 #define CRYPTO_ONCE_INIT 0
472 #elif defined(OPENSSL_WINDOWS_THREADS)
473 typedef INIT_ONCE CRYPTO_once_t;
474 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
475 #elif defined(OPENSSL_PTHREADS)
476 typedef pthread_once_t CRYPTO_once_t;
477 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
478 #else
479 #error "Unknown threading library"
480 #endif
481 
482 // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
483 // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
484 // then they will block until |init| completes, but |init| will have only been
485 // called once.
486 //
487 // The |once| argument must be a |CRYPTO_once_t| that has been initialised with
488 // the value |CRYPTO_ONCE_INIT|.
489 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
490 
491 
492 // Reference counting.
493 
494 // Automatically enable C11 atomics if implemented.
495 #if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) &&   \
496     !defined(__STDC_NO_ATOMICS__) && defined(__STDC_VERSION__) && \
497     __STDC_VERSION__ >= 201112L
498 #define OPENSSL_C11_ATOMIC
499 #endif
500 
501 // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
502 #define CRYPTO_REFCOUNT_MAX 0xffffffff
503 
504 // CRYPTO_refcount_inc atomically increments the value at |*count| unless the
505 // value would overflow. It's safe for multiple threads to concurrently call
506 // this or |CRYPTO_refcount_dec_and_test_zero| on the same
507 // |CRYPTO_refcount_t|.
508 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
509 
510 // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
511 //   if it's zero, it crashes the address space.
512 //   if it's the maximum value, it returns zero.
513 //   otherwise, it atomically decrements it and returns one iff the resulting
514 //       value is zero.
515 //
516 // It's safe for multiple threads to concurrently call this or
517 // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
518 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
519 
520 
521 // Locks.
522 //
523 // Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
524 // structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
525 // a global lock. A global lock must be initialised to the value
526 // |CRYPTO_STATIC_MUTEX_INIT|.
527 //
528 // |CRYPTO_MUTEX| can appear in public structures and so is defined in
529 // thread.h as a structure large enough to fit the real type. The global lock is
530 // a different type so it may be initialized with platform initializer macros.
531 
532 #if !defined(OPENSSL_THREADS)
533 struct CRYPTO_STATIC_MUTEX {
534   char padding;  // Empty structs have different sizes in C and C++.
535 };
536 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
537 #elif defined(OPENSSL_WINDOWS_THREADS)
538 struct CRYPTO_STATIC_MUTEX {
539   SRWLOCK lock;
540 };
541 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
542 #elif defined(OPENSSL_PTHREADS)
543 struct CRYPTO_STATIC_MUTEX {
544   pthread_rwlock_t lock;
545 };
546 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
547 #else
548 #error "Unknown threading library"
549 #endif
550 
551 // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
552 // |CRYPTO_STATIC_MUTEX|.
553 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
554 
555 // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
556 // read lock, but none may have a write lock.
557 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
558 
559 // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
560 // of lock on it.
561 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
562 
563 // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
564 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
565 
566 // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
567 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
568 
569 // CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
570 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
571 
572 // CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
573 // have a read lock, but none may have a write lock. The |lock| variable does
574 // not need to be initialised by any function, but must have been statically
575 // initialised with |CRYPTO_STATIC_MUTEX_INIT|.
576 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
577     struct CRYPTO_STATIC_MUTEX *lock);
578 
579 // CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
580 // any type of lock on it.  The |lock| variable does not need to be initialised
581 // by any function, but must have been statically initialised with
582 // |CRYPTO_STATIC_MUTEX_INIT|.
583 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
584     struct CRYPTO_STATIC_MUTEX *lock);
585 
586 // CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
587 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
588     struct CRYPTO_STATIC_MUTEX *lock);
589 
590 // CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
591 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
592     struct CRYPTO_STATIC_MUTEX *lock);
593 
594 #if defined(__cplusplus)
595 extern "C++" {
596 
597 BSSL_NAMESPACE_BEGIN
598 
599 namespace internal {
600 
601 // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
602 template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
603 class MutexLockBase {
604  public:
605   explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
606     assert(mu_ != nullptr);
607     LockFunc(mu_);
608   }
609   ~MutexLockBase() { ReleaseFunc(mu_); }
610   MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
611   MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
612       delete;
613 
614  private:
615   CRYPTO_MUTEX *const mu_;
616 };
617 
618 }  // namespace internal
619 
620 using MutexWriteLock =
621     internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
622 using MutexReadLock =
623     internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
624 
625 BSSL_NAMESPACE_END
626 
627 }  // extern "C++"
628 #endif  // defined(__cplusplus)
629 
630 
631 // Thread local storage.
632 
633 // thread_local_data_t enumerates the types of thread-local data that can be
634 // stored.
635 typedef enum {
636   OPENSSL_THREAD_LOCAL_ERR = 0,
637   OPENSSL_THREAD_LOCAL_RAND,
638   OPENSSL_THREAD_LOCAL_FIPS_COUNTERS,
639   OPENSSL_THREAD_LOCAL_TEST,
640   NUM_OPENSSL_THREAD_LOCALS,
641 } thread_local_data_t;
642 
643 // thread_local_destructor_t is the type of a destructor function that will be
644 // called when a thread exits and its thread-local storage needs to be freed.
645 typedef void (*thread_local_destructor_t)(void *);
646 
647 // CRYPTO_get_thread_local gets the pointer value that is stored for the
648 // current thread for the given index, or NULL if none has been set.
649 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
650 
651 // CRYPTO_set_thread_local sets a pointer value for the current thread at the
652 // given index. This function should only be called once per thread for a given
653 // |index|: rather than update the pointer value itself, update the data that
654 // is pointed to.
655 //
656 // The destructor function will be called when a thread exits to free this
657 // thread-local data. All calls to |CRYPTO_set_thread_local| with the same
658 // |index| should have the same |destructor| argument. The destructor may be
659 // called with a NULL argument if a thread that never set a thread-local
660 // pointer for |index|, exits. The destructor may be called concurrently with
661 // different arguments.
662 //
663 // This function returns one on success or zero on error. If it returns zero
664 // then |destructor| has been called with |value| already.
665 OPENSSL_EXPORT int CRYPTO_set_thread_local(
666     thread_local_data_t index, void *value,
667     thread_local_destructor_t destructor);
668 
669 
670 // ex_data
671 
672 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
673 
674 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
675 
676 // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
677 // supports ex_data. It should defined as a static global within the module
678 // which defines that type.
679 typedef struct {
680   struct CRYPTO_STATIC_MUTEX lock;
681   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
682   // num_reserved is one if the ex_data index zero is reserved for legacy
683   // |TYPE_get_app_data| functions.
684   uint8_t num_reserved;
685 } CRYPTO_EX_DATA_CLASS;
686 
687 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
688 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
689     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
690 
691 // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
692 // it to |*out_index|. Each class of object should provide a wrapper function
693 // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
694 // zero otherwise.
695 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
696                                            int *out_index, long argl,
697                                            void *argp,
698                                            CRYPTO_EX_free *free_func);
699 
700 // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
701 // of object should provide a wrapper function.
702 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
703 
704 // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
705 // if no such index exists. Each class of object should provide a wrapper
706 // function.
707 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
708 
709 // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
710 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
711 
712 // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
713 // object of the given class.
714 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
715                                         void *obj, CRYPTO_EX_DATA *ad);
716 
717 
718 // Endianness conversions.
719 
720 #if defined(__GNUC__) && __GNUC__ >= 2
721 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
722   return __builtin_bswap16(x);
723 }
724 
725 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
726   return __builtin_bswap32(x);
727 }
728 
729 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
730   return __builtin_bswap64(x);
731 }
732 #elif defined(_MSC_VER)
733 OPENSSL_MSVC_PRAGMA(warning(push, 3))
734 #include <stdlib.h>
735 OPENSSL_MSVC_PRAGMA(warning(pop))
736 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
737 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
738   return _byteswap_ushort(x);
739 }
740 
741 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
742   return _byteswap_ulong(x);
743 }
744 
745 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
746   return _byteswap_uint64(x);
747 }
748 #else
749 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
750   return (x >> 8) | (x << 8);
751 }
752 
753 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
754   x = (x >> 16) | (x << 16);
755   x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
756   return x;
757 }
758 
759 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
760   return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
761 }
762 #endif
763 
764 
765 // Language bug workarounds.
766 //
767 // Most C standard library functions are undefined if passed NULL, even when the
768 // corresponding length is zero. This gives them (and, in turn, all functions
769 // which call them) surprising behavior on empty arrays. Some compilers will
770 // miscompile code due to this rule. See also
771 // https://www.imperialviolet.org/2016/06/26/nonnull.html
772 //
773 // These wrapper functions behave the same as the corresponding C standard
774 // functions, but behave as expected when passed NULL if the length is zero.
775 //
776 // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
777 
778 // C++ defines |memchr| as a const-correct overload.
779 #if defined(__cplusplus)
780 extern "C++" {
781 
782 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
783   if (n == 0) {
784     return NULL;
785   }
786 
787   return memchr(s, c, n);
788 }
789 
790 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
791   if (n == 0) {
792     return NULL;
793   }
794 
795   return memchr(s, c, n);
796 }
797 
798 }  // extern "C++"
799 #else  // __cplusplus
800 
801 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
802   if (n == 0) {
803     return NULL;
804   }
805 
806   return memchr(s, c, n);
807 }
808 
809 #endif  // __cplusplus
810 
811 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
812   if (n == 0) {
813     return 0;
814   }
815 
816   return memcmp(s1, s2, n);
817 }
818 
819 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
820   if (n == 0) {
821     return dst;
822   }
823 
824   return memcpy(dst, src, n);
825 }
826 
827 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
828   if (n == 0) {
829     return dst;
830   }
831 
832   return memmove(dst, src, n);
833 }
834 
835 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
836   if (n == 0) {
837     return dst;
838   }
839 
840   return memset(dst, c, n);
841 }
842 
843 
844 // Loads and stores.
845 //
846 // The following functions load and store sized integers with the specified
847 // endianness. They use |memcpy|, and so avoid alignment or strict aliasing
848 // requirements on the input and output pointers.
849 
850 static inline uint32_t CRYPTO_load_u32_le(const void *in) {
851   uint32_t v;
852   OPENSSL_memcpy(&v, in, sizeof(v));
853   return v;
854 }
855 
856 static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
857   OPENSSL_memcpy(out, &v, sizeof(v));
858 }
859 
860 static inline uint32_t CRYPTO_load_u32_be(const void *in) {
861   uint32_t v;
862   OPENSSL_memcpy(&v, in, sizeof(v));
863   return CRYPTO_bswap4(v);
864 }
865 
866 static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
867   v = CRYPTO_bswap4(v);
868   OPENSSL_memcpy(out, &v, sizeof(v));
869 }
870 
871 static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
872   uint64_t ret;
873   OPENSSL_memcpy(&ret, ptr, sizeof(ret));
874   return CRYPTO_bswap8(ret);
875 }
876 
877 static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
878   v = CRYPTO_bswap8(v);
879   OPENSSL_memcpy(out, &v, sizeof(v));
880 }
881 
882 static inline crypto_word_t CRYPTO_load_word_le(const void *in) {
883   crypto_word_t v;
884   OPENSSL_memcpy(&v, in, sizeof(v));
885   return v;
886 }
887 
888 static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) {
889   OPENSSL_memcpy(out, &v, sizeof(v));
890 }
891 
892 
893 // FIPS functions.
894 
895 #if defined(BORINGSSL_FIPS)
896 // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
897 // fails. It prevents any further cryptographic operations by the current
898 // process.
899 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
900 #endif
901 
902 // boringssl_fips_self_test runs the FIPS KAT-based self tests. It returns one
903 // on success and zero on error. The argument is the integrity hash of the FIPS
904 // module and may be used to check and write flag files to suppress duplicate
905 // self-tests. If |module_hash_len| is zero then no flag file will be checked
906 // nor written and tests will always be run.
907 int boringssl_fips_self_test(const uint8_t *module_hash,
908                              size_t module_hash_len);
909 
910 #if defined(BORINGSSL_FIPS_COUNTERS)
911 void boringssl_fips_inc_counter(enum fips_counter_t counter);
912 #else
913 OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {}
914 #endif
915 
916 #if defined(__cplusplus)
917 }  // extern C
918 #endif
919 
920 #endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H
921