1 use super::plumbing::*; 2 use super::*; 3 use rayon_core::join; 4 use std::iter; 5 6 /// `Chain` is an iterator that joins `b` after `a` in one continuous iterator. 7 /// This struct is created by the [`chain()`] method on [`ParallelIterator`] 8 /// 9 /// [`chain()`]: trait.ParallelIterator.html#method.chain 10 /// [`ParallelIterator`]: trait.ParallelIterator.html 11 #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] 12 #[derive(Debug, Clone)] 13 pub struct Chain<A, B> 14 where 15 A: ParallelIterator, 16 B: ParallelIterator<Item = A::Item>, 17 { 18 a: A, 19 b: B, 20 } 21 22 impl<A, B> Chain<A, B> 23 where 24 A: ParallelIterator, 25 B: ParallelIterator<Item = A::Item>, 26 { 27 /// Creates a new `Chain` iterator. new(a: A, b: B) -> Self28 pub(super) fn new(a: A, b: B) -> Self { 29 Chain { a, b } 30 } 31 } 32 33 impl<A, B> ParallelIterator for Chain<A, B> 34 where 35 A: ParallelIterator, 36 B: ParallelIterator<Item = A::Item>, 37 { 38 type Item = A::Item; 39 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,40 fn drive_unindexed<C>(self, consumer: C) -> C::Result 41 where 42 C: UnindexedConsumer<Self::Item>, 43 { 44 let Chain { a, b } = self; 45 46 // If we returned a value from our own `opt_len`, then the collect consumer in particular 47 // will balk at being treated like an actual `UnindexedConsumer`. But when we do know the 48 // length, we can use `Consumer::split_at` instead, and this is still harmless for other 49 // truly-unindexed consumers too. 50 let (left, right, reducer) = if let Some(len) = a.opt_len() { 51 consumer.split_at(len) 52 } else { 53 let reducer = consumer.to_reducer(); 54 (consumer.split_off_left(), consumer, reducer) 55 }; 56 57 let (a, b) = join(|| a.drive_unindexed(left), || b.drive_unindexed(right)); 58 reducer.reduce(a, b) 59 } 60 opt_len(&self) -> Option<usize>61 fn opt_len(&self) -> Option<usize> { 62 self.a.opt_len()?.checked_add(self.b.opt_len()?) 63 } 64 } 65 66 impl<A, B> IndexedParallelIterator for Chain<A, B> 67 where 68 A: IndexedParallelIterator, 69 B: IndexedParallelIterator<Item = A::Item>, 70 { drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,71 fn drive<C>(self, consumer: C) -> C::Result 72 where 73 C: Consumer<Self::Item>, 74 { 75 let Chain { a, b } = self; 76 let (left, right, reducer) = consumer.split_at(a.len()); 77 let (a, b) = join(|| a.drive(left), || b.drive(right)); 78 reducer.reduce(a, b) 79 } 80 len(&self) -> usize81 fn len(&self) -> usize { 82 self.a.len().checked_add(self.b.len()).expect("overflow") 83 } 84 with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,85 fn with_producer<CB>(self, callback: CB) -> CB::Output 86 where 87 CB: ProducerCallback<Self::Item>, 88 { 89 let a_len = self.a.len(); 90 return self.a.with_producer(CallbackA { 91 callback, 92 a_len, 93 b: self.b, 94 }); 95 96 struct CallbackA<CB, B> { 97 callback: CB, 98 a_len: usize, 99 b: B, 100 } 101 102 impl<CB, B> ProducerCallback<B::Item> for CallbackA<CB, B> 103 where 104 B: IndexedParallelIterator, 105 CB: ProducerCallback<B::Item>, 106 { 107 type Output = CB::Output; 108 109 fn callback<A>(self, a_producer: A) -> Self::Output 110 where 111 A: Producer<Item = B::Item>, 112 { 113 self.b.with_producer(CallbackB { 114 callback: self.callback, 115 a_len: self.a_len, 116 a_producer, 117 }) 118 } 119 } 120 121 struct CallbackB<CB, A> { 122 callback: CB, 123 a_len: usize, 124 a_producer: A, 125 } 126 127 impl<CB, A> ProducerCallback<A::Item> for CallbackB<CB, A> 128 where 129 A: Producer, 130 CB: ProducerCallback<A::Item>, 131 { 132 type Output = CB::Output; 133 134 fn callback<B>(self, b_producer: B) -> Self::Output 135 where 136 B: Producer<Item = A::Item>, 137 { 138 let producer = ChainProducer::new(self.a_len, self.a_producer, b_producer); 139 self.callback.callback(producer) 140 } 141 } 142 } 143 } 144 145 /// //////////////////////////////////////////////////////////////////////// 146 147 struct ChainProducer<A, B> 148 where 149 A: Producer, 150 B: Producer<Item = A::Item>, 151 { 152 a_len: usize, 153 a: A, 154 b: B, 155 } 156 157 impl<A, B> ChainProducer<A, B> 158 where 159 A: Producer, 160 B: Producer<Item = A::Item>, 161 { new(a_len: usize, a: A, b: B) -> Self162 fn new(a_len: usize, a: A, b: B) -> Self { 163 ChainProducer { a_len, a, b } 164 } 165 } 166 167 impl<A, B> Producer for ChainProducer<A, B> 168 where 169 A: Producer, 170 B: Producer<Item = A::Item>, 171 { 172 type Item = A::Item; 173 type IntoIter = ChainSeq<A::IntoIter, B::IntoIter>; 174 into_iter(self) -> Self::IntoIter175 fn into_iter(self) -> Self::IntoIter { 176 ChainSeq::new(self.a.into_iter(), self.b.into_iter()) 177 } 178 min_len(&self) -> usize179 fn min_len(&self) -> usize { 180 Ord::max(self.a.min_len(), self.b.min_len()) 181 } 182 max_len(&self) -> usize183 fn max_len(&self) -> usize { 184 Ord::min(self.a.max_len(), self.b.max_len()) 185 } 186 split_at(self, index: usize) -> (Self, Self)187 fn split_at(self, index: usize) -> (Self, Self) { 188 if index <= self.a_len { 189 let a_rem = self.a_len - index; 190 let (a_left, a_right) = self.a.split_at(index); 191 let (b_left, b_right) = self.b.split_at(0); 192 ( 193 ChainProducer::new(index, a_left, b_left), 194 ChainProducer::new(a_rem, a_right, b_right), 195 ) 196 } else { 197 let (a_left, a_right) = self.a.split_at(self.a_len); 198 let (b_left, b_right) = self.b.split_at(index - self.a_len); 199 ( 200 ChainProducer::new(self.a_len, a_left, b_left), 201 ChainProducer::new(0, a_right, b_right), 202 ) 203 } 204 } 205 fold_with<F>(self, mut folder: F) -> F where F: Folder<A::Item>,206 fn fold_with<F>(self, mut folder: F) -> F 207 where 208 F: Folder<A::Item>, 209 { 210 folder = self.a.fold_with(folder); 211 if folder.full() { 212 folder 213 } else { 214 self.b.fold_with(folder) 215 } 216 } 217 } 218 219 /// //////////////////////////////////////////////////////////////////////// 220 /// Wrapper for Chain to implement ExactSizeIterator 221 222 struct ChainSeq<A, B> { 223 chain: iter::Chain<A, B>, 224 } 225 226 impl<A, B> ChainSeq<A, B> { new(a: A, b: B) -> ChainSeq<A, B> where A: ExactSizeIterator, B: ExactSizeIterator<Item = A::Item>,227 fn new(a: A, b: B) -> ChainSeq<A, B> 228 where 229 A: ExactSizeIterator, 230 B: ExactSizeIterator<Item = A::Item>, 231 { 232 ChainSeq { chain: a.chain(b) } 233 } 234 } 235 236 impl<A, B> Iterator for ChainSeq<A, B> 237 where 238 A: Iterator, 239 B: Iterator<Item = A::Item>, 240 { 241 type Item = A::Item; 242 next(&mut self) -> Option<Self::Item>243 fn next(&mut self) -> Option<Self::Item> { 244 self.chain.next() 245 } 246 size_hint(&self) -> (usize, Option<usize>)247 fn size_hint(&self) -> (usize, Option<usize>) { 248 self.chain.size_hint() 249 } 250 } 251 252 impl<A, B> ExactSizeIterator for ChainSeq<A, B> 253 where 254 A: ExactSizeIterator, 255 B: ExactSizeIterator<Item = A::Item>, 256 { 257 } 258 259 impl<A, B> DoubleEndedIterator for ChainSeq<A, B> 260 where 261 A: DoubleEndedIterator, 262 B: DoubleEndedIterator<Item = A::Item>, 263 { next_back(&mut self) -> Option<Self::Item>264 fn next_back(&mut self) -> Option<Self::Item> { 265 self.chain.next_back() 266 } 267 } 268